Tornadoes: Background and Forecasting

Tornadoes are narrow, violently rotating columns of air, extending from the base of a thunderstorm to the ground, that affect communities across the United States every year. Tornadoes can cause fatalities and injuries, destroy property and crops, and disrupt businesses. For example, a weather system on April 26-28, 2024, produced over 200 tornadoes, high winds, and large hail and caused multiple deaths and injuries across the Midwest and South, according to preliminary estimates. Tornadoes have been reported on all continents except Antarctica. They occur most commonly in North America, particularly in the United States, which reports approximately 1,200 tornadoes per year. Tornadoes occur across the United States but form frequently in three regions: (1) southern plains (e.g., Texas, Oklahoma, Kansas), (2) Gulf Coast (e.g., Alabama, Florida, Louisiana, Mississippi), and (3) northern plains and upper Midwest (e.g., North and South Dakota, Nebraska, Iowa, Minnesota). Tornadoes occur mostly during spring and summer (Figure 1) and usually during the late afternoon or early evening. However, tornadoes can occur at any time.

Classification

Experts estimate the strength or wind speed of a tornado by examining the damage it caused rather than by measuring actual wind speeds during an event. The Fujita, or F-scale, estimation method, developed in 1971, was used for over three decades, but its limitations prompted the development and adoption of a new scale in 2007, called the enhanced F-scale, or EF-scale (Table 1). The EF-scale uses 28 different types of damage indicators, such as building type, structures, and trees.

Table 1. Enhanced F-Scale

<table>
<thead>
<tr>
<th>EF Number</th>
<th>3-Second Gust (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>65-85</td>
</tr>
<tr>
<td>1</td>
<td>86-110</td>
</tr>
<tr>
<td>2</td>
<td>111-135</td>
</tr>
<tr>
<td>3</td>
<td>136-165</td>
</tr>
<tr>
<td>4</td>
<td>166-200</td>
</tr>
<tr>
<td>5</td>
<td>Over 200</td>
</tr>
</tbody>
</table>

Source: NOAA, Storm Prediction Center, “Enhanced F Scale for Tornado Damage.”

Notes: EF = Enhanced F-scale. A 3-second gust is estimated at the point of damage based on the EF-scale’s 28 damage indicators. The 3-second gust is not equivalent to wind speed measured in standard surface observations.
Forecasts, Detection, and Communication

Exactly how and why tornadoes form is not completely understood. Tornado formation is believed to be dictated mainly by conditions in and around rotating thunderstorms with well-defined circulation. The Secretary of Commerce, acting through the National Oceanic and Atmospheric Administration’s (NOAA’s) Administrator, has authority for weather forecasting and for issuing storm warnings (15 U.S.C. §313), including tornado forecasting and warnings. The National Weather Service (NWS) provides weather, water, and climate forecasts and warnings for the United States and its territories, adjacent waters, and ocean areas. Several other NOAA programs, including the National Severe Storm Laboratory, also focus on tornado research to improve observations, modeling, and instrument development, among other activities.

Forecasting and Detection

Severe thunderstorm and tornado forecasts are made by the NWS Storm Prediction Center (SPC) and by local weather forecast offices (WFOs). SPC forecasters use weather observations, numerical weather prediction models, and ensemble forecasting (running several models at one time) to determine if atmospheric conditions, temperature, and wind flow patterns may lead to the formation of severe weather. SPC issues three-day forecasts (convective outlooks) on a daily basis and mesoscale discussions of severe thunderstorm potential for the next six hours, with an emphasis on the next one to three hours, as warranted.

If conditions favorable for either multiple tornadoes or a single intense tornado continue to develop, SPC issues a tornado watch, which typically lasts six to eight hours. Such watches alert the public, emergency managers, storm spotters, broadcast media, and local WFOs that conditions have become favorable for the development of tornadoes. SPC aims to issue watches at least two hours before the first tornado event.

Forecasters and storm spotters recognize certain storm features from visual cues, such as the forward or rear flank downdraft (Figure 2), and particular patterns in Doppler radar images, such as the tornadic vortex signature (a region of intense concentrated rotation). WFOs issue tornado warnings when a tornado has been sighted or indicated by weather radar. The warning contains specific language about areas at risk, time frames, specific hazards, and recommended safety precautions for those at risk.

Communication

Several methods exist to communicate warnings to the public, including outdoor warning sirens, local television and radio stations, cable television systems, cell phone applications, and NOAA Weather Radio All Hazards (NWR). NWS maintains and operates NWR, a nationwide network of radio stations broadcasting continuous weather information directly from the nearest WFO 24 hours a day, 7 days a week. NWR works with the Emergency Alert System, an automated system that allows NWS warnings to be disseminated by broadcasters, satellite digital audio services, direct broadcast satellite providers, cable television systems, and wireless cable systems.

Figure 2. Selected Components of Certain Thunderstorms


Notes: A forward flank downdraft is the leading part of a supercell, with most of the heavy precipitation. A rear flank downdraft is a region of dry air subsiding on the back side of, and wrapping around, a cyclone (NOAA NWS, “Field Guide Glossary”).

Congressional Considerations

Congress continues to express interest in improving forecasting, detection, and communication related to tornadoes. For instance, in the 118th Congress, Members have introduced bills (e.g., S. 1284 and H.R. 6093) to amend a NOAA tornado program to “rapidly” improve tornado forecasts, predictions, and warnings and to evaluate and potentially update the current tornado rating system. The bills also would require a pilot program for tornado hazard communication, including the improvement of social, behavioral, economic, risk, and communication sciences, among other actions.

Due to reporting issues, experts are unable to determine if the average number of tornadoes each year has changed over time. For example, an increase in the number of reported EF0-EF1 tornadoes since the 1990s is likely due to better detection, greater media coverage and verification efforts, more storm spotting and chasing, a growing population, and the advent of cell phone cameras. In addition, the science is unclear on if climate change has impacted, or may impact, tornado frequency or intensity overall or in certain circumstances (see here for more about the differences between weather and climate). Congress may consider whether and how federal agencies should continue research into potential connections between climate change and tornado activity and whether ways exist to mitigate any climate change-related impacts.

Eva Lipiec, Specialist in Natural Resource Policy

IF12695

https://crsreports.congress.gov
Disclaimer

This document was prepared by the Congressional Research Service (CRS). CRS serves as nonpartisan shared staff to congressional committees and Members of Congress. It operates solely at the behest of and under the direction of Congress. Information in a CRS Report should not be relied upon for purposes other than public understanding of information that has been provided by CRS to Members of Congress in connection with CRS’s institutional role. CRS Reports, as a work of the United States Government, are not subject to copyright protection in the United States. Any CRS Report may be reproduced and distributed in its entirety without permission from CRS. However, as a CRS Report may include copyrighted images or material from a third party, you may need to obtain the permission of the copyright holder if you wish to copy or otherwise use copyrighted material.