China Naval Modernization: Implications for U.S. Navy Capabilities—Background and Issues for Congress

Updated December 1, 2022
Summary

China’s military modernization effort, including its naval modernization effort, is the top focus of U.S. defense planning and budgeting. China’s naval modernization effort has been underway for more than 25 years, since the early to mid-1990s, and has transformed China’s navy into a much more modern and capable force. China’s navy is a formidable military force within China’s near-seas region, and it is conducting a growing number of operations in the broader waters of the Western Pacific, the Indian Ocean, and waters around Europe.

China’s navy is, by far, the largest of any country in East Asia, and sometime between 2015 and 2020 it surpassed the U.S. Navy in numbers of battle force ships (meaning the types of ships that count toward the quoted size of the U.S. Navy). DOD states that China’s navy “is the largest navy in the world with a battle force of approximately 340 platforms, including major surface combatants, submarines, ocean-going amphibious ships, mine warfare ships, aircraft carriers, and fleet auxiliaries.... This figure does not include approximately 85 patrol combatants and craft that carry anti-ship cruise missiles (ASCM). The... overall battle force [of China’s navy] is expected to grow to 400 ships by 2025 and 440 ships by 2030.” The U.S. Navy, by comparison, included 294 battle force ships at the end of FY2021, and the Navy’s FY2023 budget submission projects that the Navy will include 290 or 291 battle force ships by the end of FY2030. U.S. military officials and other observers are expressing concern or alarm regarding the pace of China’s naval shipbuilding effort and resulting trend lines regarding the relative sizes and capabilities of China’s navy and the U.S. Navy.

China’s naval modernization effort encompasses a wide array of ship, aircraft, weapon, and C4ISR (command and control, communications, computers, intelligence, surveillance, and reconnaissance) acquisition programs, as well as improvements in logistics, doctrine, personnel quality, education and training, and exercises. China’s navy has currently has certain limitations and weaknesses, which it is working to overcome.

China’s military modernization effort, including its naval modernization effort, is assessed as being aimed at developing capabilities for, among other things, addressing the situation with Taiwan militarily, if need be; achieving a greater degree of control or domination over China’s near-seas region, particularly the South China Sea; defending China’s commercial sea lines of communication (SLOCs), particularly those linking China to the Persian Gulf; displacing U.S. influence in the Western Pacific; and asserting China’s status as the leading regional power and a major world power. Observers believe China wants its navy to be capable of acting as part of an anti-access/area-denial (A2/AD) force—a force that can deter U.S. intervention in a conflict in China’s near-seas region over Taiwan or some other issue, or failing that, delay the arrival or reduce the effectiveness of intervening U.S. forces.

The U.S. Navy has taken a number of actions to counter China’s naval modernization effort. Among other things, the U.S. Navy has shifted a greater percentage of its fleet to the Pacific; assigned its most-capable new ships and aircraft to the Pacific; maintained or increased general presence operations, training and developmental exercises, and engagement and cooperation with allied and other navies in the Indo-Pacific; increased the planned future size of the Navy; initiated, increased, or accelerated numerous programs for developing new military technologies and acquiring new ships, aircraft, unmanned vehicles, and weapons; developed new operational concepts for countering Chinese maritime A2/AD forces; and signaled that the Navy in coming years will shift to a more-distributed fleet architecture that will feature a substantially greater use of unmanned vehicles. The issue for Congress is whether to approve, reject, or modify the Biden Administration’s proposed U.S. Navy plans, budgets, and programs for responding to China’s naval modernization effort.
Contents

Introduction .. 1
Issue for Congress ... 1
Sources and Terminology .. 1
Background .. 2
Brief Overview of China’s Naval Modernization Effort .. 2
Numbers of Ships; Comparisons to U.S. Navy ... 6
Overview ... 6
Ultimate Size and Composition of China’s Navy Not Publicly Known 6
Number of Ships Is a One-Dimensional Measure, but Trends in Numbers Can Be of Value Analytically ... 6
Three Tables Showing Numbers of Chinese and U.S. Navy Ships............................... 7
Selected Elements of China’s Naval Modernization Effort .. 11
Anti-Ship Missiles ... 11
Submarines .. 16
Aircraft Carriers .. 20
Surface Combatants ... 27
Amphibious Ships ... 33
Operations Away from Home Waters ... 38
U.S. Navy Response ... 39
Overview ... 39
Cooperation with Naval Forces of Allies and Other Countries 40
Size of Navy, Fleet Architecture, and Operational Concepts ... 41
Programs for Acquiring Highly Capable Ships, Aircraft, and Weapons 43
Issues for Congress .. 43
Overview ... 43
U.S.-China Balance of Naval Power .. 44
Concern About Davidson Window/Decade of Concern ... 45
Additional Discussion ... 48
Legislative Activity for FY2023 .. 50
Coverage in Related CRS Reports .. 50
FY2023 National Defense Authorization Act (H.R. 7900/S. 4543) 51
House ... 51

Figures

Figure 1. DF-21D Anti-Ship Ballistic Missile (ASBM) .. 11
Figure 2. DF-26 Multi-Role Intermediate-Range Ballistic Missile (IRBM) 12
Figure 3. Reported Image of Anti-Ship Cruise Missile (ASCM) 13
Figure 4. Reported Image of Anti-Ship Cruise Missile (ASCM) 14
Figure 5. Reported Image of Anti-Ship Cruise Missile (ASCM) 15
Figure 6. Illustration of Reported Potential Containerized ASCM Launcher 15
Figure 7. Yuan (Type 039) Attack Submarine (SS) .. 17
Figure 8. Shang (Type 093) Attack Submarine (SSN) .. 17
Figure 9. Jin (Type 094) Ballistic Missile Submarine (SSBN) ... 18
Tables
Table 1. Numbers of Certain Types of Chinese and U.S. Ships Since 2005 ... 8
Table 2. Numbers of Chinese and U.S. Navy Battle Force Ships, 2000-2030 .. 9
Table 3. Numbers of Chinese and U.S. Navy Ships, 2020-2040 ... 10

Appendixes
Appendix A. Comparing U.S. and Chinese Numbers of Ships and Naval Capabilities 55
Appendix B. U.S. Navy’s Ability to Counter Chinese ASBMs and Hypersonic Weapons 57

Contacts
Author Information ... 62
Introduction

Issue for Congress

This report provides background information and issues for Congress on China’s naval modernization effort and its implications for U.S. Navy capabilities. China’s military modernization effort, including its naval modernization effort, is the top focus of U.S. defense planning and budgeting. The issue for Congress is whether to approve, reject, or modify the Biden Administration’s proposed U.S. Navy plans, budgets, and programs for responding to China’s naval modernization effort. Congress’s decisions on this issue could affect U.S. Navy capabilities and funding requirements, and the U.S. defense industrial base.

Sources and Terminology

This report is based on unclassified open-source information, such as the annual Department of Defense (DOD) report to Congress on military and security developments involving China, a 2019 Defense Intelligence Agency (DIA) report on China’s military power, a 2015 Office of Naval Intelligence (ONI) report on China’s navy, published reference sources such as IHS Jane’s Fighting Ships, and press reports.

For convenience, this report uses the term China’s naval modernization effort to refer to the modernization not only of China’s navy, but also of Chinese military forces outside China’s navy that can be used to counter U.S. naval forces operating in the Western Pacific, such as land-based anti-ship ballistic missiles (ASBMs), land-based surface-to-air missiles (SAMs), land-based Air Force aircraft armed with anti-ship cruise missiles (ASCMs), and land-based long-range radars for detecting and tracking ships at sea.

China’s military is formally called the People’s Liberation Army (PLA). Its navy is called the PLA Navy, or PLAN (also abbreviated as PLA[N]), and its air force is called the PLA Air Force, or PLAAF. The PLA Navy includes an air component that is called the PLA Naval Air Force, or PLANAF. China refers to its ballistic missile force as the PLA Rocket Force (PLARF).

This report uses the term China’s near-seas region to refer to the Yellow Sea, East China Sea, and South China Sea—the waters enclosed by the so-called first island chain. The so-called second island chain encloses both these waters and the Philippine Sea that is situated between the Philippines and Guam.

1 For an overview of China’s military, see CRS Report R46808, China’s Military: The People’s Liberation Army (PLA), by Caitlin Campbell. For more on China’s military modernization effort being the top focus of U.S. defense planning and budgeting, see CRS Report R43838, Great Power Competition: Implications for Defense—Issues for Congress, by Ronald O'Rourke.
5 IHS Jane’s Fighting Ships 2021-2022, and previous editions.
6 For a map showing the first and second island chains, see 2019 DIA CMP, p. 32.
Background

Brief Overview of China’s Naval Modernization Effort

Key overview points concerning China’s naval modernization effort include the following:

- China’s naval modernization effort, which forms part of a broader Chinese military modernization effort that includes several additional areas of emphasis,7 has been underway for more than 25 years, since the early to mid-1990s, and has transformed China’s navy into a much more modern and capable force.
- China’s navy is a formidable military force within China’s near-seas region, and it is conducting a growing number of operations in more-distant waters, including the broader waters of the Western Pacific, the Indian Ocean, and waters around Europe.
- China’s navy is, by far, the largest of any country in East Asia, and as shown in Table 2, sometime between 2015 and 2020, China’s navy surpassed the U.S. Navy in numbers of battle force ships (meaning the types of ships that count toward the quoted size of the U.S. Navy), making China’s navy the numerically largest in the world. DOD states that “the PLAN is the largest navy in the world with a battle force of approximately 340 platforms, including major surface combatants, submarines, ocean-going amphibious ships, mine warfare ships, aircraft carriers, and fleet auxiliaries.... This figure does not include approximately 85 patrol combatants and craft that carry anti-ship cruise missiles (ASCM). The PLAN’s overall battle force is expected to grow to 400 ships by 2025 and 440 ships by 2030. Much of this growth will be in major surface combatants.”8 The U.S. Navy, by comparison, included 294 battle force ships at the end of FY2021, and the Navy’s FY2023 budget submission projects that the Navy will include 290 or 291 battle force ships by the end of FY2030.9
- U.S. military officials and other observers are expressing concern or alarm regarding the pace of China’s naval shipbuilding effort and resulting trend lines regarding the relative sizes and capabilities of China’s navy and the U.S. Navy.10

7 Other areas of emphasis in China’s military modernization effort include space capabilities, cyber and electronic warfare capabilities, ballistic missile forces, and aviation forces, as well as the development of emerging military-applicable technologies such as hypersonics, artificial intelligence, robotics and unmanned vehicles, directed-energy technologies, and quantum technologies. For more on China’s military modernization effort in general, see CRS Report R46808, China’s Military: The People’s Liberation Army (PLA), by Caitlin Campbell. For a discussion of advanced military technologies, see CRS In Focus IF11105, Defense Primer: Emerging Technologies, by Kelley M. Sayler. U.S.-China competition in military capabilities in turn forms one dimension of a broader U.S.-China strategic competition that also includes political, diplomatic, economic, technological, and ideological dimensions.

8 2022 DOD CMSD, p. 52. See also 2019 DIA CMP, p. 63.

9 For additional discussion, see CRS Report RL32665, Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress, by Ronald O'Rourke.

China’s navy is viewed as posing a major challenge to the U.S. Navy’s ability to achieve and maintain wartime control of blue-water ocean areas in the Western Pacific—the first such challenge the U.S. Navy has faced since the end of the Cold War. China’s navy forms a key element of a Chinese challenge to the long-standing status of the United States as the leading military power in the Western Pacific.

- China’s naval ships, aircraft, and weapons are now much more modern and capable than they were at the start of the 1990s, and are now comparable in many respects to those of Western navies. DOD states that “as of 2021, the PLAN is largely composed of modern multi-role platforms featuring advanced anti-ship, anti-air, and anti-submarine weapons and sensors.”\(^{11}\) ONI states that “Chinese naval ship design and material quality is in many cases comparable to [that of] USN [U.S. Navy] ships, and China is quickly closing the gap in any areas of deficiency.”\(^{12}\)

- China’s naval modernization effort encompasses a wide array of platform and weapon acquisition programs, including anti-ship ballistic missiles (ASBMs), anti-ship cruise missiles (ASCMs), submarines, surface ships, aircraft, unmanned vehicles (UVs),\(^{13}\) and supporting C4ISR (command and control, communications, computers, intelligence, surveillance, and reconnaissance)

\(^{11}\) *2022 DOD CMSD*, p. 50.

\(^{12}\) Source: Unclassified ONI information paper prepared for Senate Armed Services Committee, subject “UPDATED China: Naval Construction Trends vis-à-vis U.S. Navy Shipbuilding Plans, 2020-2030,” February 2020, p. 3. Provided by Senate Armed Services Committee to CRS and CBO on March 4, 2020, and used in this CRS report with the committee’s permission.

systems. China’s naval modernization effort also includes improvements in logistics, doctrine, personnel quality, education and training, and exercises.14

- China’s military modernization effort, including its naval modernization effort, is assessed as being aimed at developing capabilities for, among other things, addressing the situation with Taiwan militarily, if need be; achieving a greater degree of control or domination over China’s near-seas region, particularly the South China Sea; enforcing China’s view that it has the right to regulate foreign military activities in its 200-mile maritime exclusive economic zone (EEZ);15 defending China’s commercial sea lines of communication (SLOCs), particularly those linking China to the Persian Gulf; displacing U.S. influence in the Western Pacific; and asserting China’s status as the leading regional power and a major world power.16

- Observers believe China wants its navy to be capable of acting as part of an anti-access/area-denial (A2/AD) force—a force that can deter U.S. intervention in a conflict in China’s near-seas region over Taiwan or some other issue, or failing that, delay the arrival or reduce the effectiveness of intervening U.S. forces. Additional missions for China’s navy include conducting maritime security (including antipiracy) operations, evacuating Chinese nationals from foreign countries when necessary, and conducting humanitarian assistance/disaster response (HA/DR) operations.

- The planned ultimate size and composition of China’s navy is not publicly known. In contrast to the U.S. Navy, China does not release a navy force-level goal or detailed information about planned ship procurement rates, planned total ship procurement quantities, planned ship retirements, and resulting projected force levels.

- Although China’s naval modernization effort has substantially improved China’s naval capabilities, China’s navy currently is assessed as having limitations or weaknesses in certain areas,17 including joint operations with other parts of China’s military,18 anti-submarine warfare (ASW), long-range targeting, a limited capacity for carrying out at-sea resupply of combatant ships operating far from home waters,19 a limited number of overseas bases and support facilities,20 a need to train large numbers of personnel to crew its new ships,21 and a lack of recent

15 For additional discussion, see CRS Report R42784, \textit{U.S.-China Strategic Competition in South and East China Seas: Background and Issues for Congress}, by Ronald O'Rourke.

17 For a discussion focusing on these limitations or weaknesses, see Mike Sweeney, \textit{Assessing Chinese Maritime Power,} Defense Priorities, October 2020, 14 pp. See also Tai Ming Cheung, “Russia’s Ukraine Disaster Exposes China’s Military Weakness,” \textit{Foreign Policy}, October 24, 2022.

20 See, for example, Kristin Huang, “Size of China’s Navy May Be Closing Gap on US Fleet But What Can the PLA Do with Just One Overseas Naval Base?” \textit{South China Morning Post}, March 14, 2021.

21 See, for example, Minnie Chan, “China’s Navy Goes Back to Work on Big Ambitions but Long-Term Gaps Remain,” \textit{South China Morning Post}, August 22, 2020.
China is working to reduce or overcome such limitations and weaknesses. Although China’s navy has limitations and weaknesses, it may nevertheless be sufficient for performing missions of interest to Chinese leaders. As China’s navy reduces its weaknesses and limitations, it may become sufficient to perform a wider array of potential missions.

In addition to modernizing its navy, China has substantially increased the size and capabilities of its coast guard. DOD states that China’s coast guard is “the largest maritime law enforcement fleet in the world.” China also operates a sizeable maritime militia that includes a large number of fishing vessels. China relies primarily on its maritime militia and coast guard to assert and defend its maritime claims.

The PLAN is also improving its anti-submarine warfare (ASW) capabilities through the development of its surface combatants and special mission aircraft, but it continues to lack a robust deep-water ASW capability. By prioritizing the acquisition of ASW capable surface combatants, acoustic surveillance ships, and fixed and rotary wing ASW capable aircraft, the PLAN is significantly improving its ASW capabilities. However, it will still require several years of training and systems integration for the PLAN to develop a robust offensive deep water ASW capability.

(2022 DOD CMSD, p. 53.)

The CCG’s [China Coast Guard’] rapid expansion and modernization has made it the largest maritime law enforcement fleet in the world. Its newer vessels are larger and more capable than older vessels, allowing them to operate further offshore and remain on station longer. A 2019 academic study published by the U.S. Naval War College estimates the CCG has over 140 regional and oceangoing patrol vessels (of more than 1,000 tons displacement). Some of the vessels are former PLAN vessels, such as corvettes, transferred to the CCG and modified for CCG operations. The newer, larger vessels are equipped with helicopter facilities, high-capacity water cannons, interceptor boats, and guns ranging from 20 to 76 millimeters. In addition, the same academic study indicates the CCG operates more than 120 regional patrol combatants (500 to 999 tons), which can be used for limited offshore operations, and an additional 450 coastal patrol craft (100 to 299 tons).

(2022 DOD CMSD, p. 78. See also 2019 DIA CMP, p. 78.)

23 For example, China’s naval shipbuilding programs were previously dependent on foreign suppliers for some ship components. ONI, however, states that “almost all weapons and sensors on Chinese naval ships are produced in-country, and China no longer relies on Russia or other significant naval ship systems.” (Source: Unclassified ONI information paper prepared for Senate Armed Services Committee, subject “UPDATED China: Naval Construction Trends vis-à-vis U.S. Navy Shipbuilding Plans, 2020-2030,” February 2020, pp. 2-3. Provided by Senate Armed Services Committee to CRS and CBO on March 4, 2020, and used in this CRS report with the committee’s permission.) Regarding the ASW capabilities of China’s Navy, DOD states:

The PLAN is also improving its anti-submarine warfare (ASW) capabilities through the development of its surface combatants and special mission aircraft, but it continues to lack a robust
deep-water ASW capability. By prioritizing the acquisition of ASW capable surface combatants,
acoustic surveillance ships, and fixed and rotary wing ASW capable aircraft, the PLAN is
significantly improving its ASW capabilities. However, it will still require several years of training
and systems integration for the PLAN to develop a robust offensive deep water ASW capability.

(2022 DOD CMSD, p. 53.)
maritime claims in its near-seas region, with the navy operating over the horizon as a potential backup force.25

Numbers of Ships; Comparisons to U.S. Navy

Overview

DOD states that “the PLAN is the largest navy in the world with a battle force of approximately 340 platforms, including major surface combatants, submarines, ocean-going amphibious ships, mine warfare ships, aircraft carriers, and fleet auxiliaries…. This figure does not include approximately 85 patrol combatants and craft that carry anti-ship cruise missiles (ASCM). The PLAN’s overall battle force is expected to grow to 400 ships by 2025 and 440 ships by 2030. Much of this growth will be in major surface combatants.”26 DIA states that “the PLAN is rapidly retiring older, single-mission warships in favor of larger, multimission ships equipped with advanced antiship, antiair, and antisubmarine weapons and sensors and C2 [command and control] facilities.”27

Ultimate Size and Composition of China’s Navy Not Publicly Known

The planned ultimate size and composition of China’s navy is not publicly known. The U.S. Navy makes public its force-level goal and regularly releases a 30-year shipbuilding plan that shows planned procurements of new ships, planned retirements of existing ships, and resulting projected force levels, as well as a five-year shipbuilding plan that shows, in greater detail, the first five years of the 30-year shipbuilding plan.28 In contrast, China does not release a navy force-level goal or detailed information about planned ship procurement rates, planned total ship procurement quantities, planned ship retirements, or resulting projected force levels. The ultimate size and composition of China’s navy might be an unsettled and evolving issue among Chinese military and political leaders. One observer states that “it seems the majority of past foreign projections of Chinese military and Chinese navy procurement scale and speed have been underestimates…. All military forces have a desired force requirement and a desired ‘critical mass’ to aspire toward. Whether the Chinese navy is close to its desired force or not, is of no small consequence.”29

Number of Ships Is a One-Dimensional Measure, but Trends in Numbers Can Be of Value Analytically

Relative U.S. and Chinese naval capabilities are sometimes assessed by showing comparative numbers of U.S. and Chinese ships. Although the total number of ships in a navy (or a navy’s aggregate tonnage) is relatively easy to calculate, it is a one-dimensional measure that leaves out numerous other factors that bear on a navy’s capabilities and how those capabilities compare to its assigned missions. As a result, as discussed in further detail in Appendix A, comparisons of

25 For additional discussion, see 2022 DOD CMSD, pp. 79-80, and CRS Report R42784, U.S.-China Strategic Competition in South and East China Seas: Background and Issues for Congress, by Ronald O’Rourke.

26 2022 DOD CMSD, p. 52. See also 2019 DIA CMP, p. 63.

27 2019 DIA CMP, p. 69.

28 For more information on the U.S. Navy’s force-level goal, 30-year shipbuilding plan, and five-year shipbuilding plan, see CRS Report RL32665, Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress, by Ronald O’Rourke.

the total numbers of ships in China’s navy and the U.S. Navy are highly problematic as a means of assessing relative U.S. and Chinese naval capabilities and how those capabilities compare to the missions assigned to the two navies. At the same time, however, an examination of trends over time in these relative numbers of ships can shed some light on how the relative balance of U.S. and Chinese naval capabilities might be changing over time.

Three Tables Showing Numbers of Chinese and U.S. Navy Ships

Table Showing Figures from Annual DOD Reports

Table 1 shows numbers of certain types of Chinese navy ships—those that might be thought of as the principal combat ships of China’s navy—from 2005 to the present, along with the number of China coast guard ships from 2017 to the present, as presented in DOD’s annual reports on military and security developments involving China. As can be seen in Table 1, every type of Chinese navy ship shown in the table has increased numerically since 2005.

As can be seen in Table 1, about 61% of the increase since 2005 in the total number of Chinese navy ships shown in the table (a net increase of 83 ships out of a total net increase of 135 ships) resulted from increases in missile-armed fast patrol craft starting in 2009 (a net increase of 33 ships) and corvettes starting in 2014 (50 ships). These are the smallest surface combatants shown in the table. The net 33-ship increase in missile-armed fast patrol craft was due to the construction between 2004 and 2009 of about 60 new Houbei (Type 022) fast attack craft and the retirement of about 27 older fast attack craft. The 50-ship increase in corvettes is due to the Jingdao (Type 056) corvette program discussed later in this report. ONI states that “a significant portion of China’s Battle Force consists of the large number of new corvettes and guided-missile frigates recently built for the PLAN.” As can also be seen in the table, most of the remaining increase since 2005 in the number of Chinese navy ships shown in the table is accounted for by increases in cruisers and destroyers (21 ships) and amphibious ships (14 ships).

Table 1 lumps together less capable older Chinese ships with more capable modern Chinese ships. In examining the numbers in the table, it can be helpful to keep in mind that for many of the types of Chinese ships shown in the table, the percentage of the ships accounted for by more capable modern designs was growing over time, even if the total number of ships for those types was changing little.

For reference, Table 1 also shows the total number of ships in the U.S. Navy (known technically as the total number of battle force ships), and compares it to the total number of the types of Chinese ships that are shown in the table. The result is an apples-vs.-oranges comparison, because the Chinese figures exclude certain ship types, such as auxiliary and support ships, while the U.S. Navy figure includes auxiliary and support ships but excludes patrol craft. Changes over time in this apples-vs.-oranges comparison, however, can be of value in understanding trends in the comparative sizes of the U.S. and Chinese navies.

30 The Type 022 program was discussed in the August 1, 2018, version of this CRS report, and earlier versions.
32 The DOD report generally covers events of the prior calendar year. Thus, the 2021 edition covers events during 2020, and so on for earlier years. Similarly, for the U.S. Navy figures, the 2021 column in Table 1 shows the figure for the end of FY2020, and so on for earlier years.
Table 1. Numbers of Certain Types of Chinese and U.S. Ships Since 2005

Figures for Chinese ships taken from annual DOD reports on military and security developments involving China for the years 2005-2022.

<table>
<thead>
<tr>
<th>Year of DOD report</th>
<th>SSB</th>
<th>SSN</th>
<th>SS</th>
<th>CV</th>
<th>CG</th>
<th>DD</th>
<th>FF</th>
<th>FFL</th>
<th>PC</th>
<th>LST/LPD</th>
<th>LSM</th>
<th>Total PLAN ship types shown to right</th>
<th>U.S. total</th>
<th>U.S. vs. PLAN ship types shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>1</td>
<td>6</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>43</td>
<td>0</td>
<td>51</td>
<td>20</td>
<td>23</td>
<td>216 n/a</td>
<td>292</td>
<td>+76</td>
</tr>
<tr>
<td>2006</td>
<td>1</td>
<td>5</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>45</td>
<td>0</td>
<td>45</td>
<td>25</td>
<td>25</td>
<td>221 n/a</td>
<td>281</td>
<td>+60</td>
</tr>
<tr>
<td>2007</td>
<td>1</td>
<td>5</td>
<td>53</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>47</td>
<td>0</td>
<td>41</td>
<td>25</td>
<td>25</td>
<td>222 n/a</td>
<td>281</td>
<td>+59</td>
</tr>
<tr>
<td>2008</td>
<td>1</td>
<td>5</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>45</td>
<td>0</td>
<td>45</td>
<td>26</td>
<td>28</td>
<td>233 n/a</td>
<td>279</td>
<td>+46</td>
</tr>
<tr>
<td>2009</td>
<td>2</td>
<td>6</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>48</td>
<td>0</td>
<td>70</td>
<td>27</td>
<td>28</td>
<td>262 n/a</td>
<td>282</td>
<td>+20</td>
</tr>
<tr>
<td>2010</td>
<td>2</td>
<td>6</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>49</td>
<td>0</td>
<td>85</td>
<td>27</td>
<td>28</td>
<td>276 n/a</td>
<td>285</td>
<td>+9</td>
</tr>
<tr>
<td>2011</td>
<td>2</td>
<td>5</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>26</td>
<td>53</td>
<td>0</td>
<td>86</td>
<td>27</td>
<td>28</td>
<td>276 n/a</td>
<td>288</td>
<td>+12</td>
</tr>
<tr>
<td>2012</td>
<td>2</td>
<td>5</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>26</td>
<td>53</td>
<td>0</td>
<td>86</td>
<td>28</td>
<td>23</td>
<td>271 n/a</td>
<td>284</td>
<td>+13</td>
</tr>
<tr>
<td>2013</td>
<td>3</td>
<td>5</td>
<td>49</td>
<td>1</td>
<td>0</td>
<td>23</td>
<td>52</td>
<td>0</td>
<td>85</td>
<td>29</td>
<td>26</td>
<td>273 n/a</td>
<td>287</td>
<td>+14</td>
</tr>
<tr>
<td>2014</td>
<td>3</td>
<td>5</td>
<td>51</td>
<td>1</td>
<td>0</td>
<td>24</td>
<td>49</td>
<td>8</td>
<td>85</td>
<td>29</td>
<td>28</td>
<td>283 n/a</td>
<td>285</td>
<td>+2</td>
</tr>
<tr>
<td>2015</td>
<td>4</td>
<td>5</td>
<td>53</td>
<td>1</td>
<td>0</td>
<td>21</td>
<td>52</td>
<td>15</td>
<td>86</td>
<td>29</td>
<td>28</td>
<td>294 n/a</td>
<td>289</td>
<td>-5</td>
</tr>
<tr>
<td>2016</td>
<td>4</td>
<td>5</td>
<td>57</td>
<td>1</td>
<td>0</td>
<td>23</td>
<td>52</td>
<td>23</td>
<td>86</td>
<td>30</td>
<td>22</td>
<td>303 n/a</td>
<td>271</td>
<td>-32</td>
</tr>
<tr>
<td>2017</td>
<td>4</td>
<td>5</td>
<td>54</td>
<td>1</td>
<td>0</td>
<td>21</td>
<td>56</td>
<td>23</td>
<td>88</td>
<td>34</td>
<td>21</td>
<td>317 185</td>
<td>275</td>
<td>-42</td>
</tr>
<tr>
<td>2018</td>
<td>4</td>
<td>5</td>
<td>57</td>
<td>1</td>
<td>0</td>
<td>28</td>
<td>51</td>
<td>28</td>
<td>86</td>
<td>33</td>
<td>23</td>
<td>306 240</td>
<td>279</td>
<td>-27</td>
</tr>
<tr>
<td>2019</td>
<td>4</td>
<td>6</td>
<td>50</td>
<td>1</td>
<td>0</td>
<td>33</td>
<td>54</td>
<td>42</td>
<td>86</td>
<td>37</td>
<td>22</td>
<td>335 248</td>
<td>286</td>
<td>-49</td>
</tr>
<tr>
<td>2020</td>
<td>4</td>
<td>6</td>
<td>46</td>
<td>2</td>
<td>1</td>
<td>32</td>
<td>49</td>
<td>49</td>
<td>86</td>
<td>37</td>
<td>21</td>
<td>333 255</td>
<td>290</td>
<td>-43</td>
</tr>
<tr>
<td>2021</td>
<td>6</td>
<td>9</td>
<td>56</td>
<td>2</td>
<td>1</td>
<td>32</td>
<td>48</td>
<td>51</td>
<td>86</td>
<td>57</td>
<td>348 223</td>
<td>296</td>
<td>-52</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>6</td>
<td>9</td>
<td>56</td>
<td>2</td>
<td>6</td>
<td>36</td>
<td>45</td>
<td>50</td>
<td>84</td>
<td>57</td>
<td>351 224</td>
<td>294</td>
<td>-57</td>
<td></td>
</tr>
<tr>
<td>2022: change since</td>
<td>2005</td>
<td></td>
<td>+135 n/a</td>
<td>+2</td>
<td>-133</td>
</tr>
</tbody>
</table>

Sources: Table prepared by CRS based on 2005-2022 editions of annual DOD report to Congress on military and security developments involving China (known for 2009 and prior editions as the report on China military power), and (for U.S. Navy ships) U.S. Navy data as presented in CRS Report RL32665, *Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress*, by Ronald O'Rourke.

Key to abbreviations: n/a = data not available in annual DOD report. **SSB** = ballistic missile submarines. **SSN** = nuclear-powered attack submarines. **SS** = diesel attack submarines. **CV** = aircraft carriers. **CG** = cruisers. **DD** = destroyers. **FF** = frigates. **FFL** = corvettes (i.e., light frigates). **PC** = missile-armed coastal patrol craft. **LST** = amphibious tank landing ship. **LPD** = amphibious transport dock ship. **LSM** = amphibious medium landing ship. (Starting with the 2021 edition, the annual DOD report shows a combined figure for LST/LPD and LSM.)

Column for **Total PLAN ship types shown to right**, which shows what might be thought of as the principal combat ships of China’s navy, does not include other PLAN ship types not shown to right, such as auxiliary and support ships. **CCG** = China Coast Guard ships. **U.S. total** = Total U.S. Navy battle force ships, which includes auxiliary and support ships but excludes patrol craft. **U.S. vs. PLAN ship types shown** = total U.S. Navy battle force ships compared to the column for **Total PLAN ship types shown to right**.
Notes: The DOD report generally covers events of the prior calendar year. Thus, the 2021 edition covers events during 2020, and so on for earlier years. Similarly, for the U.S. Navy figures, the 2021 column shows the figure for the end of FY2020, and so on for earlier years.

On the basis of the figures in Table 1, it might be said that in 2015, the total number of principal combat ships in China’s navy surpassed the total number of U.S. Navy battle force ships (a figure that includes not only the U.S. Navy’s principal combat ships, but also other U.S. Navy ships, such as auxiliary and support ships). It is important, however, to keep in mind the differences in composition between the two navies. The U.S. Navy, for example, has many more aircraft carriers, nuclear-powered submarines, and cruisers and destroyers, while China’s navy has many more diesel attack submarines, frigates, and corvettes.

Table Showing ONI Figures from February 2020

Table 2 shows comparative numbers of Chinese and U.S. battle force ships (and figures for certain types of ships that contribute toward China’s total number of battle force ships) from 2000 to 2030, with the figures for 2025 and 2030 being projections. The figures for China’s ships are taken from an ONI information paper of February 2020. Battle force ships are the types of ships that count toward the quoted size of the U.S. Navy. For China, the total number of battle force ships shown excludes the missile-armed coastal patrol craft shown in Table 1, but includes auxiliary and support ships that are not shown in Table 1. Compared to Table 1, the figures in Table 2 come closer to providing an apples-to-apples comparison of the two navies’ numbers of ships, although it could be argued that China’s missile-armed coastal patrol craft can be a significant factor for operations within the first island chain.

Table 2. Numbers of Chinese and U.S. Navy Battle Force Ships, 2000-2030

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballistic missile submarines</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Nuclear-powered attack submarines</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Diesel attack submarines</td>
<td>56</td>
<td>56</td>
<td>48</td>
<td>53</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Aircraft carriers, cruisers, destroyers</td>
<td>19</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>43</td>
<td>55</td>
<td>65</td>
</tr>
<tr>
<td>Frigates, corvettes</td>
<td>38</td>
<td>43</td>
<td>50</td>
<td>74</td>
<td>102</td>
<td>120</td>
<td>135</td>
</tr>
<tr>
<td>Total China navy battle force ships, including types not shown above</td>
<td>210</td>
<td>220</td>
<td>220</td>
<td>255</td>
<td>360</td>
<td>400</td>
<td>425</td>
</tr>
<tr>
<td>Total U.S. Navy battle force ships</td>
<td>318</td>
<td>282</td>
<td>288</td>
<td>271</td>
<td>297</td>
<td>287</td>
<td>290 or 291</td>
</tr>
<tr>
<td>U.S. total above compared to China total above</td>
<td>+108</td>
<td>+62</td>
<td>+68</td>
<td>+16</td>
<td>-63</td>
<td>-113</td>
<td>-135 or -134</td>
</tr>
</tbody>
</table>

Sources: Table prepared by CRS. Source for China’s navy: Unclassified ONI information paper prepared for Senate Armed Services Committee, subject “UPDATED China: Naval Construction Trends vis-a-vis U.S. Navy Shipbuilding Plans, 2020-2030,” February 2020, 4 pp. Provided by Senate Armed Services Committee to CRS and CBO on March 4, 2020, and used in this CRS report with the committee’s permission. Figures are for end of calendar year. Source for figures for U.S. Navy: U.S. Navy data; figures are for end of fiscal year.

Note: In the column for the year 2000, the ONI information paper showed a figure for the total number of China navy battle force ships of 110, but the Navy later stated that this was a typo, and that the correct figure is 210.

As shown in Table 2, China’s navy surpassed the U.S. Navy in terms of total number of battle force ships sometime between 2015 and 2020. As mentioned earlier in connection with Table 1,
However, it is important to keep in mind the differences in composition between the two navies. The U.S. Navy, for example, currently has many more aircraft carriers, nuclear-powered submarines, and cruisers and destroyers, while China’s navy currently has many more diesel attack submarines, frigates, and corvettes.

Table Showing U.S. Navy Figures from October 2020

Table 3 shows numbers of certain types of Chinese navy ships in 2020, and projections of those numbers for 2025, 2030, and 2040, along with the total number of U.S. Navy battle force ships in 2020. The figures for China’s ships were provided by the Navy at the request of CRS. As with Table 1, the result for 2020 is an apples-vs.-oranges comparison between the Chinese navy and U.S. navy totals, because the Chinese total for 2020 excludes certain ship types, such as auxiliary and support ships, while the U.S. Navy total for 2020 includes auxiliary and support ships.

Table 3. Numbers of Chinese and U.S. Navy Ships, 2020-2040

Figures for Chinese ships are from U.S. Navy, reflecting data as of October 2020

<table>
<thead>
<tr>
<th>Ship type</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2040</th>
<th>2040 change from 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballistic missile submarines</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>+6</td>
</tr>
<tr>
<td>Nuclear-powered attack submarines</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>16</td>
<td>+10</td>
</tr>
<tr>
<td>Diesel attack submarines</td>
<td>47</td>
<td>47</td>
<td>46</td>
<td>46</td>
<td>-1</td>
</tr>
<tr>
<td>Aircraft carriers</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>+4</td>
</tr>
<tr>
<td>Cruisers and destroyers</td>
<td>41</td>
<td>52</td>
<td>60</td>
<td>80</td>
<td>+39</td>
</tr>
<tr>
<td>Frigates and corvettes</td>
<td>102</td>
<td>120</td>
<td>135</td>
<td>140</td>
<td>+38</td>
</tr>
<tr>
<td>LHA-type amphibious assault ships</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>+6</td>
</tr>
<tr>
<td>LPD-type amphibious ships</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td>14</td>
<td>+7</td>
</tr>
<tr>
<td>LST-type amphibious tank landing ships</td>
<td>30</td>
<td>24</td>
<td>24</td>
<td>15</td>
<td>-15</td>
</tr>
<tr>
<td>TOTAL for China of types shown above</td>
<td>239</td>
<td>276</td>
<td>310</td>
<td>333</td>
<td>+94</td>
</tr>
<tr>
<td>TOTAL number of U.S. Navy battle force ships</td>
<td>297</td>
<td>287</td>
<td>290 or 291</td>
<td>324 or 350</td>
<td>+27 or +53</td>
</tr>
<tr>
<td>U.S. total above compared to China total above</td>
<td>+58</td>
<td>+11</td>
<td>-20 or -19</td>
<td>-9 or +17</td>
<td>-67 or -41</td>
</tr>
</tbody>
</table>

Source: For Chinese navy ships: U.S. Navy data provided to CRS by Navy Office of Legislative Affairs, reflecting data as of October 26, 2020.

Note: The figures for the U.S. Navy for 2030 and 2040 show different alternatives presented in the Navy’s FY2023 budget submission.

As shown in Table 3, the U.S. Navy projects that between 2020 and 2040, the total number of Chinese ships of the types shown in the table will increase by 94, or about 39%, with most of that increase (77 ships out of 94) coming from roughly equal increases in numbers of large surface combatants (cruisers and destroyers—39 ships) and small surface combatants (frigates and corvettes—38 ships). Numbers of ballistic missile submarines and nuclear-powered attack submarines are each projected to more than double between 2020 and 2040, and the total number of diesel attack submarines is projected to remain almost unchanged. The number of large surface combatants is projected to almost double, and the number of small surface combatants is projected to increase by more than one-third. Numbers of larger (LHA- and LPD-type) amphibious ships are projected to increase, and the number of smaller (LST-type) amphibious
China Naval Modernization: Implications for U.S. Navy Capabilities

Selected Elements of China’s Naval Modernization Effort

This section provides a brief overview of elements of China’s naval modernization effort that have attracted frequent attention from observers.

Anti-Ship Missiles

Anti-Ship Ballistic Missiles (ASBMs)

China is fielding two types of land-based ballistic missiles with a capability of hitting ships at sea—the DF-21D (Figure 1), a road-mobile anti-ship ballistic missile (ASBM) with a range of more than 1,500 kilometers (i.e., more than 910 nautical miles), and the DF-26 (Figure 2), a road-mobile, multi-role intermediate range ballistic missile (IRBM) with a maximum range of about 3,000 kilometers (i.e., about 1,620 nautical miles) that DOD says “capable of conducting both conventional and nuclear precision strikes against ground targets as well as conventional strikes against naval targets.”

33 2022 DOD CMSD, p. 64. A map on page 67 of the report shows the DF-26 with a range of 4,000 kilometers (about 2,160 nautical miles).
Until 2020, reported test flights of DF-21s and SDF-26s had not involved attempts to hit moving ships at sea. A November 14, 2020, press report, stated that an August 2020 test firing of DF-21 and DF-26 ASBMs into the South China resulted in the missiles successfully hitting a moving target ship south of the Paracel Islands. A December 3, 2020, press report stated that Admiral Philip Davidson, the commander of U.S. Indo-Pacific Command, “confirmed, for the first time from the U.S. government side, that China’s People’s Liberation Army has successfully tested an anti-ship ballistic missile against a moving ship.”

In April 2022, it was reported that China may have developed a new type of ASBM, perhaps designated the YJ-21, that is small enough to fit into the vertical launch tube of a surface combatant, and that China had test fired such a weapon from a Type 055 cruiser (or large destroyer).

China reportedly is also developing hypersonic glide vehicles that, if incorporated into Chinese ASBMs, could make Chinese ASBMs more difficult to intercept.

Observers have expressed strong concerns about China’s ASBMs, because such missiles, in combination with broad-area maritime surveillance and targeting systems, would permit China to attack aircraft carriers, other U.S. Navy ships, or ships of allied or partner navies operating in the Western Pacific. The U.S. Navy has not previously faced a threat from highly accurate ballistic missiles capable of hitting moving ships at sea. For this reason, some observers have referred to ASBMs as a “game-changing” weapon.

Anti-Ship Cruise Missiles (ASCMs)

China’s extensive inventory of anti-ship cruise missiles (ASCMs) (see Figure 3, Figure 4, and Figure 5 for examples of reported images) includes both Russian- and Chinese-made designs, including some advanced and highly capable ones, such as the Chinese-made YJ-18.38

Figure 3. Reported Image of Anti-Ship Cruise Missile (ASCM)

Source: Detail of photograph accompanying Pierre Delrieu, “China Promotes Export of CM-302 Supersonic ASCM,” *Asian Military Review*, July 3, 2017. (The article states “This is an article published in our December 2016 Issue.”) The article states “According to Chinese news media reports, the China Aerospace Science and Industry Corporation (CASIC) CM-302 missile is being marketed for export as “the world’s best anti-ship missile.” The missile was showcased at the Zhuhai air show in the southern People’s Republic of China (PRC) in early November [2016], and is advertised as [a] supersonic Anti-Ship Missile (AShM) [ASCM] which can also be used in the land attack role. The report, published by the national newspaper China Daily, suggests that the CM-302 is the export version of CASIC’s YJ-12 supersonic AShM, which is in service with the PRC’s armed forces.”)

Although China’s ASCMs do not always receive as much press attention as China’s ASBMs (perhaps because ASBMs are a more recent development), observers are nevertheless concerned about them. As discussed later in this report, the relatively long ranges of certain Chinese ASCMs have led to concerns among some observers that the U.S. Navy is not moving quickly enough to arm U.S. Navy surface ships with similarly ranged ASCMs.

Press reports in April 2019 and December 2021 state that China might be developing a YJ-18 launcher that can be packaged inside a standard commercial shipping container, for the potential

purpose of surreptitiously deploying YJ-18s on merchant ships (Figure 6), a capability that, if implemented, could violate the law of naval warfare.40

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Reported Image of Anti-Ship Cruise Missile (ASCM)}
\end{figure}

\textit{Source:} Photograph accompanying “YJ-18 Eagle Strike CH-SS-NX-13,” GlobalSecurity.org, updated October 1, 2019. The article states, “A grand military parade was held in Beijing on 01 October 2019 to mark the People’s Republic of China’s 70th founding anniversary…. One weapon featured was a new generation of anti-ship missiles called YJ-18. China unveiled YJ-18/18A anti-ship cruise missiles in the National Day military parade in central Beijing.”

Figure 5. Reported Image of Anti-Ship Cruise Missile (ASCM)

Figure 6. Illustration of Reported Potential Containerized ASCM Launcher

Submarines

Overview

China has been steadily modernizing its submarine force, and most of its submarines are now built to relatively modern Chinese and Russian designs. Qualitatively, China’s newest submarines might not be as capable as Russia’s newest submarines, but compared to China’s earlier submarines, which were built to antiquated designs, its newer submarines are much more capable.

Types and Numbers

Most of China’s submarines are non-nuclear-powered attack submarines (SSs). China also operates a small number of nuclear-powered attack submarines (SSNs) and a small number of nuclear-powered ballistic missile submarines (SSBNs). The number of SSNs and SSBNs may grow in coming years, but the force will likely continue to consist mostly of SSs. DOD states that “the PLAN has placed a high priority on modernizing its submarine force, but its force structure continues to grow modestly as it works to mature its force, integrate new technologies, and expand its shipyards.... The PLAN will likely maintain between 65 and 70 submarines through the 2020s, replacing older units with more capable units on a near one-to-one basis.”

ONI states that “China’s submarine force continues to grow at a low rate, though with substantially more-capable submarines replacing older units. Current expansion at submarine production yards could allow higher future production numbers.” ONI projects that China’s submarine force will grow from a total of 66 boats (4 SSBNs, 7 SSNs, and 55 SSs) in 2020 to 76 boats (8 SSBNs, 13 SSNs, and 55 SSs) in 2030.

A November 27, 2022, press report states: “The dry-docks at China’s nuclear submarine facility at Huludao, Liaoning province, show increased activity. New construction halls are primed. Another dry dock is ready to go. International analysts point to this as evidence Beijing is gearing up for the mass production of a new generation of nuclear-powered attack and ballistic missile submarines.”

43 2022 DOD CMSD, p. 52.

China’s newest series-built SS design is the Yuan-class (Type 039) SS (Figure 7), its newest SSN class is the Shang-class (Type 093) SSN (Figure 8), and its newest SSBN class is the Jin (Type 094) class SSBN (Figure 9).

Figure 7. Yuan (Type 039) Attack Submarine (SS)

![Yuan (Type 039) Attack Submarine (SS)](source)

Figure 8. Shang (Type 093) Attack Submarine (SSN)

![Shang (Type 093) Attack Submarine (SSN)](source)

China Naval Modernization: Implications for U.S. Navy Capabilities

Figure 9. Jin (Type 094) Ballistic Missile Submarine (SSBN)

Source: Cropped version of photograph accompanying Minnie Chan, “China Puts a Damper on Navy’s 70th Anniversary Celebrations As It Tries to Allay Fears Over Rising Strength,” South China Morning Post, April 23, 2019. The article credits the photograph to Xinhua.

DOD states that

the PRC continues to increase its inventory of conventional submarines capable of firing advanced anti-ship cruise missiles (ASCM). Between the mid-1990s and mid-2000s, the PLAN purchased 12 Russian-built KILO class SS units, eight of which are capable of launching ASCMs. China’s shipyards have delivered 13 SONG class SS (Type 039) and 17 YUAN class diesel-electric air-independent propulsion attack submarine[s] (SSP) (Type 039A/B). The PRC is expected to produce a total of 25 or more YUAN class submarines by 2025. In late 2021, the PLAN retired the first two KILO-class submarines purchased from Russia in the 1990s.\(^46\)

DOD states further that

Over the past 15 years, the PLAN has constructed twelve nuclear submarines—two SHANG I class SSNs (Type 093), four SHANG II class SSNs (Type 093A), and six JIN class SSBNs (Type 094). Equipped with the CSS-N-14 (JL-2) submarine-launched ballistic missile (SLBM) (7,200KM), the PLAN’s six operational JIN class SSBNs represent the PRC’s first credible sea-based nuclear deterrent.

By the mid-2020s, the PRC will likely build the SHANG class (Type 093B) guided-missile nuclear-powered attack submarine (SSGN). This new SHANG class variant will enhance the PLAN’s anti-surface warfare capability and could provide a clandestine land-attack option if equipped with land-attack cruise missiles (LACM).\(^47\)

\(^{46}\) 2022 DOD CMSD, pp. 52-53.
\(^{47}\) 2022 DOD CMSD, p. 53.
In February 2022, the first of a new class of SS, smaller than the Yuan design, was reported, but it is not clear whether this design is intended for China’s navy, for export to other countries, or both.48

A May 16, 2022, press report states

A submarine seen in a satellite photo of a Chinese shipyard shows what could be a new class or subtype of a nuclear-powered attack sub with a new stealthy propulsion system and launch tubes for cruise missiles.

The satellite photo of the shipyard at Huodao in Liaoning province, northern China, which was provided to Defense News by Planet Labs, was taken May 3 and shows a submarine on a drydock.

The unidentified boat’s presence at the yard was first noted in an April 29 satellite image by geospatial intelligence outfit AllSource Analysis. The organization said the submarine is possibly a new class undergoing construction by China.49

Submarine Weapons

China’s submarines are armed with one or more of the following: ASCMs, wire-guided and wake-homing torpedoes, and mines. Wake-homing torpedoes can be very difficult for surface ships to decoy. DOD states that each Jin-class SSBN is equipped to carry 12 JL-2 or JL-3 nuclear-armed submarine-launched ballistic missiles (SLBMs).50 The JL-3 is a new SLBM with a range longer than that of the JL-2. A May 2, 2021, press report stated that China’s latest Jin-class SSBN is armed with JL-3s.51

50 2022 DOD CMSD, pp. 94, 96. DOD estimates the range of the JL-2 at 7,200 km (2022 DOD CMSD, p. 53.). Such a range could permit Jin-class SSBNs to attack targets in Alaska (except the Alaskan panhandle) from protected bastions close to China, targets in Hawaii (as well as targets in Alaska, except the Alaskan panhandle) from locations south of Japan, targets in the western half of the 48 contiguous states (as well as Hawaii and Alaska) from mid-ocean locations west of Hawaii, or targets in all 50 states from mid-ocean locations east of Hawaii. DOD states that the current range limitations of the JL-2 will require the JIN to operate in areas north and east of Hawaii if the PRC seeks to target the east coast of the United States. The fielding of newer, more capable, and longer ranged SLBMs such as the JL-3 gives the PLAN the ability to target the continental United States from littoral waters[,] allowing the PLAN to consider bastion operations to enhance the survivability of its sea-based deterrent. The South China Sea and Bohai Gulf are probably the PRC’s preferred options for employing this concept. (2022 DOD CMSD, p. 96.)

51 Minnie Chan, “China’s New Nuclear Submarine Missiles Expand Range in US: Analysts,” South China Morning Post, May 2, 2021. The article states that the JL-3 has a “range [of] over 10,000km (6,200 miles), a source close to the [Chinese] navy said.” Such a range could permit Jin-class SSBNs to attack larger portions of the United States from the locations described in the previous footnote.
Aircraft Carriers

Overview

China’s first aircraft carrier, Liaoning (Type 001) (Figure 10), entered service in 2012. China’s second aircraft carrier (and its first fully indigenously built carrier), Shandong (Type 002) (Figure 11) entered service on December 17, 2019. Liaoning and Shandong launch fixed-wing aircraft using a “ski ramp” at the ship’s bow.

Figure 10. Liaoning (Type 001) Aircraft Carrier

Compared with Liaoning and Shandong, U.S. Navy aircraft carriers are larger (about 100,000 tons full load displacement), nuclear powered (giving them greater cruising endurance than a conventionally powered ship), able to embark and operate a larger number of aircraft (60 or more), and launch fixed-wing aircraft using catapults, which can give those aircraft a range/payload capability greater than that of aircraft launched with a ski ramp.

China’s third carrier, Fujian (Type 003) (Figure 12, Figure 13, and Figure 14), was launched (i.e., put into the water for the final stages of its construction) in on June 17, 2022. ONI expects

52 For an article providing a review of developments in China’s aircraft carrier and carrier-based aircraft programs, see Rick Joe, “003 and More: An Update on China’s Aircraft Carriers,” Diplomat, September 29, 2020. Consistent with the discussion in that article, this CRS report uses the following updated designations of China’s carriers: China’s second aircraft carrier, previously referred to as the Type 001A, is now referred to as the Type 002; the next aircraft carrier design after that, previously referred to as the Type 002, is now referred to as the Type 003, and the potential design that could follow, previously referred to as the Type 003, is now referred to as the Type 004.

53 See, for example, Alexandra Stevenson, “China Launches Third Aircraft Carrier in Major Milestone for Xi Jinping,” New York Times, June 17, 2022; Chun Han Wong, “China Launches Third Aircraft Carrier, Advancing Naval
the ship to enter service by 2024. The ship is expected to be conventionally powered, closer in size to U.S. Navy aircraft carriers, and equipped with catapults rather than a ski ramp for launching aircraft. China’s fourth carrier reportedly may have begun construction as early as 2021.

![Shandong (Type 002) Aircraft Carrier](source)

Figure 11. Shandong (Type 002) Aircraft Carrier

Observers have speculated that China may eventually field a force of four to six (or possibly more than six) aircraft carriers. In late November 2019, it was reported that the Chinese government, while deciding to proceed with the construction of the fourth carrier, had put on hold plans to build a fifth carrier, known as the Type 004, which was to be nuclear-powered, due to budgetary and technical considerations. Observers expect that it will be some time before China masters carrier-based aircraft operations on a substantial scale.

Liaoning (Type 001)

Liaoning is a refurbished ex-Ukrainian aircraft carrier that China purchased from Ukraine in 1998 as an unfinished ship. It is conventionally powered, has an estimated full load displacement of 60,000 to 66,000 tons, and reportedly can accommodate an air wing of 30 or more fixed-wing aircraft. Prior to the dissolution of the Soviet Union in December 1991, Ukraine was a part of the Soviet Union and the place where the Soviet Union built its aircraft carriers.

57 Prior to the dissolution of the Soviet Union in December 1991, Ukraine was a part of the Soviet Union and the place where the Soviet Union built its aircraft carriers.
airplanes and helicopters, including 24 fighters. The Liaoning lacks aircraft catapults and instead launches fixed-wing airplanes off the ship’s bow using an inclined ski ramp.

Figure 12. Fujian (Type 003) Aircraft Carrier

Some observers have referred to the Liaoning as China’s “starter” carrier. China has been using Liaoning in part for pilot training. In May 2018, China reportedly announced that the aircraft carrier group formed around Liaoning had reached initial operational capability (IOC), although that term might not mean the same as it does when used by DOD in connection with U.S. weapon systems.

Shandong (Type 002)

Shandong is a modified version of the Liaoning design that incorporates some design improvements, including features that reportedly will permit it to embark and operate a larger air wing of 40 aircraft that includes 36 fighters. Its displacement is estimated at 66,000 to 70,000 tons.

Figure 13. Fujian (Type 003) Aircraft Carrier

Source: Cropped version of photograph accompanying Minnie Chan, “China’s Fujian aircraft carrier doesn’t have radar and weapon systems yet, photos show,” South China Morning Post, July 19, 2022.

Fujian (Type 003)

Earlier press reports had generally stated that Fujian might have a displacement of 80,000 tons to 85,000 tons. A November 29, 2020, press report, however, stated that satellite images of the ship under construction suggest that this estimate may be a bit low, and that Fujian might be closer in displacement to U.S. Navy aircraft carriers, which have a displacement of about 100,000 tons. Fujian is expected to be equipped with electromagnetic catapults rather than a ski ramp, which will improve the range/payload capability of the fixed-wing aircraft that they operate.

China’s Fourth Carrier

A May 1, 2022, press report states, “Recent images of a stealth fighter jet at a naval airbase suggest China has begun pilot training preparations for a fourth aircraft carrier, defence experts say.”61 Some sources have stated that China’s fourth aircraft carrier would be built to the Type

61 Minnie Chan, “Is China Ready for Aircraft Carrier No 4? Talk Swirls Over Stealth Fighter Jets at PLA Naval Base,”
003 design. Press reports from October 10, 2022, and March 13, 2021, however, suggest that the ship may be nuclear-powered rather than conventionally powered.62

Figure 14. Fujian (Type 003) Aircraft Carrier

South China Morning Post, May 1, 2022.

Possible Type 076 Catapult-Equipped Amphibious Assault Ship

See also the discussion of the possible catapult-equipped Type 076 amphibious assault ship (Figure 26 and Figure 27) in the section on China’s amphibious ships.

Commercial Heavy-Lift Ship Reportedly Used in Exercise as Helicopter Carrier

In August 2020, it was reported that China had used a commercial heavy-lift ship in a military exercise as a platform for operating at least two PLA Army helicopters.63

Carrier-Based Aircraft64

China’s primary carrier-based fighter aircraft is the J-15 or Flying Shark (Figure 15 and Figure 16), an aircraft derived from the Russian Su-33 Flanker aircraft design that can operate from carriers equipped with a ski ramp rather than catapults, but which some observers have critiqued for its range/payload limitations in operations from carriers equipped with ski ramps rather than catapults.65 December 2021 press reports stated that China has developed an upgraded, catapult-capable version of the J-15 that could have improved range/payload when operated from a catapult-equipped carrier.66

China reportedly plans to develop a carrier-capable variant of its J-20 fifth-generation stealth fighter and/or a carrier-capable variant of its FC-31/J-31 fifth-generation stealth fighter to complement or succeed the J-15 on catapult-equipped Chinese carriers.67 China reportedly is also

64 For an overview of PLA naval aviation forces, see “PLA Navy Aerospace Forces” in PLA Aerospace Power: A Primer on Trends in China’s Military Air, Space, and Missile Forces, 3rd Edition, Air University, China Aerospace Studies Institute (CASI), undated, posted August 15, 2022, pp. 38-52.

developing a carrier-based airborne early warning (AEW) aircraft, called the KJ-600, that is similar to the U.S. Navy’s carrier-based E-2 Hawkeye AEW aircraft, and stealth drone aircraft.69

Figure 15. J-15 Flying Shark Carrier-Capable Fighter

Roles and Missions

Although aircraft carriers might have some value for China in Taiwan-related conflict scenarios, they are not considered critical for Chinese operations in such scenarios, because Taiwan is within range of land-based Chinese aircraft. Consequently, most observers believe that China is acquiring carriers primarily for their value in other kinds of operations, and to demonstrate China’s status as a leading regional power and major world power. Chinese aircraft carriers could be used for power-projection operations, particularly in scenarios that do not involve opposing U.S. forces, and to impress or intimidate foreign observers.70

70 For a discussion, see, for example, Bryan McGrath and Seth Cropsey, “The Real Reason China Wants Aircraft Carriers, China’s Carrier Plans Target U.S. Alliances, Not Its Navy,” Real Clear Defense (www.realcleardefense.com),
Chinese aircraft carriers could also be used for humanitarian assistance and disaster relief (HA/DR) operations, maritime security operations (such as anti-piracy operations), and noncombatant evacuation operations (NEOs). Politically, aircraft carriers could be particularly valuable to China for projecting an image of China as a major world power, because aircraft carriers are viewed by many as symbols of major world power status. In a combat situation involving opposing U.S. naval and air forces, Chinese aircraft carriers would be highly vulnerable to attack by U.S. ships and aircraft, but conducting such attacks could divert U.S. ships and aircraft from performing other missions in a conflict situation with China.

Surface Combatants

Overview

China since the early 1990s has put into service numerous new classes of indigenously built surface combatants, including a new cruiser (or large destroyer), several classes of destroyers and frigates, a new class of corvettes (i.e., light frigates), and a new class of missile-armed patrol craft.
These new classes of surface combatants demonstrate a significant modernization of PLA Navy surface combatant technology. DOD states that China’s navy “remains engaged in a robust shipbuilding program for surface combatants. At the close of 2021, the PLAN was building an aircraft carrier, a new batch of guided-missile destroyers (DDG), and a new batch of guided missile frigates (FFG). These assets will significantly upgrade the PLAN’s air defense, anti-ship, and anti-submarine capabilities, and will be critical as the PLAN expands its operations beyond the range of the PLA’s shore-based air defense systems.” DIA states that “the era of past designs has given way to production of modern multimission destroyer, frigate, and corvette classes as China’s technological advancement in naval design has begun to approach a level commensurate with, and in some cases exceeding, that of other modern navies.” China is also upgrading its older surface combatants with new weapons and other equipment.

Type 055 Cruiser/Large Destroyer

China is building a new class of cruiser (or large destroyer), called the Renhai-class or Type 055 (*Figure 17, Figure 18, and Figure 19*), that reportedly displaces between 12,000 and 13,000 tons. A March 7, 2021, press report by a Chinese media outlet states that the ship displaces more than 12,000 tons. By way of comparison, the U.S. Navy’s Ticonderoga (CG-47) class cruisers and Arleigh Burke (DDG-51) class destroyers (aka the U.S. Navy’s Aegis cruisers and destroyers) displace about 10,100 tons and 9,700 tons, respectively, while the U.S. Navy’s three Zumwalt (DDG-1000) class destroyers displace about 15,700 tons.

Figure 17. Renhai (Type 055) Cruiser (or Large Destroyer)

71 2022 DOD CMSD, p. 53.
72 2019 DIA CMP, p. 70.
74 One article from a Chinese media outlet, for example, states, “This ship class has a displacement of more than 12,000 tons.” (Liu Xuanzun, “Chinese PLA’s Two Newly Commissioned Large Destroyers ‘Ready for Combat’ with Latest Drills,” *Global Times*, August 22, 2022.) See also China Daily, “2nd Type 055 Destroyer Enters Service,” *People’s Daily Online*, March 10, 2021.) For a discussion of the Type 055 design, see Sidharth Kaushal, “The Type 055: A Glimpse into the PLAN’s Developmental Trajectory,” Royal United Services Institute (RUSI), October 19, 2020.
Figure 18. Renhai (Type 055) Cruiser (or Large Destroyer)

Figure 19. Renhai (Type 055) Cruiser (or Large Destroyer)

Unofficial illustration by *Naval News*

ONI states that Type 055 ships are being built by two shipyards.76 The first was reportedly commissioned into service in January 2020.77 A total of six were reportedly in service as of August 2022.78 In August 2020, it was reported that the seventh was delivered to the navy in May 2020,79 and that the eighth was launched on August 30, 2020,80 and “will complete the first group of Type 055 destroyers.”81 DOD states that the fourth was commissioned in December 2021 and that “the remaining four” would likely be commissioned during 2022.82 A January 2022 press report stated that in addition to the first eight ships, at least two more are under construction.83

Type 052 Destroyer

China since the early 1990s has put into service multiple new classes of indigenously built destroyers, the most recent of which is the Luyang III (Type 052D) class (Figure 20), which displaces about 7,500 tons and is equipped with phased-array radars and vertical launch missile systems that outwardly are broadly similar to those on U.S. Navy cruisers and destroyers. Type 052D ships have been in serial production for some time; an August 21, 2022, press report states that 25 of the ships are in service and at least six more are under construction at the two shipyards that build Type 052 destroyers.84 Press reports in March 2021 stated that China is now

79 Minnie Chan, “Chinese Navy May Launch Eighth Type 055 Stealth Destroyer Later This Year,” South China Morning Post, August 20, 2020.

80 Liu Xuanzun, “PLA Launches New Type 055, Type 052D Destroyers After Decommissioning All Type 051 Destroyers: Reports,” Global Times, August 30, 2020.

82 2022 DOD CMSD, pp. 53-54.

84 Xavier Vavasseur, “Five Type 052D Destroyers Under Construction In China,” Naval News, August 21, 2022. The article’s headline refers to a photograph of five of the ships under construction at a shipyard at Dalian, China. The article states, “Contacted by Naval News, two Chinese military observers confirmed that there are currently 25 destroyers of the class (13 Type 052D and 12 Type 052DL) currently in service with the PLAN. They will soon be joined by the five under construction at Dalian and (at least) one more being built at the Jiangnan Changxing Shipbuilding and Heavy Industry Corporation (the other Chinese shipyard building large surface combatants, located North East of Shanghai).”
commissioning an upgraded version of the Type 052D, informally called the Type 052DL, that incorporates an extended-length helicopter flight deck and a new radar.85

Figure 20. Luyang III (Type 052D) Destroyer

Type 054 Frigate

China since the early 1990s has also put into service multiple new classes of indigenously built frigates, the most recent of which is the Jiangkai II (Type 054A) class (Figure 21), which displaces about 4,000 tons. ONI stated in February 2020 that 30 Type 054As entered service between 2008 and 2019, and that no additional Type 054As were then under construction.86 An August 2021 press report from a Chinese media outlet, however, stated that “China is reportedly building another batch of Type 054A frigates for the People’s Liberation Army Navy (PLA Navy) after it had launched two new ships of this class over the past few months.” The press report noted that a report from the Jane’s organization had stated that the 32nd Type 054A ship had recently been launched (i.e., put into the water for the final stages of its construction).87 A May 7, 2022, press report stated

Speculation is mounting among China’s military observers that construction is about to start on a bigger and faster frigate, designed to keep up with the PLA Navy’s third aircraft carrier which is nearing completion.

An open tender for super high-strength structural steel – the kind used in military hulls – was issued by the Huangpu Wenchong shipyard in Guangzhou, southern China, in March, with a delivery date of May 20.

It is unclear how many tonnes of the CCS-B structural steel plate were ordered by the shipyard, a subsidiary of the China State Shipbuilding Corporation (CSSC).

Several military commentators have taken to Chinese social media platforms to suggest the order could signal that work is about to begin on a bigger, faster multi-role update of the Type 054A, better suited to combat operations on the high seas.88

\textbf{Figure 21. Jiangkai II (Type 054A) Frigate}

\textbf{Source:} Cropped version of photograph from Chinese Military Review, “Type 054A (Jiangkai II class) FFG-546 Yancheng Guided Missile Frigate in Mediterranean,” undated (but with a URL suggesting that it was posted in February of 2014), accessed August 29, 2018.

\textbf{Type 056 Corvette}

China has also built—in large numbers over a relatively short time period—a new type of corvette (i.e., a light frigate, or FFL) called the Jiangdao class or Type 056 (\textbf{Figure 22}), which reportedly displaces 1,300 tons to 1,500 tons.89 Type 056 ships were built at a high annual rate in four shipyards—the first was commissioned in 2013, and the 72nd and final ship of the type was reportedly commissioned in early 2021, implying an average commissioning rate of about eight ships per year. DOD states that China’s navy “commissioned the 72nd JIANGDAO [class

88 Minnie Chan, “China Naval Steel Order Sparks Speculation over Bigger, Faster Frigate,” \textit{South China Morning Post}, May 7, 2022.

89 For an overview of the Type 056 corvette, see Eric Wertheim, “China’s Jiangdao-class Corvette: Mainstay of the First Island Chain,” \textit{U.S. Naval Institute Proceedings}, September 2022.
corvette] in February 2021, completing the production run. The PLAN also transferred the early flight JIANGDAO variants, likely 22 ships total, to the China Coast Guard in 2021, probably due to the models’ lack of [a] towed-array sonar. The 056A FFLs are equipped with a towed-array sonar and are thus capable ASW ships. As shown in Table 1, the rapid growth in the number of Type 056 corvettes since 2013 accounts for a substantial share of the net increase in the total number of ships in China’s navy since 2013.

Figure 22. Jingdao (Type 056) Corvette

Source: Cropped version of image included at Chinese Military Review, “Random Images of Chinese Type 056 Jiangdao Class Light Corvette,” undated (but with a URL suggesting that it was posted in October 2013), accessed August 29, 2018.

Amphibious Ships

Type 071 Amphibious Ship

China’s new *Yuzhao* or Type 071 amphibsious ships (Figure 23) have an estimated displacement of more than 19,855 tons, compared to about 25,900 tons for the U.S. Navy’s new San Antonio (LPD-17) class amphibious ships. A May 6, 2021, press report states that the eighth Type 071 ship “recently made its first publicly known maritime exercise appearance.”

90 2022 DOD CMSD, p. 53.

91 For an article providing a brief overview of China’s amphibious shipbuilding programs, see Yasmin Tadjdeh, “China Building Formidable Amphibious Fleet,” *National Defense*, June 25, 2021.

92 Unless otherwise indicated, displacement figures cited in this report are full load displacements. *IHS Jane’s Fighting Ships 2017-2018*, p. 156, does not provide a full load displacement for the Type 071 class design. Instead, it provides a standard displacement of 19,855 tons. Full load displacement is larger than standard displacement, so the full load displacement of the Type 071 design is more than 19,855 tons.

Figure 23. Yuzhao (Type 071) Amphibious Ship

Source: Cropped version of photograph from Chinese Military Review, “Jinggang Shan (999) Type 071 YUZHAO Class Amphibious Transport Dock,” undated (but with a URL suggesting that it was posted in February 2012), accessed August 29, 2018.

Type 075 Amphibious Assault Ship

In April 2021, China commissioned into service the first of a new type of amphibious assault ship, called the Yushen or Type 075 (Figure 24 and Figure 25), that has an estimated displacement of about 35,000 tons, compared to 41,000 to 45,000 tons for U.S. Navy LHA/LHD-type amphibious assault ships. In March 2022, it was reported that the first Type 075 ship had achieved initial operational capability (IOC), although that term might not mean the same as it does when used by DOD in connection with U.S. weapon systems.

The second Type 075 ship reportedly was commissioned into service in late December 2021. The third was reportedly commissioned on or perhaps a few days prior to October 1, 2022.

94 Amphibious assault ships, also referred to as helicopter carriers or (in British parlance) commando carriers, look like medium-sized aircraft carriers. U.S. Navy amphibious assault ships are designated LHA or LHD.

95 See, for example, Mike Yeo, “China simultaneously commissions three warships on Navy anniversary,” Defense News, April 26, 2021. For an in-depth discussion of the Type 075 design, see Conor M. Kennedy and Daniel Caldwell, The Type 075 LHD: Development, Missions, and Capabilities, China Maritime Studies Institute (CMSI), U.S. Naval War College, China Maritime Report No. 23, October 2022, 45 pp.

In July 2020, it was reported that China might be planning to build the first of a new class of amphibious assault ships, called the Type 076 by observers (Figure 26 and Figure 27), that would be equipped with electromagnetic catapults, which would enhance its ability to support operations by fixed-wing aircraft and make it somewhat more like an aircraft carrier.99

Amphibious Ship Roles and Missions

Although larger amphibious ships such as the Type 071 and Type 075 would be of value for conducting amphibious landings in Taiwan-related conflict scenarios, some observers believe that China is building such ships as much for their value in conducting other operations, such as operations for asserting and defending China’s claims in the South and East China Seas, humanitarian assistance/disaster relief (HA/DR) operations, maritime security operations (such as antipiracy operations), and noncombatant evacuation operations (NEOs). Politically, amphibious ships can also be used for naval diplomacy (i.e., port calls and engagement activities) and for impressing or intimidating foreign observers.100

100 See, for example, Grant Newsham, “China’s Amphibious Force Emerges,” Asia Times, November 5, 2019.
Figure 25. Type 075 Amphibious Assault Ship

Source: Photograph accompanying Liu Zhen, “Chinese Military’s First Type 075 Amphibious Assault Ship Begins Sea Trial,” South China Morning Post, August 7, 2020. The article credits the photograph to Weibo. Possible Type 076 Catapult-Equipped Amphibious Assault Ship.

Figure 26. Notional Rendering of Possible Type 076 Amphibious Assault Ship

Potential Use of Commercial Ships

In assessing China’s capacity for conducting an amphibious invasion of Taiwan, some observers have focused on China’s potential for using civilian ferries and other commercial ships to augment the transport and landing capacity of China’s amphibious ships. Reported Chinese exercises indicate that China is exploring and testing this concept.101

Operations Away from Home Waters

Ship Operations

Although China’s navy operates primarily in China’s home waters, Chinese navy ships are conducting increasing numbers of operations away from China’s home waters, including the broader waters of the Western Pacific, the Indian Ocean, and the waters surrounding Europe, including the Mediterranean Sea and the Baltic Sea. A November 23, 2019, DOD news report quoted Admiral Philip Davidson, the commander of the U.S. Indo-Pacific Command, as stating that China’s navy had conducted more global naval deployments in the past 30 months than it had in the previous 30 years.102

DOD states that “the PLAN’s ability to perform missions beyond the First Island Chain is modest but growing as it gains more experience operating in distant waters and acquires larger and more advanced platforms. China’s experience in extended range operations primarily comes from extended task group deployments and its ongoing counterpiracy mission in the Gulf of Aden.”103 China has been conducting antipiracy operations in the Gulf of Aden since December 2008 via a succession of more than 40 rotationally deployed naval escort task forces. China’s long-distance naval deployments have also been for making diplomatic port calls and conducting training exercises.

Current or Potential Bases Outside China

China’s distant naval operations are supported in part by China’s military base in Djibouti, which China officially opened in August 2017 as its first overseas military base.104

In December 2021, it was reported that China may be seeking to establish a military (including naval) base at a port in Equatorial Guinea, a country located on the Atlantic coast of Africa—a location that could enhance China’s ability to conduct naval operations in the Atlantic.105

103 2022 DOD CMSD, p. 51.
A June 8, 2022, press report stated, “Cambodian and Chinese officials broke ground on a Beijing-funded expansion of Ream Naval Base on Wednesday [June 8], using the occasion to again reject reports the site will be used by China’s military.” A June 6, 2022, press report stated

China is secretly building a naval facility in Cambodia for the exclusive use of its military, with both countries denying that is the case and taking extraordinary measures to conceal the operation, Western officials said. The military presence will be on the northern portion of Cambodia’s Ream Naval Base on the Gulf of Thailand.

The Wall Street Journal reported in 2019 that China had signed a secret agreement to allow its military to use the base, citing U.S. and allied officials familiar with the matter.

Over the weekend … a Chinese official in Beijing confirmed to The Washington Post that “a portion of the base” will be used by “the Chinese military.

The two governments have taken pains to mask the presence of the Chinese military at Ream, the official said....

The secrecy around the base appears to be driven primarily by Cambodian sensitivities and concern about a domestic backlash, the second official said.

A security agreement between China and the Solomon Islands that was announced by the Solomon Islands in April 2022 has led some observers to express concern that the agreement could eventually lead to, among other things, the establishment of a Chinese naval base in that country. The Prime Minister of the Solomon Islands ruled out that possibility, stating that it would “put our country and our people as targets for potential military strikes.”

U.S. Navy Response

Overview

The U.S. Navy has taken a number of actions to counter China’s naval modernization effort. Among other things, the U.S. Navy has

China Naval Modernization: Implications for U.S. Navy Capabilities

- shifted a greater percentage of its fleet to the Pacific;111
- assigned its most capable new ships and aircraft to the Pacific;
- maintained or increased general presence operations, training and developmental exercises, and engagement and cooperation with allied and other navies in the Indo-Pacific;
- increased the planned future size of the Navy;
- initiated, increased, or accelerated numerous programs for developing new military technologies and acquiring new ships, aircraft, unmanned vehicles, and weapons;
- developed new operational concepts (i.e., new ways to employ Navy and Marine Corps forces) for countering Chinese maritime A2/AD forces; and
- signaled that the Navy in coming years will shift to a more distributed fleet architecture that will feature a substantially greater use of unmanned vehicles.

Some of the above items are discussed in more detail below.

Cooperation with Naval Forces of Allies and Other Countries

U.S. Navy efforts to increase cooperation with naval forces from allies such as Japan and Australia and other countries such India appear aimed in part at expanding existing bilateral forms of naval cooperation (e.g., U.S.-Japan, U.S.-Australia, U.S.-India) into trilateral (e.g., U.S.-Japan-Australia, U.S.-Australia-India) or quadrilateral (U.S.-Japan-Australia-India) forms that could enhance the ability of the United States and its allies in the Indo-Pacific region to balance against China’s growing military capabilities and deter potential assertive actions by China.112

A June 15, 2021, press report stated

The Pentagon is considering establishing a permanent naval task force in the Pacific region as a counter to China’s growing military might, according to two people familiar with internal discussions.

The plan would also involve creating a named military operation for the Pacific that would enable the defense secretary to allocate additional dollars and resources to the China problem, said the people, who requested anonymity to discuss pre-decisional plans.

The two initiatives, which are not yet finalized, would add muscle to President Joe Biden’s tough talk on China and send a signal that the new U.S. administration is serious about cracking down on Beijing’s military buildup and aggressive behavior in the Pacific region.

111 Efforts in this regard began at least as far back as 2006: The final report on the 2006 Quadrennial Defense Review (QDR) directed the Navy “to adjust its force posture and basing to provide at least six operationally available and sustainable carriers and 60% of its submarines in the Pacific to support engagement, presence and deterrence.” (U.S. Department of Defense, Quadrennial Defense Review Report. Washington, 2006. February 6, 2006, p. 47.) Subsequent to this directive, the Navy announced an intention to increase to 60% (from a starting point of about 55%) the percentage of the fleet as a whole that is assigned to the Pacific. An October 13, 2021, press report stated, “US Naval Chief of Operations, Admiral Michael Gilday, on Tuesday kicked off his 5-day visit to India by meeting his Indian counterpart Admiral Karambir Singh, Chief of Defence Staff General Bipin Rawat and other senior government officials.... Asked about what the US intends to do to counter China’s aggressive modernisation of its Navy, Gilday said they will not try to outspend it, but partners like India in the region will be the key to ensure that the Indian Ocean Region (IOR) is stable. Given the importance of the region, 60 per cent of US Navy’s forces are now in the Indo-Pacific, he said.” (Krishn Kaushik, “60% Navy Forces in Indo-Pacific Region Now: US Navy Chief,” Indian Express, October 13, 2021.)

112 For additional discussion, see CRS In Focus IF11678, The “Quad”: Security Cooperation Among the United States, Japan, India, and Australia, coordinated by Emma Chanlett-Avery.
The news comes as NATO leaders are increasingly aligning themselves with Washington’s confrontational stance on Beijing. Four years after former President Donald Trump made countering China a top foreign policy priority, NATO allies this week declared Beijing a security challenge and said the Chinese are working to undermine global order.

The discussions grew out of work by the Pentagon’s China Task Force, which Biden commissioned in March to examine the department’s China-related policies and processes. The group, led by Ely Ratner, the nominee to serve as the Pentagon’s top Indo-Pacific policy official, recently completed its work and presented recommendations to Defense Secretary Lloyd Austin.

A defense official, responding to a request for comment, stressed that none of the plans stemming from the China task force are finalized….

The naval task force would be modeled on a construct NATO launched in Europe leading up to and during the Cold War, the Standing Naval Forces Atlantic, the people familiar with the discussions told POLITICO. The squadron was an immediate reaction force that could rapidly respond to a crisis but spent most of its time steaming around the region, participating in scheduled exercises and making goodwill port calls. Six to 10 ships from multiple NATO nations—destroyers, frigates and auxiliaries—were typically attached to the force for up to six months.

The European task force allowed those nations to “maximize their influence at sea and to specialize their investments simultaneously,” said Jerry Hendrix, an analyst for consulting firm Telemus Group and the author of “To Provide and Maintain a Navy”. He noted that an effective Pacific task force would also include European allies such as Britain and France, who are increasing their Pacific naval presence, as well as Japan and Australia.

The proposed initiative would be a “deterrent because it demonstrates a unity of effort in countering Chinese excessive threats to the concept of a free sea and free trade with their large territorial sea claims,” Hendrix said.

It’s not yet clear whether the task force would involve only U.S. ships, or include other nations’ militaries as well, the people said.113

Size of Navy, Fleet Architecture, and Operational Concepts

As discussed in greater detail in another CRS report,114 the Navy’s existing force-level goal, which the Navy released on December 15, 2016, calls for achieving and maintaining a fleet of 355 ships—an increase of 47 ships over the previous 308-ship force-level goal of March 2015.

The Navy and DOD have been working since 2019 to develop a new force-level goal to replace the 355-ship force-level goal. Remarks from Navy and DOD officials since 2019 have indicated that the Navy’s next force-level goal will introduce a once-in-a-generation change in fleet architecture, meaning basic the types of ships that make up the Navy and how these ships are used in combination with one another to perform Navy missions. This new fleet architecture is to be more distributed than the fleet architecture reflected in the 355-ship goal or previous Navy force-level goals. In particular, the new fleet architecture is expected to feature a new third tier of surface vessels about as large as corvettes or large patrol craft that will be either lightly manned, optionally manned, or unmanned, as well as large unmanned underwater vehicles (UUVs).

Navy and DOD leaders believe that shifting to a more distributed fleet architecture is

- **operationally necessary**, to respond effectively to the improving maritime anti-access/area-denial (A2/AD) capabilities of other countries, particularly China;\(^{115}\)
- **technically feasible** as a result of advances in technologies for UVs and for networking widely distributed maritime forces that include significant numbers of UVs; and
- **affordable**—no more expensive, and possibly less expensive, than the current fleet architecture for a given level of overall fleet capability, so as to fit within expected future Navy budgets.

Regarding the first point above, shifting to a more distributed force architecture, Navy and Marine Corps officials have indicated, will support implementation of the Navy and Marine Corps’ new overarching operational concept, called Distributed Maritime Operations (DMO), and a supporting Marine Corps operational concept called Expeditionary Advanced Base Operations (EABO).\(^{116}\) A key aim of DMO and EABO is to improve the ability of the Navy and Marine Corps to counter China’s improving maritime military capabilities.

Some elements of the Navy’s new, more distributed fleet architecture are reflected in Navy budget submission, including the following:

- procurement of Constellation (FFG-62) class frigates;\(^{117}\)
- development of a smaller amphibious warship called the Light Amphibious Warship (LAW);\(^{118}\)
- development of a smaller resupply ship called the Next-Generation Medium Logistics Ship;\(^{119}\)

\(^{115}\) See, for example, David B. Larter, “With China Gunning for Aircraft Carriers, US Navy Says It Must Change How It Fights,” *Defense News*, December 6, 2019; Arthur H. Barber, “Redesign the Fleet,” *U.S. Naval Institute Proceedings*, January 2019. Some observers have long urged the Navy to shift to a more distributed fleet architecture, on the grounds that the Navy’s current architecture—which concentrates much of the fleet’s capability into a relatively limited number of individually larger and more expensive surface ships—is increasingly vulnerable to attack by the improving A2/AD capabilities (particularly anti-ship missiles and their supporting detection and targeting systems) of potential adversaries, particularly China. Shifting to a more distributed architecture, these observers have argued, would:

- complicate an adversary’s targeting challenge by presenting the adversary with a larger number of Navy units to detect, identify, and track;
- reduce the loss in aggregate Navy capability that would result from the destruction of an individual Navy platform;
- give U.S. leaders the option of deploying USVs and UUVs in wartime to sea locations that would be tactically advantageous but too risky for manned ships; and
- increase the modularity and reconfigurability of the fleet for adapting to changing mission needs.

For more on China’s maritime A2/AD capabilities, see CRS Report RL33153, *China Naval Modernization: Implications for U.S. Navy Capabilities—Background and Issues for Congress*, by Ronald O'Rourke.

\(^{116}\) For more on DMO, see, for example, Edward Lundquist, “DMO is Navy’s Operational Approach to Winning the High-End Fight at Sea,” *Seapower*, February 2, 2021. For more on EABO, see CRS Report R46374, *Navy Light Amphibious Warship (LAW) Program: Background and Issues for Congress*, by Ronald O'Rourke.

\(^{117}\) For more on the FFG-62 program, see CRS Report R44972, *Navy Constellation (FFG-62) Class Frigate Program: Background and Issues for Congress*, by Ronald O'Rourke.

\(^{118}\) For more on the LAW program, see CRS Report R46374, *Navy Light Amphibious Warship (LAW) Program: Background and Issues for Congress*, by Ronald O'Rourke.

\(^{119}\) For more on the next-generation Medium Logistics Ship, see, for example, Megan Eckstein, “Navy Researching New Class of Medium Amphibious Ship, New Logistics Ships,” *USNI News*, February 20, 2020; Rich Abott, “FY 2021
China Naval Modernization: Implications for U.S. Navy Capabilities

- development of two types of larger USVs—Large USVs (LUSVs) and Medium USVs (MUSVs),\(^\text{120}\) and
- procurement of large UUVs called Extra Large UUVs (XLUUVs).\(^\text{121}\)

Programs for Acquiring Highly Capable Ships, Aircraft, and Weapons

Many of the Navy’s programs for acquiring highly capable ships, aircraft, and weapon systems can be viewed as intended, at least in part, at improving the U.S. Navy’s ability to counter Chinese maritime A2/AD capabilities. Examples of new technologies being developed by the Navy that might be of value in countering Chinese maritime A2/AD capabilities include the above-mentioned large UVs\(^\text{122}\) as well as lasers.\(^\text{123}\)

Issues for Congress

Overview

The overall issue for Congress is whether to approve, reject, or modify the Biden Administration’s proposed U.S. Navy plans, budgets, and programs for responding to China’s naval modernization effort. Within this overall issue, specific issues include the following:

- the current and potential future U.S.-China balance of naval power in general, and in specific geographic areas, particularly the South China Sea;
- whether the planned size of the Navy will be appropriate for countering China’s naval modernization effort in coming years while also permitting the Navy to perform other missions, including countering Russian military forces and defending U.S. interests in the Middle East;
- whether Navy shipbuilding plans and Navy plans for keeping existing Navy ships in service are consistent with the goal of increasing the size of the Navy toward a total of 355 ships or a successor force-level goal;
- whether the Navy should shift to a more-distributed fleet architecture so as to improve the Navy’s ability to avoid and withstand attack from Chinese maritime A2/AD forces—and if so, what that new architecture should look like, and how quickly the Navy should shift to it;
- whether the Navy is doing enough to improve its ability to counter China’s ASBMs, hypersonic weapons, or other maritime A2/AD weapons, such as wake-homing torpedoes;

\(^{120}\) For more on the LUSV and XLUUV programs, see CRS Report R45757, Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress, by Ronald O’Rourke.

\(^{121}\) For more on the XLUUV program, see CRS Report R45757, Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress, by Ronald O’Rourke.

\(^{122}\) For more on these efforts, see CRS Report R45757, Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress, by Ronald O’Rourke.

\(^{123}\) For more on Navy laser programs, see CRS Report R44175, Navy Lasers, Railgun, and Gun-Launched Guided Projectile: Background and Issues for Congress, by Ronald O’Rourke.
• develop and procure new ASCMs with ranges that match or exceed those of China’s longer-ranged ASCMs;
• increase the operating range of Navy carrier air wings, so as to improve the ability of carriers and their air wings to achieve effects while operating at longer distances from Chinese ASBMs and other A2/AD weapons; and
• whether Congress should modify acquisition policies or the metrics for judging the success of acquisition programs so as to facilitate faster development of new technologies and weapons for the Navy—and if so, how those policies or metrics should be modified.

U.S.-China Balance of Naval Power

Regarding the U.S.-China balance of naval power in general, U.S. and other observers generally assess that while the United States today has more naval capability overall, China’s naval modernization effort since the 1990s has substantially reduced the U.S. advantage, and that if current U.S. and Chinese naval capability trends (such as those shown in Table 1 and Table 2) do not change, China might eventually draw even with or surpass the United States in overall naval capability. In remarks to a conference on November 3, 2022, for example, Admiral Charles A. Richard, commander of U.S. Strategic Command, stated

As I assess our level of deterrence against China, the ship is slowly sinking. It is sinking slowly, but it is sinking, as fundamentally they are putting capability in the field faster than we are. As those curves keep going, it isn't going to matter how good our [operating plan] is or how good our commanders are, or how good our forces are—we're not going to have enough of them. And that is a very near-term problem....

Undersea capabilities is still the one ... maybe the only true asymmetric advantage we still have against our opponents. But unless we pick up the pace, in terms of getting our maintenance problems fixed, getting new construction going ... if we can't figure that out ... we are not going to put ourselves in a good position to maintain strategic deterrence and national defense.124

Regarding the U.S.-China naval balance of power specifically in the South China Sea, some observers are concerned that China has already drawn even with or even surpassed the United States. U.S. Navy Admiral Philip Davidson, in responses to advance policy questions from the Senate Armed Services Committee for an April 17, 2018, hearing before the committee to consider nominations, including Davidson’s nomination to become Commander, U.S. Pacific Command (PACOM),125 stated that “China is now capable of controlling the South China Sea in all scenarios short of war with the United States.”126

Skeptics of assessments like those above might argue that they do not give adequate weight to relative U.S. strengths (and corresponding Chinese relative weaknesses and limitations) in areas such as undersea warfare; personnel quality, training, and initiative; operational experience

125 Advance Policy Questions for Admiral Philip Davidson, USN Expected Nominee for Commander, U.S. Pacific Command, p. 18. See also pp. 8, 16, 17, 19, and 43.
126 The name of the command has since been changed to the U.S. Indo-Pacific Command (INDOPACOM).
(particularly in combat situations); joint operations with other U.S. military services; and potential support from allies and partners, particularly Japan and Australia. A March 5, 2021, press report, for example, states

While China is expected to field 400 ships by 2025, the goal of the current US Navy shipbuilding plan, a goal with no fixed date, is for a fleet of 355—a substantial numerical disadvantage.

That’s not to say the US Navy has seen its days as the world’s premier fighting force come to an end.

When counting troops, the US Navy is bigger, with more than 330,000 active duty personnel to China’s 250,000.

Analysts point out several other factors in Washington’s favor.

The US Navy still fields more tonnage—bigger and heavier armed ships like guided-missile destroyers and cruisers—than China. Those ships give the US a significant edge in cruise missile launch capability.

The US has more than 9,000 vertical launch missile cells on its surface ships to China’s 1,000 or so, according to Nick Childs, a defense analyst at the International Institute for Strategic Studies.

Meanwhile, the US attack submarine fleet of 50 boats is entirely nuclear powered, giving it significant range and endurance advantages over a Chinese fleet that has just seven nuclear-powered subs in its fleet of 62.127

Concern About Davidson Window/Decade of Concern

Some Members of Congress and other U.S. observers are concerned about the possibility that China might attack Taiwan sometime between 2021 and 2027 (a timeframe sometimes referred to as the Davidson window)128 or between 2020 and 2030 (a timeframe sometimes referred to as the

128 At a March 9, 2021, hearing before the Senate Armed Services Committee, Admiral Philip S. Davidson, Commander, U.S. Indo-Pacific Command (USINDOPACOM), when asked about a timeline for a potential conflict in the Taiwan Strait, replied:

> I think our concerns are manifest here during this decade not only on the development, the number of ships, aircraft, rockets, etc. that they have—that they have put in the field but the way they are advancing those capabilities as well in combination with everything that you just cited Hong Kong and Tibet and line of actual control in the South China Sea, in the East China Sea.

> I worry that they are accelerating their ambitions to be—to supplant the United States and our leadership role in a rules-based international order which they have long said that they want to do that by 2050. I'm worried about the moving that target closer. Taiwan is clearly one of their ambitions before that, and I think the threat is manifest during this decade, in fact, in the next six years.

> (CQ transcript of hearing. See also, for example, Mallory Shelbourne, “Davidson: China Could Try to Take Control of Taiwan In ‘Next Six Years,’” USNI News, March 9, 2021; Adela Suliman, “China Could Invade Taiwan in the Next 6 Years, Assume Global Leadership Role, U.S. Admiral Warns,” NBC News, March 10, 2021.)

The period between 2021 and 2027 subsequently came to be referred to by some observers as the Davidson window. Possibly the earliest user of the term was Jerry Hendrix; see for example, Jerry Hendrix, “Closing the Davidson Window,” Real Clear Defense, July 3, 2021.
decade of concern), and about the readiness the U.S. military, including the U.S. Navy, for a conflict in that timeframe. A March 6, 2021, press report, for example, stated

China could soon be emboldened to try to “forcibly change” the existing order in the western Pacific, the head of U.S. Indo-Pacific Command said.

As its rapidly advancing military approaches “overmatch” with the United States in the region, and absent a convincing deterrent, China could make a move this decade.

“Make no mistake about it, China seeks a new world order—one with Chinese characteristics as they have often said where Chinese national power is more important than international law,” Adm. Phil Davidson said during an American Enterprise Institute forum Thursday [March 4]....

“The most important thing I’d like you all to take away from the discussions is a fundamental understanding that the period between now and 2026—this decade—is the time horizon in which China is positioned to achieve overmatch in its capability,” the Oahu-based commander said.

That’s when Beijing could—and he emphasized “could”—“choose to forcibly change the status quo in the region.”

Davidson didn't specify what action China might take, but he said with the growing military imbalance comes greater risk that China could move “before our forces might be able to deliver an effective response.”

An October 19, 2022, press report stated

Amid concerns that China could try to reunify the mainland with Taiwan faster than previously anticipated, the United States Navy is also eyeing a more immediate window for a potential conflict over the island, the service’s top officer said Wednesday [October 19].

The Navy is still assessing how China’s recent 20th Party Congress meeting affects its plans for the fleet, Chief of Naval Operations Adm. Mike Gilday said at a virtual event hosted by the Atlantic Council.

“It’s not just what President Xi says, but it’s how the Chinese behave and what they do. And what we’ve seen over the past 20 years is that they have delivered on every promise they’ve made earlier than they said they were going to deliver on it,” Gilday said when asked about the so-called “Davidson window,” referring to former U.S. Indo-Pacific Command chief Adm. Phil Davidson testifying to Congress in 2021 that China wanted the capability to seize Taiwan within the next six years.

“When we talk about the 2027 window, in my mind that has to be a 2022 window or a potentially a 2023 window. I can’t rule that out. I don’t mean at all to be alarmist by saying that, it’s just that we can’t wish that away,” the CNO added.\(^{131}\)

Other observers, including some DOD officials, believe a Chinese attack on Taiwan does not appear to be imminent or is not particularly likely to occur in the near term.\(^{132}\)

For observers who are concerned about the Davidson window or window of concern, given the time needed to build major U.S. Navy warships (typically several years), decisions made now on procuring new ships for the Navy will have only a small impact on the number of ships the Navy will have in service during the Davidson window or the decade of concern. (Decisions made now on procuring new ships for the Navy will primarily impact the number of ships the Navy will have in service in years after the Davidson window or the decade of concern, a time period which is also of potential concern to policymakers.) Options for bolstering Navy capabilities during the Davidson window or the decade of concern focus mostly on matters other than procuring new ships, including but not limited to the following, which are not presented in any particular order:

- keeping existing ships and aircraft in service during the Davidson window or decade of concern rather than retiring them during the Davidson window or decade of concern (while preserving the option of retiring them after the end of the Davidson window or decade of concern);
- increasing the material readiness of existing ships and aircraft, so as to maximize the percentage of them that are available for operations, by working down ship and aircraft maintenance backlogs;
- shifting additional ships, aircraft, weapons, and supplies from the Atlantic theater to the Pacific theater (although the risks of doing that in connection with deterring and responding to Russian actions in the European theater would be a factor to consider);
- upgrading existing ships, aircraft, and weapons, particularly through the installation of improved or additional systems or components that can be quickly switched out or bolted on;
- procuring new aircraft and weapons, if those aircraft and weapons can enter service before the end of the Davidson window or the decade of concern;
- procuring spare parts and supplies and positioning them in the Pacific;
- acting to alleviate bottlenecks or otherwise increase the capacity of the industrial base to produce and/or repair ships, aircraft, weapons, and supplies;

• hardening air bases and other land-based facilities in the Pacific that support U.S. Navy operations to improve their ability to withstand attack by Chinese missiles or other weapons;
• increasing intelligence, surveillance and reconnaissance (ISR) activities for understanding and monitoring China’s naval forces;
• increasing activities for measuring and understanding the physical operating environment in the Pacific;
• increasing the operational proficiency of Navy personnel through training and exercises; and
• increasing operations for demonstrating U.S. Navy capabilities to China and/or perhaps creating uncertainty or confusion in China about U.S. Navy capabilities, concepts of operations, or tactics.

Additional Discussion

Returning to the list of issues presented in the overview section above, the planned size of the Navy and the shift to a more-distributed fleet architecture are discussed in detail in other CRS reports. The issue of the Navy’s ability to counter China’s ASBMs and hypersonic weapons is discussed in detail in this report in Appendix B. The issue of the Navy’s ability to counter wake-homing torpedoes may have been made more pressing by the reportedly poor performance of an anti-torpedo torpedo that the Navy was developing as a means for Navy surface ships to counter hard-to-decoy wake-homing torpedoes and other torpedoes. The Navy now reportedly plans to remove the anti-torpedo torpedo system from the ships that were equipped with it.

The Navy has initiated efforts to develop and procure longer-ranged ASCMs, but some observers have expressed frustration that these efforts are not moving quickly enough. In support of its efforts, the Navy testified in April 2022 as follows:

Strike Weapons

The DON continues to focus on delivering a strong balance of offensive strike weapons by maintaining the readiness of our strike weapons inventories, enhancing capacity and performance of existing strike weapons, and developing next-generation strike missile capabilities. Through these efforts, the DON will increase overall force effectiveness and continue to address emerging threats from adversarial forces.

Tomahawk

In the FY 2023 budget request, the Department sustains the Tomahawk as the nation’s premier all-weather, long-range, survivable deep strike offensive weapon to include new production of and recertification of current inventory into modernized BLK V Tomahawk missiles. BLK V(a) Maritime Strike Tomahawk (MST) provides a long range moving maritime strike capability to meet current and future threats, supporting the Surface Warfare Mission area through the inclusion of a seeker suite in the Tomahawk BLK V missile. The FY 2023 budget request for MST provides continuation of Test and Evaluation (T&E) plans that include missile functional ground testing and missile test flights from a ground launcher apparatus to assess seeker performance, mature and refine seeker algorithms, and provide verification and validation data for Modeling and Simulation. MST IOC is planned for FY 2025. The FY 2023 budget request continues engineering, manufacturing, and development of the Joint Multiple-Effects Warhead System (JMEWS), which will deliver a hardened target penetration capability with the Tomahawk BLK V(b) missile in FY 2027. The FY 2023 budget request continues engineering, manufacturing, and development of the Military Code Global Positioning System (GPS) receiver, which will deliver significant increased resiliency in spoofing and jamming threat environments capability to the Tomahawk BLK V missile in FY 2026.

Offensive Anti-Surface Warfare (OASuW) Increment 1/ Long Range Anti-Ship Missile (LRASM), OASuW Increment 2

The FY 2023 President’s Budget requests $226.0 million to fund Long Range Anti-Ship Missile (LRASM) efforts associated with filling congressionally directed Operational Testing, which includes telemetry kit installations and test support. FY 2023 also funds procurement and installations of updated Weapon Data Link to satisfy compliance of NSA crypto modification mandate, and procures 60 DON LRASM weapon systems. The FY 2023 President’s Budget also requests $12.8 million for completion of the LRASM 1.1 capability improvements.

The FY 2023 President’s Budget requests New Start authority to begin Technology Development in support of OASuW Increment 2, now referred as Hypersonic Air Launched OASuW (HALO). HALO supports the national imperative to mature hypersonic capabilities. The program represents a longer-term capability that encompasses increased performance and will provide the Navy a necessary air launched, carrier based weapon to address evolving long range high speed threats from near peer competitors. In order to deliver this capability to the warfighter when needed, the Navy will collaborate heavily with the USAF.

Advanced Anti-Radiation Guided Missile (AARGM) & AARGM Extended-Range

AARGM procurement completed in FY 2021 with the award of the last DON Full Rate Production (FRP) contract. There have been 1366 AARGMs (All Up Rounds, Training Missiles, and Spares) delivered to the Fleet (as of March 2022). Program of record delivery is 1803 missiles. Deliveries continue through FY 2024 in support of the transition to AARGM-ER. AARGM-ER provides the DON with a 5th generation compatible extended range asset to project power and provide Suppression of Enemy Air Defenses, both at-sea and on land. The FY 2023 President’s Budget requests $90.8 million in RDT&E to support operational and Integration testing of production representative hardware. The FY 2023 President’s Budget requests $131.3 million in WPN to procure 69 AARGM-ER All Up Rounds and six Captive Air Training Missiles.136

Statement of Frederick J. Stefany, Principal Civilian Deputy, Assistant Secretary of the Navy (Research, Development and Acquisition), Performing the Duties of the Assistant Secretary of the Navy (Research, Development and Acquisition) and Vice Admiral Scott Conn, Deputy Chief of Naval Operations, Warfighting Requirements and Capabilities (OPNAV N9) and Lieutenant General Karsten S. Heckl, Deputy Commandant, Combat Development and Integration, Commanding General, Marine Corps Combat Development Command, before the Subcommittee on

136 Statement of Frederick J. Stefany, Principal Civilian Deputy, Assistant Secretary of the Navy (Research, Development and Acquisition), Performing the Duties of the Assistant Secretary of the Navy (Research, Development and Acquisition) and Vice Admiral Scott Conn, Deputy Chief of Naval Operations, Warfighting Requirements and Capabilities (OPNAV N9) and Lieutenant General Karsten S. Heckl, Deputy Commandant, Combat Development and Integration, Commanding General, Marine Corps Combat Development Command, before the Subcommittee on
An April 19, 2021, press report stated, “Exposing a new layer of long-range striking power for the U.S. Navy carrier battle group, a photo obtained by Aerospace Daily shows what appears to be a Raytheon RIM-174 SM-6 missile integrated on a left wing pylon of a Boeing F/A-18F Super Hornet in flight.”

The issue of the operating range of Navy carrier air wings is a key component of an ongoing debate over the future survivability, utility, and cost-effectiveness of aircraft carriers and their air wings, with critics arguing that the current operating range of Navy carrier air wings will force Navy aircraft carriers to operate well within the ranges of Chinese ASBMs or other A2/AD systems, which could put the carriers’ survivability at substantial risk, or alternatively require carriers to operate beyond the range of those Chinese A2/AD systems, in locations that are safer but so far away that the carriers and their air wings will contribute little combat capability.

A key U.S. Navy program for increasing the operating range of Navy carrier air wings is the MQ-25 Stingray program, which is a program to acquire a carrier-based unmanned aerial vehicle (UAV) for use as a tanker for in-flight refueling of manned carrier-based aircraft (with a secondary mission of intelligence, surveillance, and reconnaissance). Some observers, while not necessarily objecting to the MQ-25 program, argue that the Navy should do more to increase the operating range of Navy carrier air wings, such as developing a stealthy, carrier-based UAV capable of penetrating enemy air defenses and striking land targets at very long ranges.

The issue of acquisition policies and the metrics for judging their success is discussed in more detail in another CRS report.

Legislative Activity for FY2023

Coverage in Related CRS Reports

A variety of CRS reports cover U.S. Navy programs that in varying degrees can be viewed as responses to, at least in part, China’s naval modernization effort. These reports include but are not limited to the following:

- CRS Report RL32665, Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress, by Ronald O'Rourke
- CRS Report RL32418, Navy Virginia (SSN-774) Class Attack Submarine Procurement: Background and Issues for Congress, by Ronald O'Rourke
- CRS In Focus IF11826, Navy Next-Generation Attack Submarine (SSN[X]) Program: Background and Issues for Congress, by Ronald O'Rourke
- CRS Report RS20643, Navy Ford (CVN-78) Class Aircraft Carrier Program: Background and Issues for Congress, by Ronald O'Rourke
- CRS Report RL30563, F-35 Joint Strike Fighter (JSF) Program, by Jeremiah Gertler (the JSF program is a joint DOD program with Navy participation)

House

Section 1065 of H.R. 7900 as reported by the House Armed Services Committee (H.Rept. 117-397 of July 1, 2022) states

SEC. 1065. REPORTS ON EFFECTS OF STRATEGIC COMPETITOR NAVAL FACILITIES IN AFRICA.

(a) INITIAL REPORT.—

(1) IN GENERAL.—Not later than May 15, 2023, the Secretary of Defense shall submit to the appropriate congressional committees a report on the effects on the national security of the United States of current or planned covered naval facilities in Africa.

(2) ELEMENTS.—The report required under paragraph (1) shall include the following:

(A) An identification of—

(i) any location in Africa where a covered naval facility has been established; and

(ii) any location in Africa where a covered naval facility is planned for construction.

(B) A detailed description of—

(i) any agreement entered into between China or Russia and a country or government in Africa providing for or enabling the establishment or operation of a covered naval facility in Africa; and

(ii) any efforts by the Department of Defense to change force posture, deployments, or other activities in Africa as a result of current or planned covered naval facilities in Africa.

(C) An assessment of—

(i) the effect that each current covered naval facility has had on United States interests, allies, and partners in and around Africa;
(ii) the effect that each planned covered naval facility is expected to have on United States interests, allies, and partners in and around Africa;

(iii) the policy objectives of China and Russia in establishing current and future covered naval facilities at the locations identified under subparagraph (A); and

(iv) the specific military capabilities supported by each current or planned covered naval facility.

(b) UPDATE TO REPORT.—

(1) IN GENERAL.—Not later than March 1, 2024, the Secretary of Defense shall submit to the appropriate congressional committees a report containing an update to the report required under subsection (a).

(2) ELEMENTS.—The report required under paragraph (1) shall include the following:

(A) An identification of—

(i) any location in Africa where a covered naval facility has been established since the date of the submittal of the report under subsection (a); and

(ii) any location in Africa where a covered naval facility has been planned for construction since such date.

(B) A detailed description of—

(i) any agreement entered into between China or Russia and country or government in Africa since such date providing for or enabling the establishment of a covered naval facility in Africa; and

(ii) any efforts by the Department of Defense since such date to change force posture, deployments, or other activities in Africa as a result of current or planned covered naval facilities in Africa.

(C) An updated assessment of—

(i) the effect that each current covered naval facility has had on United States interests, allies, and partners in and around Africa since such date;

(ii) the effect that each planned covered naval facility has had on United States interests, allies, and partners in and around Africa since such date;

(iii) the policy objectives of China and Russia, including new objectives and changes to objectives, in establishing current and future covered naval facilities at the locations identified in the report required under subsection (a) or in subparagraph (A); and

(iv) the specific military capabilities supported by each current or planned covered naval facility at such locations, including new capabilities and changes to capabilities.

(D) A detailed description of—

(i) the policy of the Department of Defense surrounding strategic competitor efforts to establish and maintain covered naval facilities in Africa; and

(ii) any actual or planned actions taken by the Department in response to such efforts and in coordination with global Department priorities, as identified in the national defense strategy under section 113(g) of title 10, United States Code.

(c) FORM.—A report required under subsection (a) or (b) shall be submitted in unclassified form without any designation relating to dissemination control, but may include a classified annex.

(d) DEFINITIONS.—In this section:
(1) The term “Africa” means all countries in the area of operations of United States Africa Command and Egypt.

(2) The term “appropriate congressional committees” means—

(A) the Committee on Armed Services, the Committee on Foreign Affairs, and the Permanent Select Committee on Intelligence of the House of Representatives; and

(B) the Committee on Armed Services, the Committee on Foreign Relations, and the Select Committee on Intelligence of the Senate.

(3) The term “covered naval facility” means a naval facility owned, operated, or otherwise controlled by the People’s Republic of China or the Russian Federation.

(4) The term “naval facility” means a naval base, civilian sea port with dual military uses, or other facility intended for the use of warships or other naval vessels for refueling, refitting, resupply, force projection, or other military purposes.

H.Rept. 117-397 states

Report on Air Force counter-maritime strategy

The committee notes the important work the Department of the Air Force is doing to advance its ability to strike maritime targets, to include pursuit of the Joint Air-to-Surface Standoff Missile, and test and integration activities to expand the compatibility of the Long-Range Anti-Ship Missile. However, the committee is concerned that these efforts are moving too slowly, and that wide gaps remain in the Department’s operational concepts, plans, programs, capabilities and capacity for detecting and defeating adversary maritime surface and subsurface forces from air and space at a scale that would be expected in an Indo-Pacific conflict. Therefore, the committee directs the Secretary of the Air Force, in coordination with the Secretary of the Navy and the Secretary of the Army, to prepare a report to the congressional defense committees by March 1, 2023 as to the strategy and implementation plan for conducting counter-maritime operations.

The report shall include:

(1) operational concepts, plans, programs and key enabling technologies for detecting, tracking and defeating a range of adversary maritime vessels, including while underway;

(2) how the Air Force command and control enterprise will support long-range standoff fires for maritime engagements, to include proficient use of data link and joint range extension networks required for dynamic weapons employment;

(3) how the air battle management system will incorporate sensing data for maritime targets;

(4) how the bomber fleet, and specifically the B-21 program of record, accounts for the capacity required for a counter-maritime role in addition to other mission sets, and if not, provide an updated fleet size;

(5) what steps the Air Force will take and what resources are required to establish an inventory in such quantities of appropriate munitions that achieve desired effects in counter-maritime operations;

(6) what capability is needed to engage targets beyond the range of a Joint Direct Attack Munition and inside the range of a Joint Air to Surface Stand-off Missile in a cost effective way and an estimate of the funds necessary to accrue the capability in required quantities;

(7) considerations and modifications required for various platforms to carry munitions for maritime engagement;

(8) what steps the Air Force is taking to ensure its training methods and simulators prepare warfighters for the counter-maritime mission set alongside the Joint force;
(9) an explanation of how the Air Force intends to integrate and leverage Department of the Navy capabilities and technologies in its detection, targeting and engagement methods; and

(10) an overall assessment of funding to include projected shortfalls and alternative near-term funding opportunities in order to rapidly develop, test and field counter-maritime capabilities from now and over the next five years. (Pages 35-36)
Appendix A. Comparing U.S. and Chinese Numbers of Ships and Naval Capabilities

This appendix presents some additional discussion of factors involved in comparing U.S. and Chinese numbers of ships and naval capabilities.

U.S. and Chinese naval capabilities are sometimes compared by showing comparative numbers of U.S. and Chinese ships. Although the total number of ships in a navy (or a navy’s aggregate tonnage) is relatively easy to calculate, it is a one-dimensional measure that leaves out numerous other factors that bear on a navy’s capabilities and how those capabilities compare to its assigned missions. One-dimensional comparisons of the total numbers of ships in China’s navy and the U.S. Navy are highly problematic as a means of assessing relative U.S. and Chinese naval capabilities and how those capabilities compare to the missions assigned to those navies, for the following reasons:

- **A fleet’s total number of ships (or its aggregate tonnage) is only a partial metric of its capability.** Many factors other than ship numbers (or aggregate tonnage) contribute to naval capability, including types of ships, types and numbers of aircraft, the sophistication of sensors, weapons, C4ISR systems, and networking capabilities, supporting maintenance and logistics capabilities, doctrine and tactics, the quality, education, and training of personnel, and the realism and complexity of exercises. In light of this, navies with similar numbers of ships or similar aggregate tonnages can have significantly different capabilities, and navy-to-navy comparisons of numbers of ships or aggregate tonnages can provide a highly inaccurate sense of their relative capabilities. The warfighting capabilities of navies have derived increasingly from the sophistication of their internal electronics and software. This factor can vary greatly from one navy to the next, and often cannot be easily assessed by outside observation. As the importance of internal electronics and software has grown, the idea of comparing the warfighting capabilities of navies principally on the basis of easily observed factors such as ship numbers and tonnages has become increasingly less reliable, and today is highly problematic.

- **Total numbers of ships of a given type (such as submarines or surface combatants) can obscure potentially significant differences in the capabilities of those ships, both between navies and within one country’s navy.** Differences in capabilities of ships of a given type can arise from a number of other factors, including sensors, weapons, C4ISR systems, networking capabilities, stealth features, damage-control features, cruising range, maximum speed, and reliability and maintainability (which can affect the amount of time the ship is available for operation).

- **A focus on total ship numbers reinforces the notion that changes in total numbers necessarily translate into corresponding or proportional changes in aggregate capability.** For a Navy like China’s, which is modernizing by replacing older, obsolescent ships with more modern and more capable ships, this is not necessarily the case. For example, while China’s attack submarine force has only a modestly larger number of boats now than it had in 2000 or 2005 (see Table 1 and Table 2), it has considerably more aggregate capability than it did in 2000 or 2005, because the force today includes a much larger percentage of relatively modern designs.
Comparisons of total numbers of ships (or aggregate tonnages) do not take into account the differing global responsibilities and homeporting locations of each fleet. The U.S. Navy has substantial worldwide responsibilities, and a substantial fraction of the U.S. fleet is homeported in the Atlantic. As a consequence, only a certain portion of the U.S. Navy might be available for a crisis or conflict scenario in China’s near-seas region, or could reach that area within a certain amount of time. In contrast, China’s navy has more-limited responsibilities outside China’s near-seas region, and its ships are all homeported along China’s coast at locations that face directly onto China’s near-seas region. In a U.S.-China conflict inside the first island chain, U.S. naval and other forces would be operating at the end of generally long supply lines, while Chinese naval and other forces would be operating at the end of generally short supply lines.

Comparisons of numbers of ships (or aggregate tonnages) do not take into account maritime-relevant military capabilities that countries might have outside their navies, such as land-based anti-ship ballistic missiles (ASBMs), land-based anti-ship cruise missiles (ASCMs), and land-based Air Force aircraft armed with ASCMs or other weapons. Given the significant maritime-relevant non-navy forces present in both the U.S. and Chinese militaries, this is a particularly important consideration in comparing U.S. and Chinese military capabilities for influencing events in the Western Pacific. Although a U.S.-China incident at sea might involve only navy units on both sides, a broader U.S.-China military conflict would more likely be a force-on-force engagement involving multiple branches of each country’s military.

The missions to be performed by one country’s navy can differ greatly from the missions to be performed by another country’s navy. Consequently, navies are better measured against their respective missions than against one another. Although Navy A might have less capability than Navy B, Navy A might nevertheless be better able to perform Navy A’s intended missions than Navy B is to perform Navy B’s intended missions. This is another significant consideration in assessing U.S. and Chinese naval capabilities, because the missions of the two navies are quite different.

As mentioned earlier, while comparisons of the total numbers of ships in China’s Navy and the U.S. Navy are highly problematic as a means of assessing relative U.S. and Chinese naval capabilities and how those capabilities compare to the missions assigned to those navies, an examination of the trends over time in the relative numbers of ships can shed some light on how the relative balance of U.S. and Chinese naval capabilities might be changing over time.
Appendix B. U.S. Navy’s Ability to Counter Chinese ASBMs and Hypersonic Weapons

This appendix provides additional discussion of the issue of the U.S. Navy’s ability to counter China’s ASBMs and hypersonic weapons.

Ability to Counter ASBMs

Although China’s projected ASBM, as a new type of weapon, might be considered a “game changer,” that does not mean it cannot be countered. There are several potential approaches for countering an ASBM that can be imagined, and these approaches could be used in combination. The ASBM is not the first “game changer” that the Navy has confronted; the Navy in the past has developed counters for other new types of weapons, such as ASCMs, and is likely exploring various approaches for countering ASBMs.

Countering China’s projected ASBMs could involve employing a combination of active (i.e., “hard-kill”) measures, such as shooting down ASBMs with interceptor missiles, and passive (i.e., “soft-kill”) measures, such as those for masking the exact location of Navy ships or confusing ASBM reentry vehicles. Employing a combination of active and passive measures would attack various points in the ASBM “kill chain”—the sequence of events that needs to be completed to carry out a successful ASBM attack. This sequence includes detection, identification, and localization of the target ship, transmission of that data to the ASBM launcher, firing the ASBM, and having the ASBM reentry vehicle find the target ship.

Attacking various points in an opponent’s kill chain is an established method for countering an opponent’s military capability. A September 30, 2011, press report, for example, quotes Lieutenant General Herbert Carlisle, the Air Force’s deputy chief of staff for operations, plans, and requirements, as stating in regard to Air Force planning that “We’ve taken [China’s] kill chains apart to the ‘nth’ degree.”

To attack the ASBM kill chain, Navy surface ships, for example, could operate in ways (such as controlling electromagnetic emissions or using deception emitters) that make it more difficult for China to detect, identify, and track those ships. The Navy could acquire weapons and systems for disabling or jamming China’s long-range maritime surveillance and targeting systems, for attacking ASBM launchers, for destroying ASBMs in various stages of flight, and for decoying

and confusing ASBMs as they approach their intended targets. Options for destroying ASBMs in flight include the SM-3 midcourse BMD interceptor missile (including the new Block IIA version), the SM-6 terminal-defense BMD interceptor missile,\footnote{141} and accelerating development and deployment of the hypervelocity-defense BMD interceptor missile (HVP), electromagnetic rail gun (EMRG), and solid state lasers (SSLs).\footnote{142} Options for decoying and confusing ASBMs as they approach their intended targets include equipping ships with systems, such as electronic warfare systems or systems for generating radar-opaque smoke clouds or radar-opaque carbon-fiber clouds, that could confuse an ASBM’s terminal-guidance radar.\footnote{143}

An October 4, 2016, press report states the following:

Several times in the past, [Chief of Naval Operations John] Richardson has stressed that long range weapons developments from adversarial nations like Russia and China aren’t the end-all, be-all of naval conflicts.

Just because China’s “carrier-killer” missile has a greater range than the planes aboard a US aircraft carrier doesn’t mean the US would shy away from deploying a carrier within that range, Richardson has stated on different occasions.

Again, Richardson challenged the notion that a so-called A2/AD zone was “an impenetrable keep out zone that forces can only enter at extreme peril to their existence, let alone their mission.”

Richardson took particular issue with the “denial” aspect of A2/AD, repeating his assertion that this denial is an “aspiration” not a “fait accompli.” The maps so common in representing these threats often mark off the limits of different system’s ranges with “red arcs that extend off coastlines,” with the implication that military forces crossing these lines face “certain destruction.”

But this is all speculation according to Richardson: “The reality is far more complex, it’s actually really hard to achieve a hit. It requires the completion of a really complex chain of events... these arcs represent danger for sure... but the threats they are based on are not insurmountable, and can be managed, will be managed.”

“We can fight from within these defended areas, and we will... this is nothing new and has been done before,” said Richardson.

So while Russia and China can develop missiles and radars and declare their ranges on paper, things get a lot trickier in the real world, where the US has the most and best experience in operating.

“Potential adversaries actually have different geographic features like choke points, islands, ocean currents, mountains,” said Richardson, who urged against oversimplifying complicated, and always unique circumstances in so-called A2/AD zones.

\footnote{141}{For more on the SM-3, including the Block IIA version, and the SM-6, see CRS Report RL33745, Naval Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress, by Ronald O'Rourke.}

\footnote{142}{For more on HVP, EMRG, and SSLs, see CRS Report R44175, Navy Lasers, Railgun, and Gun-Launched Guided Projectile: Background and Issues for Congress, by Ronald O'Rourke.}

“Have no doubt, the US navy is prepared to go wherever it needs to go, at any time, and stay there for as long as necessary in response to our leadership’s call to project our strategic influence,” Richardson concluded.

Similarly, an August 29, 2016, press report states the following:

The United States Navy is absolutely confident in the ability of its aircraft carriers and carrier air wings to fly and fight within zones defended by so-called anti-access/area denial (A2/AD) weapons....

In the view of the U.S. Navy leadership, A2/AD—as it is now called—has existed since the dawn of warfare when primitive man was fighting with rocks and spears. Overtime, A2/AD techniques have evolved as technology has improved with ever-greater range and lethality. Rocks and spears eventually gave way to bows and arrows, muskets and cannons. Thus, the advent of long-range anti-ship cruise and ballistic missiles is simply another technological evolution of A2/AD.

“This is the next play in that,” Adm. John Richardson, chief of naval operations, told The National Interest on Aug. 25 during an interview in his office in the Pentagon. “This A2/AD, well, it’s certainly a goal for some of our competitors, but achieving that goal is much different and much more complicated.”

Indeed, as many U.S. Navy commanders including Richardson and Rear Adm. (Upper Half) DeWolfe Miller, the service’s director of air warfare, have pointed out, anti-access bubbles defended by Chinese DF-21D or DF-26 anti-ship ballistic missile systems or Russian Bastion-P supersonic anti-ship missile systems are not impenetrable ‘Iron Domes.’ Nor do formidable Russian and Chinese air defense systems such as the S-400 or HQ-9 necessarily render the airspace they protect into no-go zones for the carrier air wing.

Asked directly if he was confident in the ability of the aircraft carrier and its air wing to fight inside an A2/AD zone protected by anti-ship cruise and ballistic missiles as well as advanced air defenses, Richardson was unequivocal in his answer. “Yes,” Richardson said—but he would not say how exactly how due to the need for operational security. “It’s really a suite of capabilities, but I actually think we’re talking too much in the open about some of the things we’re doing, so I want to be thoughtful about how we talk about things so we don’t give any of our competitors an advantage.”...

Miller said that there have been threats to the carrier since the dawn of naval aviation. In many ways, the threat to the carrier was arguably much greater during the Cold War when the Soviet Union massed entire regiments of Tupolev Tu-22M3 Backfires and deployed massive cruise missile-armed Oscar-class SSGN submarines to hunt down and destroy the Navy’s flattops. The service developed ways to defeat the Soviet threat—and the carrier will adapt to fight in the current environment.

“We could have had this interview twenty-years-ago and there would have been a threat,” Miller said. “The nature of war and A2/AD is not new—that’s my point. I don’t want to downplay it, but our improvements in information warfare, electronic warfare, payloads, the weapons systems that we’ve previously talked about—plus our ability to train to those capabilities that we have—we will create sanctuaries, we’ll fight in those sanctuaries and we’re a maneuver force.”

An October 18, 2017, blog post states the following:

Assuming the DF-21D is ready for battle, can America defend against China’s mighty missile?

While opinions are clearly mixed—in speaking to many sources over the last several years on this topic—it seems clear there is great nervousness in U.S. defense circles. However, as time has passed, initial fears have turned towards a more optimistic assessment.

In the end, the weapon might not be the great “game-changer” that many point it out to be, but a great complicator.145

A January 28, 2021, press report states

The U.S. Navy’s top intelligence officer has said the service is watching closely as China expands its anti-ship missile capabilities, particularly in and around the disputed South China Sea, to include the ongoing development of long-range anti-ship ballistic missiles. At the same time, he said he “hopes” that China’s People’s Liberation Army will continue to invest significant resources into these efforts, hinting that the U.S. Navy already has extensive measures to counter these threats already in use now or in development.

Navy Vice Admiral Jeffrey Trussler, the Deputy Chief of Naval Operations for Information Warfare, made his remarks about China’s anti-ship missile arsenal during an online event put on by the non-profit Intelligence and National Security Alliance on Jan. 27, 2021.

… not only did Vice Admiral Trussler seem less concerned about PLA anti-ship missile capabilities than one would expect, he made clear he was happy with them continuing to pour time and resources into those efforts.

“I hope they just keep pouring money into that type of thing,” he said. “That may not be how we win the next war.”

The clear indication here is that Trussler is aware of countermeasures, whether they be certain systems or tactics, techniques, and procedures, that are either available now or in development. The Vice Admiral did not offer any specific details about what the Navy is doing to go along with these remarks.

We also know that, by 2019, warships assigned to the Navy’s 7th Fleet, which is based in Japan, were fitted with the AN/SLQ-59 Transportable Electronic Warfare Modules (TEWM). TEWM is described as a “counter-terminal threat defensive system,” indicating that it is designed to help defeat incoming anti-ship missiles, or other threats, such as swarms of small drones, in the final phase of their attack on a ship. Based on the information available, The War Zone previously assessed that the AN/SLQ-59 was most likely acquired in response to growing cruise missile threats, and Chinese developments, in particular, given its fielding first on ships forward-deployed in Japan.

The Navy has also been hard at work developing an entire networked electronic warfare “ecosystem,” as part of its shadowy Netted Emulation of Multi-Element Signature against Integrated Sensors program, or NEMESIS. The goal here has been to craft a ‘system of systems’ comprising of various manned and unmanned ships, as well as submarines and aircraft, equipped with electronic warfare systems that can work together cooperatively. One of the key uses of these capabilities would be to generate signals that mimic real fleets of ships and aircraft to distract and confuse opponents, making it difficult for them to effectively spot and target real Navy assets. These networked electronic warfare platforms could also employ other kinds of electronic warfare tactics across a broad area to protect

against various kinds of threats. You can read more about NEMSIS in detail in this past War Zone feature. 146

A highly adaptive and deeply networked electronic warfare ecosystem could be particularly useful against long-range anti-ship missile strikes, especially using ballistic missiles, which would require targeting information from offboard platforms and the ability to send updated information to the weapon during the mid-course stage of flight.

The Navy does have Arleigh Burke class destroyers outfitted specifically for ballistic missile defense, including the ability to launch the SM-3 Block IIA interceptor, which is designed to knock down ballistic missiles during the mid-course portion of their flight. Those ships are also slated to get interceptors designed to bring down hypersonic weapons in the future as part of the Regional Glide Phase Weapon System (RGPWS) program. 147

The Navy, which has been looking to stop deploying Arleigh Burkes on dedicated missile defense missions, could seek to make more widespread use of the SM-3 Block IIA in the future. Those destroyers and other ships could gain additional missile defense capabilities as the improved Block IB variant of the SM-6 missile begins to enter service. Existing Block I and IA versions of the SM-6 already have the ability to intercept ballistic missiles during the terminal phase of their flight, as well as engage various other aerial and surface threats. The SM-6, in particular, potentially provides a potent defense against anti-ship ballistic missiles, especially those that break through mid-course traditional ballistic missile defenses, if mid-course ballistic missile defense assets are available at all.

There’s the possibility that Vice Admiral Trussler is aware of other developments in the classified realm that could further mitigate some or all of these threats, as well. Beyond that, there’s no discounting that his public comments, which are certain to be scrutinized by the PLA itself, are a form of misinformation designed to prompt concerns within the Chinese military that its priorities may be, in some way, seriously off base.

Whatever the case, the threat posed by China’s anti-ship missile arsenal, which continues to grow in capability, including with the development of new anti-ship ballistic missiles, is real. At the same time, while the Navy obviously knows this, the service seems to be strongly hinting that it feels it making very good progress on getting around these challenges, or at least wants to make the Chinese think so. 147

Regarding the above-reported remarks by Vice Admiral Trussler, a January 29, 2021, press report stated

That confident [U.S. Navy] posture caught the attention of the Chinese military establishment. “What Trussler is saying is that the U.S. has sufficient power to handle the anti-ship missile threat from China,” former People’s Liberation Army instructor Song Zhongping told the South China Morning Post on Friday [January 29]. “The U.S. is emphasizing that threat and it will further boost its defenses against Chinese missiles.” 148

146 The article linked at this point is Brett Tingley, “The Navy’s Secretive And Revolutionary Program To Project False Fleets From Drone Swarms,” The Drive, November 7, 2019.
Ability to Counter Hypersonic Weapons

Regarding the Navy’s ability to counter hypersonic weapons, a June 24, 2022, press report states

Raytheon Technologies and Northrop Grumman have each won contracts to continue developing hypersonic weapons interceptors in a Missile Defense Agency-led competition, according to a June 24 Pentagon contract announcement.

Each company was awarded a firm-fixed price modification to a previously awarded contract for rapid prototyping. Each modification is worth roughly $41.5 million, bringing the total contract value thus far to around $61 million each, according to the contract announcement.

In November 2021, the MDA chose the two companies along with Lockheed Martin to design the Glide Phase Interceptor (GPI) for regional hypersonic missile defense. Through other transactional agreements, the companies entered an “accelerated concept design” phase.

The interceptors are intended to counter a hypersonic weapon during its glide phase of flight, a challenge as the missiles can travel more than five times the speed of sound and can maneuver, making it hard to predict a missile’s trajectory.

The interceptors will be designed to fit into the U.S. Navy’s current Aegis Ballistic Missile Defense destroyers. It will be fired from its standard Vertical Launch System and integrated with the modified Baseline 9 Aegis Weapon System that detects, tracks, controls and engages hypersonic threats.149

Author Information

Ronald O'Rourke
Specialist in Naval Affairs

Disclaimer

This document was prepared by the Congressional Research Service (CRS). CRS serves as nonpartisan shared staff to congressional committees and Members of Congress. It operates solely at the behest of and under the direction of Congress. Information in a CRS Report should not be relied upon for purposes other than public understanding of information that has been provided by CRS to Members of Congress in connection with CRS’s institutional role. CRS Reports, as a work of the United States Government, are not subject to copyright protection in the United States. Any CRS Report may be reproduced and distributed in its entirety without permission from CRS. However, as a CRS Report may include copyrighted images or material from a third party, you may need to obtain the permission of the copyright holder if you wish to copy or otherwise use copyrighted material.