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PREFACE

Each year the National Computer Conference devotes a session, known as
Pioneer Day, to recognizing a pioneer contributor to the computing profession.

The 1977 National Computer Conference was held in Dallas, Texas on June 13-
16, 1977, and the hosts of the conference honored the Los Alamos Scientific
Laboratory at the associated Pioneer Day. Since digital computation at LASL
has always been a multifaceted and rapidly changing activity, the record of its
history is somewhat fragmentary. Thus the 1977 Pioneer Day gave us the oppor-
tunity to survey and record the first 20 years of digital computation at LASL.
Four talks were presented:

I. “Hardware” by W. Jack Worlton,

II. “Software and Operations” by Edward A. Voorhees,
IH. “MANIAC” by Mark B. Wells, and
IV. “Contributions to Mathematics” by Roger B. Lazarus.

The contents of this report were developed from those talks. Each of them sur-
veys its subject for the 1940s and 1950s. Together, they reveal a continuous ad-
vance of computing technology from desk calculators to modern electronic com-
puters. They also reveal the correlations between various phases of digital com-

~=ptitation, for example between punched-card equipment and fixed-point elec-

~m ! ‘t.ronic computers.

~~g During this period, LASL personnel made at least two outstanding contribu-
=~ O ,. tions to digital computation. First was the construction of the MANIAC I com-
:~b
d~ 0) puter under the direction of Nicholas Metropolis. The MANIAC system, that is
<=====~ hardware and software, accounted for numerous innovative contributions. The;=8
$- L. system attracted a user community of distinguished scientists who still
;= ~
9~$, enthusiastically describe its capabilities. The second development was an overt

policy of the Atomic Energy Commission to encourage commercial production of

E~: - digital computers. Bengt Carlson of LASL played a key role in carrying out this
policy, which required close collaboration between LASL staff and vendor per-
sonnel, in both hardware and software development. Again, as you read these
four papers, you see the beginnings of the present multibillion-dollar computer
industry.

The Computer Sciences and Services Division of LASL thanks the National
Computer Conference for recognizing LASL as a Pioneer contributor to the com-
puting profession. The men and women who were at Los Alamos during the
1940s and 1950s are proud of this recognition, and those of us who have subse-
quently joined the Laboratory see in it a high level of excellence to be main-
tained. We also thank J. B. Harvill, of Southern Methodist University, for his
collaboration and assistance with arranging the 1977 Pioneer day.

B. L. Buzbee

...
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ADP

ALGAE

ASC

CDC

COLASL

CPC

CPU

Dual

EDSAC

EDVAC

ENIAC

ERDA

FLOCO

IAS

lBM

1/0

IVY

automatic

ABBREVIATIONS

data processing

AND DEFINITIONS

a LASL-developed control language for programming

Advanced Scientific Computer (TI)

Control Data Corporation

a LASL-developed programming language and compiler (STRETCH) based on
ALGAE and the use of natural algebraic notation

Card-Programmed Calculator (IBM)

central processing unit

a LASL-developed floating-point compiler for the IBM 701

electronic

electronic

electronic

discrete sequential automatic computer

discrete variable automatic computer

numerical integrator and calculator

Energy Research and Development Administration

a LASL-developed load-and-go compiler for the IBM 704

institute for Advanced Study

International Business Machines Corporation

inputloutput

a LASL-developed load-and-go compiler for the IBM 7090 and IBM 7030

JOHNNI.AC John’s (von Neumann) integrator and automatic computer

LASL Los Alamos Scientific Laboratory

Madcap a LASL-developed natural language compiler for the MANIAC

MANIAC mathematical and numerical integrator and computer
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MCP Master Control Program, a LASL-IBM designed operating system for the IBM
7030

MQ Multiplier-Quotient, a register used in performing multiplications and divisions

OCR optical character recognition

PCAM punched-card accounting machine

SAP SHARE Assembly Program for the IBM 704

SEAC Standards eastern automatic computer

SHACO a LASL-developed floating-point interpreter for the IBM 701

SHARE an IBM-sponsored users group

SLAM a LASL-developed operating system for the IBM 704

SSEC Selective Sequence Electronic Calculator

STRAP STRETCH Assembly Program

STRETCH IBM 7030, jointly designed by IBM and LASL

TI Texas Instruments Company

UNIVAC trademark of Sperry Rand Corporation



COMPUTING AT LASL IN THE 1940s AND 1950s

by

Roger B. Lazarus, Edward A. Voorhees,
Mark B. Wells, and W. Jack Worlton

ABSTRACT

This report was developed from four talks presented at the Pioneer Day

session of the 1977 National Computer Conference. These talks surveyed the
development of electronic computing at the Los Alamos Scientific
Laboratory during the 1940s and 1950s.

I
HARDWARE

by

W. Jack Worlton

A. INTRODUCTION

1. Los Alamos: Physical Site

Project Y of the Manhattan Engineer District was
established at Los Alamos, New Mexico, in 1943 to
design and build the first atomic bomb. Los Alamos
occupies the eastern slopes of a volcanic “caldera,”
that is, the collapsed crater of an extinct volcano
that was active some 1 to 10 million years ago. Dur-
ing its active period the volcano emitted about 50
cubic miles of volcanic ash, which has since har-
dened and been eroded to form the canyons and
mesas on which the Laboratory is built.

Before its use for Project Y, this site was used for a
boys’ school, and those buildings were part of the

early residential and laboratory facilities. Old “Tech
Area 1,” where the early computers were housed,
was built next to the pond, as shown in Fig. I-1. The
early IBM accounting machines were housed in E
Building, and the MANIAC was built in P Building.
Since that time the computing center has been
moved to South Mesa.

2. Computers in 1943

In 1943 computer technology was in an extremely
primitive state compared to the rapidly growing
needs of nuclear research and development. The
analog computers in use included the slide rule and
the differential analyzer. The slide rule was the ubi-
quitous personal calculating device, and LASL



Fig. I-1.

Fig. I-2.

made 18-in. slide rules available from stock. The ex-
ample shown in Fig. I-2 belongs to J. Carson Mark,
formerly head of the Theoretical Division at LASL.
Although slide rules have now been largely replaced
by electronic calculators, they once played an im-
portant role in computational physics-one which is
still important and often overlooked. Mark points

out that computers can be downright dangerous if
their results are not checked with preliminary es-
timation techniques. In other words, estimation
should precede computation. Using the results of
computation without at least a rough estimate of

what the answer should be will inevitably lead to
technical errors, because flaws in the models, the
codes, or the data are essentially impossible to
eliminate in the very complex models used at the
frontiers of scientific research and development. In
those early years when computers were less trusted
than they are now, “Carson’s Caution” was well un-
derstood, but we now accept computers so readily
that we sometimes forget this very basic lesson from
the past.

The other analog computing device used in the
early 1940s was the mechanical “differential
analyzer. ” These were one-of-a-kind devices not
readily available, and thus they were not used at
LASL.

Digital computing in those early days was done
either with electromechanical desk calculators or
with accounting machines. Both of these methods
were used in the early weapons calculations.

3. Chronological Overview

Figure I-3. shows the various categories of com-
puting devices that have been used by LASL from

COMMERCIAL COMPUTERS

704 7090 6S00

‘i’ k 703N7T h ‘T

MANIAC I MANIAC U

MANIAC II
SSEC uNIVAC I

Non-LASL COMPUTERS

EN\AC \SE~/

ACCOUNTING MACHINES

OESK CALCULATORS

I9:0 I9’45 IJ50 Isk I9s0 1:65 1;70

Fig. I-3.

the 1940s to the early 1970s. Note that not all or
these have been used at LASL; in the late 1940s and
early 1950s, some of the unique early computers at

other sites were used in an attempt to complete
some of the more critical calculations. In a sense,
the “modern” era of LASL computing began in 1953
with the installation of the first IBM 701; this in-
stallation ushered in a period in which the major

2



computing requirements at LASL (and other large
computing sites) would be met with equipment
developed by commercial vendors rather than with
computers developed as one-of-a-kind devices by
Government laboratories and universities.

B. DESK

Shortly
Alamos in .

CALCULATORS

after scientists began arriving at Los
March 1943, a desk-calculator group was

formed under the direction of Donald Flanders. This
group (T-5) consisted of both civilian and military
personnel, including WACS (Women’s Army Corp),
SEDS (Special Engineering Detachment), and the
wives of scientists. By 1944 it was the largest group
in the Theoretical Division, with 25 people. The
calculators used were Marchants, Monroes, and
Fridens, although Flanders soon decided that it
would be best to have a standard calculator and
selected the Marchant (however, two advocates of
Monroes &fused to give them up). Repair of the
calculators was a continual problem at the isolated
Los Alamos site, so many of the problems with a
sticking calculator were solved simply by dropping
the end of the offending device, in the military
tradition of the “drop test. ” Jo Powers (T-1) also
notes that when their problems became acute, they
called Dick Feynman (later a Nobel laureate) who,
according to Jo, could fix anything. Feynman has
recently given a lecture* that recounts some of his
experiences with early LASL computing.

To avoid problems with manual errors, many of
the calculations were executed by more than one

person, with intermediate check points to assure
that no errors had been introduced. Flanders
designed specia! forms to aid in the setup and execu-
tion of the calculations. These calculations were
typically done by a manual form of parallel process-
ing; that is, the problem would be broken down into
sections that could be executed independently. It
seems that parallel processing is part of the “roots”

—————.
*“LosAlamosfromBelow:Reminiscencesof 1943-1945,”adapted
froma talk at SantaBarbaraLectureson Scienceand Society,
1975.Publishedby Engineering and Science, January-February
1976,pp. 11-30.

of scientific computing, rather than just a recent in-
novation, as sometimes thought. *

C. PUNCHED-CARD ACCOUNTING
IMACHINES

The PCAMS of the early 1940s were designed
primarily for business applications, but they could
also be used for scientific calculations, such as the
pioneering work of Comrie. ** In early 1944, Stan
Frankel (who worked with Metropolis) recognized
that PCAM equipment could be used for some of the
calculations at LASL, and that spring the following
equipment was delivered:

● three IBM 601 multipliers
● one IBM 405 alphabetic accounting machine
● one IBM 031 alphabetic duplicating punch
● one IBM 513 reproducing punch
● one lBM 075 sorter
● one IBM 077 collator.
The 601 multiplier was the “workhorse” of this

array of equipment. Its basic function was to read
two numbers from a card, multiply them together,
and punch the result on the same card, although it
could also add and subtract (division was done by
multiplying with reciprocals). The 601 was an im-
portant advance over its predecessor, the IBM 600,
because the 601 had a changeable plugboard that
made changing the functions being performed very
rapid compared to rewiring the 600 for every such
change. The 405 could add or subtract and list
results. The 031 was a “keypunch” in modern ter-
minology.

Early accounts of computations with these
machines indicated that a single problem took
about 3 months to complete; later methods reduced
the time so that nine problems could be completed
in a 3-month period.

—— ———
*The ENIAC,the first electroniccomputer,employedparallel
executionin its design.

**L. J. Comrie, “The Application of CommercialCalculating
Machineryto ScientificComputing,” inMath Tables and Other
Aids to Computation, Vol. II,No. 16,October1946,pp. 149-159.



The first of a series of the new IBM 602
Calculating Punch models was delivered to P. Ham-
mer (Group Leader, T-5) on November 6, 1947,
along with a new model of the sorter, the IBM 080.
Although still an electromechanical device, the 602
had over 100 decimal digits of internal storage and

could perform the following operations; add, sub-
tract, multiply, divide, compare, and negative test.
Property records indicate that eight 602s were
delivered to Los Alamos in 1947 and 1948, and both
601s and 602s were in use for some time.

IBM’s first elect ronic calculating punch was the
604, which was also used at LASL. It had 50 decimal

digits of internal vacuum-tube register storage,
although the sequencing control was through a
prewired plugboard. Input and output was through
punched cards, read and punched at a rate of 100
cards per minute. The 604 could perform the same
operations as the 602, plus zero test, positive or

negative test, repeat, and shift.
The IBM CPCS were delivered to Los Alamos in

1949; eventually LASL had six of these, the last of
which was removed in October 1956. The CPC em-
ployed both electronic and electromechanical
technology, with 1400 vacuum tubes and 2000
relays. It had 290 decimal digits of internal vacuum-
tube registers plus up to three IBM 941 storage units
that provided sixteen 10-digit words of relay storage
each. The card reader and printer operated at 150
cards per minute and 150 lines per minute, respec-
tively. The operations performed by the CPC in-
cluded add, subtract, multiply, divide, repeat, zero
test, suppress, shift, plus wired subroutines for
transcendental functions

D. NON-LASL COMPUTERS USED FOR
LASL STUDIES

From 1945 until the completion of the MANIAC,
several non-LASL machines were used for LASL
weapons studies. Nick Metropolis and Stan Frankel
used the ENIAC at the Moore School of the Univer-
sity of Pennsylvania (before its being moved to
Aberdeen, Maryland) for the first significant ther-
monuclear calculation. This was useful not only to
LASL hut also to the ENIAC project, because it
gave this machine a rather thorough checkout. This

study was arranged by John von Neumann, who was
a consultant to both the ENIAC project and LASL.
Metropolis and Frankel collaborated on a study of
the liquid-drop model of fission that used the
ENIAC (also at the Moore School) in 1946 and 1947.

In the summer of 1948, Foster and Cerda Evans
(T-3), J. Calkin (T-l), and H. Mayer (Group
Leader, T-6) used the ENIAC, this time at Aber-

deen. As late as 1951-1952 Paul Stein also used the
ENIAC for a LASL study.

The SSEC, a mixed-technology machine com-
pleted by IBM in 1948 in New York City, was used
for LASL calculations by R. Richt myer and L.
Baumhoff in late 1948.

In 1951 the SEAC at the National Bureau of Stan-
dards in Washington, D.C. was used by R.
Richtmyer, R. Lazarus, L. Baumhoff, A. Carson,
and P. Stein of LASL.

The UNIVAC I at New York University was used
by R. Richtmyer, R. Lazarus, and S. Parter. Paul
Stein later used a UNIVAC I at Philadelphia.

Finally, the IAS computer was used by Foster
Evans of LASL in a collaboration with von
Neumann. Although the MANIAC was available at
LASL by then, the work was completed on the IAS
machine because the code was not portable to the
MANIAC.

E. MAJOR COMMERCIAL COMPUTERS:
1953 TO 1977

In 1953 IBM delivered the first model of their 701
computer to Los Alamos, as arranged by John von
Neumann who was a consultant to both organiza-
tions. Thus began the era at LASL in which com-
puting requirements would be met with commercial
computers. Figure I-4 shows the electronic com-
puters that have been used at LASL from 1953 to
the present. These computers have been (with the
exception of the small CDC Cybers) the “supercom-

puters” of their time; that is, they were the most
powerful computers available, where “powerful” is
defined in terms of the speed of instruction execu-
tion and the capacity of the main memory.

Figure I-5 illustrates the trend in execution
bandwidth in operations per second that has oc-
curred at LASL from the early 1940s to the present.

4
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The largest single step in this trend occurred with
the development of the MANIAC, because this was
a change from electromechanical to electronic
technology. Whereas implosion calculations
previously had required several months to complete
on the PCAM equipment, the MANIAC was able to
complete these calculations in a few days. Curren-
tly, CDC 7600s can complete this same type of

calculation in a few hours. Overall, the trend covers

some 8 to 9 orders of magnitude in the change of ex-
ecution bandwidth—a rare and perhaps unique
change in technology in such a short period.

For many years LASL’S growing needs for com-
putational capacity and capability were such that
an attempt was made to double the computing
capacity every 2 years. This was successfully done
from 1952 to about 1970, but the recent growth rate
has not matched the former pace for two reasons: (1)
the rate of development of faster computers is now
somewhat slower than it was earlier and (2) the
competition for computer funding within ERDA is
much greater now than it was. LASL now competes
with 38 other organizations within ERDA for ADP
capital equipment funds.

The installation of ever-increasing computing
capacity to match the growing needs of the research
and development work at LASL would have been
impossible if it were not for another important
trend: the steady decline in the price-performance
index of computers. The ENIAC cost about $750000
to build, and it executed about 500 operations per
second. The most recent supercomputer at LASL,
the CRAY-1, costs about 10 times as much as the
ENIAC, but generates results about 100000 times as
fast. Thus, there has been a decline of some 4 orders
of magnitude in the cost of an executed instruction
in the 30 years since LASL began using the ENIAC
at the Moore School.

The architecture of the commercial computers
has changed in important ways in the 1940s and
1950s, including a trend toward ever-increasing
levels of parallelism, as shown in Fig. I-6. The fiist

e!-)

--------..___~.
,*’ARRAY \
I\PROCESSORS,l

---—-
~ ~

IMPuCIT EXPLICIT

Fig. I-6.



computers following the ENI.AC were strictly scalar
processors; that is, they generated a single result for
each instruction executed. Further, they were three-
address designs, in which both operands used were
addressed in memory and the result returned to
memory (indicated by “MMM” in Fig. I-6). The so-
called “von Neumann” type of architecture modified
this addressing met hod by the use of an “ac-
cumulator” that allowed a single-address format to
be used in which only one memory operand was ad-
dressed, and the other operand and the result were
assumed to be in the accumulator (indicated by
“RRM” in Fig. I-6).

Instructions were executed in strictly sequential
mode in these early scalar processors: the instruc-
tion was fetched and decoded, the effective address
was generated, the operand was fetched, the result
was generated; the same sequence was then followed
for the next instruction. With the design of the
STRETCH computer (IBM 7030), which was a joint
LASL-IBM effort, the instruction processing phase
was overlapped with the execution phase through
the use of a “lookahead” unit. Instruction processing
then became less of a bottleneck, and the limit on
operating speed became the “E-Box” that actually
executed the operations (indicated by “VIZ Overlap”
in Fig. I-6). This limitation was rather quickly ad-
dressed in designs that included many “functional
units, ” that is, independent units that could execute
a designated function such as add or multiply in-
dependently of one another. The CDC 6600 had 10
such units, for example.

The next advance in architecture was the
development of the “pipeline” processors, first ac-
quired at LASL in the CDC 7600. This design breaks
the instructions down into small segments. Each of
these is executed independently and in ~arallel,
thereby multiplying the execution rate by the
degree of segmentation in the pipeline. Even this
design is limited by the rate at which instructions
can be issued, because only one result is generated
per instruction. This bottleneck was addressed in
the design of the “vector” processors, in which a

single instruction can cause the generation of a set of
results, using the same operation (for example, add)

in pairs on two sets of operands. The first-generation
vector processors (the CDC STAR-1OO and the TI
ASC) were memory-to-memory designs in which
operands were drawn from memory and the results
returned to memory. This was, in effect, a repetition
of the memory-to-memory design of the EDVAC,
but in a vector context, and had the same disadvan-
tage, namely that the memory and the central
processor have widely disparate response times,
thus making it difficult to avoid memory-limited
performance. LASL carefully analyzed the first-
generation vector processors and decided that the
performance gain was too limited to justify the large
amount of time and personnel effort involved in
bringing one of these machines into productive
status. A fourth 7600 was acquired instead.

The limitations of the memory-to-memory vector
designs were addressed in the next generation of
vector designs that used a register-to-register for-
mat, in which vector registers were included. These
could be loaded from memory or have their contents
stored in memory, but all vector operations drew
operands from the high-speed registers and returned
their results to the registers (indicated by “RRR” in
Fig. I-6). LASL acquired the first of the CRAY-1
computers that included this design feature.

F. CONCLUSION

Nuclear science and computer science at LASL

(and at other major research centers) have enjoyed a
“symbiotic” relationship in which each has benefited
from and contributed to the work of the other.
Nuclear science has provided technical motivation
and much of the funding for large-scale scientific
computing, and computing has provided the tools
and techniques for the solutions of many problems
in nuclear science that would otherwise have been
either intractable or much delayed. Computing
remains a critical resource to the programmatic
work at LASL, both for weapons research and
development and for the growing efforts in energy
research.

6



11
SOFTWARE AND OPERATIONS

by

Edward A.

A. INTRODUCTION

A more descriptive title would be “Software with
Notes on Programming and Operations, ” because
during the 1940s and 1950s, the coder (today called a
Programmer or Systems Analyst) was usually the
operator as well. Scientists normally programmed
their own applications codes and on occasion might
also code utility programs such as a card loading
routine. They primarily used longhand, or machine
language, in the larger codes to minimize running
time. They were not afraid of “getting their hands
dirty” and would do almost any related task to ac-
complish the primary work of math, physics, or any
other field in which they were engaged. Some of this
history was not well documented, “and many of the
old write-ups are not dated. Some details therefore
could be slightly in error. I hope to convey a feeling
for how computing was done in the “good old days”
as well as to provide some information on the
hardware and software available then.*

Hand computing was performed in the 1940s
through the mid-1950s. At its peak there were
perhaps 20 to 30 people using Marchant and Friden
desk calculators. Mathematicians and physicists
would partition the functions to be calculated into
small calculational steps. These, functions generally
required many iterations and/or the varying of the

parameter values. In many respects this constituted
programming by the scientists for a “computer” that
consisted of one or more humans doing the
calculating, following a set of step-by-step “instruc-
tions. ”

The computing machines at LASL in the 1940s
and 1950s fell into four groups. From 1949 to 1956,
LASL used IBM CPCS; from 1953 through 1956,
IBM 701s were also installed. These were all
replaced almost overnight in 1956 by three 704s,
—_————
*I will discussLASL’Seffort primarily,and referencesto IBM
usuallywillbe to indicatea joint effortor to maintaina frameof
historicalreference.

Voorhees

which remained until 1961. The IBM STRETCH
computer arrived in 1961, but there was a period

before that of about 5 years during which LASL did
development work on both the hardware and
software in cooperation with IBM.

B. CARD-PROGRAMMED CALCULATOR
ERA

The IBM CPCS (used at LASL from 1949 to 1956)
were not stored-programmed computers and were
not originally designed as computers but rather as
accounting machines. The card deck was the
memory for the program and the constant data. The
machine itself included 8 registers that held 10-digit
decimal words. One could add up to 48 additional
registers in units of 16 per box for a total of 3 such
boxes. These were commonly referred to as
“iceboxes.” Figure II-1 shows an abbreviated version
of the programming form developed for the CPC.
The form could accommodate four different fields of
operations; an operation normally consisted of
Operand A, Operation, Operand B, and with the
result being stored in the register identified in “C.”
Each of the wide gaps on the form indicate where
two fields of data could be entered. The data were
represented with a sign, a single integer, and seven
fractional decimal digits. The exponent was
represented as 50 plus or minus whatever the actual
“exponent would be. Branching was rather in-
teresting. Even though each card was executed in-
dependently of every other, the machine could be

IBM CPC

<1) {2) (n (4)

l-TTl-F7TlTii’”0’‘Ic A0’‘c
Fig. ZZ-1.

.



programmed to remember which of the four fields of
operations it was following at any given time.
Therefore, if the program had a branch (either un-
conditional or conditional) among the instructions
in field 1, the machine could begin to execute its
next instruction from any one of the other three
fields. In this way you could branch between fields
and follow a different sequence of instructions.

The design and use of the wired board “created” a
general purpose floating-decimal computer from an
accounting machine. The F Control Panels were
LASL’S most advanced wired boards and had many
of the elements of “macrocoding.”

Figure II-2 shows some of the operations that
could be performed from a single card using the F

Control Panels. Note that in these cases there are
two operands and one result with a third operand,
X, coming from another field of the form. Usually,

CPC SINGLE-CARD OPERATION EXAMPLES

A+ B+X+C

Bit)( -c

A

(A+ B)*X+C

x
AuB

+C

Fig. II-2.

these operations could be executed in one card cy-
cle. Some of them would take longer than one cycle,
so the programmer would have to put a blank card
in the deck to give the machine enough time to ex-
ecute that instruction before proceeding to the next
one.

Figure II-3 shows some of the functions that were
available on the CPC. The functions here and the
operations in Fig. II-2 resemble modern-day sub-
routines, but they were subprograms wired on the

board. Some of them were fairly complex, and often
blank cards were again necessary to provide enough
time for the CPC to execute the function.

Figure II-4 shows a board from an IBM 601.
Although the CPC boards were much larger and
more complex, this board shows some of the basic

CPC FUNCTIONS

n

A“* B (/<nSJ08)

sin X, COSX) ex

features.
tified as
brushes)

~ log ++

arctan X

sinh X ,cosh X

Fig. II-3.

Four wires come out of the columns iden-
Brushes (which refer to the card-reading
that go into the Multiplier. Another three

Fig. II-4.
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wires go into the Multiplicand, and the Product is
routed to the Card Punch. There were a total of six

CPCS at LASL; the last one did not leave until late
in 1956, well after the three 701s had already depar-
ted and three 704s had been installed.

The operator would stand in front of the machine,
recycle the cards for hours, perhaps change to alter-
nate decks of cards, watch the listing, and often
“react.” In other words, over 25 years ago we already
had “interactive computing.”

C. IBM 701 ERA

The IBM 701 originally was announced as the
“Defense Calculator. ” LASL was the recipient of the

serial number 1 machine, which arrived in April
1953 and remained until the fall of 1956. A second
701 calculator, as it was later called, came in
February 1954. The machine was fixed binary. All
numbers were assumed to be less than one; that is,
the binary point was on the extreme left of the num-
ber. The electrostatic storage (which was not too
reliable) could hold 2046 36-bit full words or 409616-
bit half-words. It was possible later to double the
size of that memory, which LASL did indeed do. In-
structions were all half-words; data could also be in
half-word format. Instructions were single address
with no indexing. There was no parallel 1/0. The
system consisted of one card reader, one printer, one
memory drum storage unit, two tape drives (which
often did not work), and one card punch (the
primary device for machine-readable output).

Figure II-5 shows the console of the 701. The
Memory Register held word transfers to and from
memory. If you wanted to add or subtract you would
put one number into the Accumulator; if you wan-
ted to divide or multiply, you would use the MQ
register. There were two overflow bits in the Ac-
cumulator register in case of a spill, a condition the
program could sense with an instruction. A 72-bit
product was formed when multiplying two full
words. A 72-bit dividend, in the Accumulator and
MQ, divided by a 36-bit divisor yielded a 36-bit
quotient in the MQ and a 36-bit remainder in the
Accumulator. Six Sense Switches in the upper
right-hand corner of the console could be in-
terrogated by the program so as to alter the course of
the program and thereby provided six manually set
conditional branches. There were also four program-

Fig. II-5.

mable Sense Lights, which could be used to visually
indicate where in the code execution was occurring
or some other internal condition. In the extreme
lower left-hand corner, two buttons, one labeled
Half Step and the other Multiple Step, permitted
the programmer to step his way slowly through his
program and observe the contents of the Ac-
cumulator, MQ, and the Memory Register when the
701 was switched to Manual Mode.

Before the first IBM 701 had been delivered, three
principal methods of programming had been
developed at LASL: longhand (which is perhaps
better understood today if called “machine
language”), SHACO, and Dual. SHACO and Dual
were originated and implemented at LASL. All
these programming systems were developed by 8 to
10 people and were operational soon after the
delivery of the first machine,

Machine language came into operation in 1953
and was based on an early IBM assembly program
called S02. LASL’S first version, “606,” was soon
followed by “607,” which was then used during the
remaining service of the 701s at LASL. Both used

9



_“Regional Programming.” Each location and ad-
dress occupied a 3-column region field, which
designated a block of instructions or data, followed
by a 4-digit sequence number, which permitted up
to 9999 instructions per block. A signed 2-digit

w_—- can’. 70 f edd;% ,,W. _—

Fig. II-6.

single-address operation code was always ex-
pressed numerically. On the form (Fig. II-6), there
were comment fields for a program label and the
name of the operation. The absolute locations of
blocks were specified by the coder for the assembl~
program at the time of loading for each of the dif-
ferent regions used. These assignments were on

“origin cards.” The card output options from the
assembly program were absolute binary, regional
binary (which was relocatable), and regional
decimal (which was used to correct the source
language deck and then punch a new regional
decimal deck). The regional decimal punching op-
tion was too slow, so it was omitted from a later ver-
sion of the assembly program. The output listing
had both decimal and octal absolute locations; the
octal were more useful than the decimal because
most of the users worked in binary and octal. Scal-
ing for fixed-point binary coding was generally
noted in a comment field. The “607” assembly
program was loaded at the beginning of the user’s
deck because there was no machine-resident
software. Card errors were often fixed by plugging
unwanted holes with chips from a card punch hop-
per. Some people got so adept at this that they could
even fix the check-sum on binary cards.

Machine language allowed the user to get in-
timately close to the computer. There were no

monitors or other software stored in the computer.
Everything that was in the computer was there
because the user loaded it from cards. When he got
on the machine, he loaded a bootstrap card loader
that loaded the rest of his deck. He loaded his own
print program (fixed output format) and manually

put the corresponding print board in the printer. If
there was trouble on a run, he then loaded an ap-
propriate debugging program and associated printer
board of his choice (generally, either a printed
dump or an instruction-by-instruction tracing of a
portion of the Fode as it executed). Memory check-
~ums and frequent dumps were made as protection
against the short mean time (minutes) between
computer failures.

With machine language, the user had to remem-
ber the following.

● When dividing, the divisor always had to be less

than the dividend so that the quotient would be less
than 1. If not, a Divide Check would occur and the
machine would come to a screeching halt.

● An instruction was often used also as a data
constant; that would be unheard of today.

● Because the 701 was a fixed-point binary
machine, the user had to think in binary octal, es-
pecially when working at the console or poring over
an octal dump.

. Scaling was necessary and often difficult to do
without causing undue loss of significance or result
overflows. The programmer had to mentally keep
track of the binary point as he programmed.

● When decimal data were loaded, the program-
mer specified both the decimal and binary points for

the conversion. For example, the integer 13
(decimal) would have a decimal scaling factor of 2
(for two decimal digits), but the binary scaling fac-
tor would have to be at least 4 to accommodate the
number of binary bits from the conversion.

. When adding two numbers, they had to have
the same binary scale factor for proper alignment;
otherwise, the user would have to shift one of them
until they were aligned. He also had to allow room
for a possible carry or check the Overflow Indicator
after the addition.

The Program Library included various card
loaders, print programs, and debugging programs.
The debugging programs would look for such things
as transfers or stores to certain specified locations.

Memory errors frequently resulted in a Divide

10



Check and a machine stop, Occasionally, instruc-
tion sequence control would be lost, and a jump
would occur to some part of memory where it should
not be. In this case, when the machine stopped you
had no idea how control got to that location.

LASL Group T-1, which ran the computer opera-
tion, began issuing materials and offering program-
ming classes in 1953. At that time there were about
80 users outside of T-1. By August, LASL was
already operating 24 hours per day. Six 701s had
been delivered nationwide by then, and there was
enough interest among users to hold a program-
exchange meeting at Douglass Aircraft (Santa
Monica). This meeting was the forerunner of the
SHARE organization formed in 1955 of which LASL
was a charter member.

SHACO was an attempt to simulate the widely
used CPC decimal coding scheme. It was an inter-
preter with an option for tandem arithmetic opera-
tion. SHACO was 20 to 60 times faster than the CPC
depending on the amount of printing done during
execution. Printing on the CPC was overlapped with
execution and~hence was “free.” SHACO was 2 times
slower than the 701 when executing machine-
language codes that incorporated floating-point
subroutines. It was about 10 to 15 times slower than
a good 701 machine-language fixed-point code. If
the tandem arithmetic option was used, execution
was slowed by another factor of 2. SHACO’S
floating-decimal data representation was 10 digits
(1 integer plus 9 fractional digits) and a 3-digit
signed exponent (not modulo 50). It had a max-
imum of 24 instruction blocks each of which could
contain up to 127 instructions. There was also a
maximum of 705 data locations. Data exponents
were stored separately from mantissas. Figure II-7
shows the input format. SHACO was the forerunner

SHACO FOR 701

m
L x , Xxxxxxxxx * EEE (EXPONENT STORED SEPARATELY)

Fig. II-7.

of IBM’s Speedcoding system, which was issued in
1954. Their version was very simila~, and in their
manual they acknowledged that LASL had com-
pleted a program with the same objective of Speed-
coding: to minimize the amount of time spent in the
problem preparation. SHACO, although con-
siderably slower than 701 machine language, was
very effective for short problems where few runs
were anticipated, and/or for “exploratory” difficult-
to-scale codes. Using a language of this type on the
701 saved approximately a factor of 20 in coding and
debugging time.

Dual was a LASL-developed fixed- and floating-
decimal coding language that came out about the
same time as SHACO. Its authors claimed that it
would “transform the 701 into a combined floating-
point and fixed-point computer. ” Its commands
strofigly resembled 701 assembly-language single-
address commands. It had a “virtual” combination
of the Accumulator and the MQ into a single AMQ
universal register. It had built-in tracing and a
;irigle-address coding format. Dual executed com-
mands by branching to subroutines that occupied
about a quarter of the electrostatic storage. It
represented its data with a modulo 50 exponent
written in front of the mantissa. For example, the
decimal number –3 would be written as –51.300. It
had a limited set of functions, such as square root,
cosine, and exponential. Both Dual and SHACO
were extensively used for all programs other than
the very large production codes.

There were no machine room operators as such;
there was a dispatcher who kept records of usage,
downtime, and the schedule of assigned users. A
user operated the computer while his programs were
running (Fig. II-8). During the day, he would re-

quest and was allocated 2- to 5-minute periods on
the computer for debugging, checkout, etc. When
his turn came, he would have his program card deck

plus debugging programs in hand. The preceding
user would normally be printing or punching at the
end of his run, and he would usually allow the next
user to stack his cards in the card reader. When the
preceding user finished, the next user would be
ready to initiate loading of his deck. Sometimes the
preceding user would overrun his allocation.
Usually, he would be allowed to continue for anoth~r



Fig. II-8.

minute but then the situation could get tense in-
deed. More than once, thewait.ing user pushed the
CLEAR button to erase memory. The habitual
overrunners developed a reputation for such; but,
all in all, things went rather smoothly.

At night, users with long-running jobs were able
to do something other than tend the computer. An
AM radio was attached to the machine. Different
sections of a code had a unique rhythm and sound so
the user could do other work if he kept one ear half-
cocked to the sound of the radio. If he heard
something unusual, he took appropriate action.
Night runs would range from 30 minutes to 4 or
more hours. Occasionally, when oversubscribed, up-
per management might have to decide who would
get the time available during the night.

D. IBM 704 ERA

The IBM 704, initially announced as the “701A” in
mid-1954, came to LASL in January 1956. It
represented a significant improvement over the
IBM 701. For one thing, instead of electrostatic
storage, it had core memory, which was much larger
(up to 32k words) and far more reliable. It had
floating-point binary, so SHACO and Dual were un-
necessary. It had index registers; although there were
only three, they could be used simultaneously in
combination if you were a very tricky coder. It had a
much larger vocabulary and some logical opera-

tions. It was 2-1/2 times faster. By September 1956,
three 704s had been installed at LASL and two 701s
released. There was a lot less procurement red tape
at that time.
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LASL-developed 704 software included longhand
(assembly language), FLOCO, ALGAE, and SLAM.
The 704 machine language, called Regional Sym-
bolic or LASL “871,” was a straightforward assembly
program based on the previous assembly program,
“607,” for the 701. However, it had alphabetic opera-
tion codes and nonsymbolic numeric locations. It
had additional fields for the new index registers
(Tag). The Decrement was the field used to modify
the contents of index registers. It was possible to
partially assemble a deck and then merge it with the
previously assembled binary deck. There was a
greatly expanded subroutine library.

Eight months after the first 704 was installed, we
issued the 704 Primer. Apparently we were in no
hurry to enlist new computer users. The 701 users
already had IBM manuals and needed little ad-
ditional help. The 704 Primer, an extension of the
early 701 Primer, was mainly used in the courses for
beginning coders.

FLOCO, which used what we called a “flow code, ”
came out in 1956 and was replaced by FLOC02 in
1959. The idea was to create a single-address
floating-decimal system that could be loaded and
immediately begin to execute following a one-pass
compilation that occurred during the card loading.
This saved greatly on compile time. The slogan for
FLOCO was that the source deck was the object
deck. One could have up to eight instructions per
card. The flow code controlled the execution of what
was called the “formula set. ” FLOCO had

pseudoinstructions interspersed in the card deck
that caused alternation of loading and execution.
The computer would load some instruction cards,
execute the instructions, load more cards, and con-
tinue in this manner. Data or data space referred to
by a formula had to precede the formula in the card
deck to allow address assignment in the instructions
during the single pass. For some reason that is not
now clear to me, it was necessary to load data in
backward order. One could have transfers,
branches, or jumps within a formula but not directly
to another formula. This had to be done indirectly
by a return transfer to the flow code. Note that the
flow code defined the flow of the program and was

separate from the formula set or set of things to be
done; that is, the logic of the overall code was not
embedded in the rest of the code.



!
In 1958, the ALGAE language was implemented

at LASL for the 704. It was a preprocessor to FOR-

TRAN (which was first issued by IBM in 1957). The
language contained a control structure that resem-

bled arithmetic expressions. The basic idea was to
separate the specification of the program control
from that for the evaluation of equations, 1/0 state-
ments, data movements, etc., reducing the common
two-dimensional flow diagram to a compact linear
statement (box labeled Control in Fig.
II-9). That control statement plus the set of “things

SLAM was an elementary monitor program for
the 704. It accepted multiple jobs batched on tape
and produced batched output on tape for offline

printing. It removed the necessity for a coder to be
in attendance during his run. It accepted all the
various languages in operation at LASL then. Its use
was not mandatory. Larger codes would use single-
purpose tape-in and tape-out utility programs for
offline purposes instead of SLAM.

E. STRETCH ERA
ALGEBRAICFOFUWAT10N OF FLON DlAWINS
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Fig. 11-9.

to be done” totally represent and defiie everything
that is in the flow diagram. A paper on the language
published in Vol. 1 of Communications of ACM

points out that the GO TO statement is probably
unnecessary in nonmachine programming
languages. Hence, 20 years ago, there was a sugges-
tion of GO-TO-less programming in the literature.

Next came the planning period before the delivery

of the STRETCH computer (IBM 7030).
STRETCH was a major LASL-IBM joint effort that
began in 1956. The hardware was novel and
revolutionary compared to the IBM 704 hardware.
The vocabulary was enormous. The machine was
delivered in 1961.

LASL and lBM worked together in the develop-
ment of STRETCH software, including the design

of a longhand assembly program named STRAP
and an operating system called MCP. STRAP-1
(implemented by LASL in 1958) was actually a
crosscompiler that operated on the 704 and
produced code for the 7030. A 7030 simulator (IBM)
operated on the 704 and incorporated STRAP-1.
STRAP-2 (irnplernented by IBM in 1960) accepted
the same language but ran on STRETCH itself.

Figure II-10 shows the evolution in the design of =-
three assembly program languages. The problem is
to compute T = Z(X + S3) with floating-point argu-
ments. Note that the “871” coding form for the 704
had fixed fields, whereas STRAP had free-form
statements for instructions. Also note the steady
progression from numerics to symbols in the three
generations of assembly language.

The MCP for the 7030 was designed by LASL and
IBM and was written by IBM. It had parallel
batching of 1/0 and disk operations, which was
referred to as “spooling.” It handled interrupts; there
were many on the 7030. IBM 1401s came into use for
offline I/O support; there were four of them during

the lifetime of STRETCH, beginning in 1960. There
was no multiprogramming then, but the overlap of

I/O and calculation was possible. MCP was not used
by most of the nighttime, long-running production
codes because it would have precluded 1/0 functions

13 I
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being closely phased into the code by the program-
mer.

Two programming languages, COLASL and IVY,
were developed totally by LASL concurrently with
the joint LASL-IBM effort.

Figure II-II shows the keyboard for the IBM 9210,
which was built by IBM to specifications developed
at LASL from 1956 to 1960. The goal was to develop
an input device with a large number of characters
and other features to use with “natural languages. ”
It incorporated a triple-case typewriter with three
letters on each type slug. It could superscript and,

Fig. II-11,

subscript any number of levels. A sample 9210 out-
put from the typewriter and card punch is shown in
Fig. II-12. Note that three cards are needed to repre-
wmt tho aallaticnm

,- _——.—— —=. .-
.-. ,.,— ;

Fig. ZI-12.

COLASL (Qompiler of LASL), based on the 9210,
was developed and appeared in 1961. (The
MANIAC had a similar compiler named Madcap
with a more limited character set. In 1960 Madcap
had superscripts and subscripts as well as displayed
functions. ) COLASL accepted “natural”
mathematical notation. The code (typed in black)

was often embedded in the narrative write-up or
commentary, which had to be typed in red. Red
characters were ignored during compilation. If
desired, you could switch off the red key; everything
would come out in black and would look like a
report. COLASL was actually precompiled to FOR-
TRAN. The COLASL statement analysis used some
rather advanced techniques such as recursive sub-
routines, tree-structures, and a complete logic trace,

Figure II-13 shows an example of, COLASL code
as written by the programmer. An example of

14
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Fig. II-13.
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COLASL source code made on the 9210 is shown in
Fig. II-14. Note the use of ~and displayed quotients,
which were not possible using FORTRAN. Neither
of the LASL-built natural language compilers,
COLASL or Madcap enjoyed any widespread
success, in part because FORTRAN was already

well entrenched after 4 or 5 years. Another factor
was the lack of an adequate and relatively inexpen-
sive 1/0 device corresponding to the 9210. We could
not afford to buy a second 9210 when we wished to
do so later. Perhaps in the future, OCR or some
other technology will begin to make the use of
mathematical notation feasible.

IVY for the 7030 was based on a similar compiler
by the same name for the IBM 7090. It came out in
1961 as a successor to the FLOCO language. Again it
was a load-and-go one-pass compiler-assembler that
attempted to combine machine language and an
algebraic language based on Polish notation. It
could relocate data while the code was executing, an
option referred to as “dynamic storage allocation. ”

F. CONCLUSION

During the 1940s and 1950s programming
emphasized machine efficiency. Codes were very
machine-dependent. Ease of programming was a
secondary consideration. Hands-on.computer opera-
tion was the norm. Systems software, although
primitive by today’s standards, was generally ready
for use when the computer was delivered (even when
you were getting serial number 1 or serial number 2
hardware). Programs were freely exchanged. Some
LASL-developed compilers were more popular
elsewhere than they were at LASL. Programming
was not ego-less; programmers took pride in their
work. Competition to write smaller, faster math
subroutines or utility programs was common. The
users today are now insulated functionally and
physically from the hardware. At LASL, special
arrangements are now necessary even to see a big
computer, and it is not clear to me that that is good.
Today, conventions, standards, regulations, and
procedures are far more abundant in procurement
and in the use of computers. I believe there is good
reason for concern about such restrictions because
they can stifle progress in computer design, in
software design, and in the use of computers. The
industry is no longer driven by what the users think
they need, but rather by what industry thinks they
can sell.

Finally, it is interesting that there seems to be a
revival of stand-alone or distributive computing,
which I view to be a move to gain more control for
the user. The progression has been from hands-on
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computing with optilhization of hardware utiliza - The trend now seems headed back toward increased
tion to batch (no hands-on) to timesharing (pseudo interest in efficient hardware utilization.
hands-on with no concern for hardware efficiency).

III
MANIAC

by

Mark B. Wells

I am going to reminisce a little about the
MANIAC computer that served LASL so well in the
early 1950s. Actually, there were three MANIAC
computers. MANIAC I, which I will discuss mostly,
was at LASL from 1952 to 1957. MANIAC II was
there from 1957 to 1977. MANIAC III was never at
LASL; it was built in the late 1950s at the Univer-
sity of Chicago where Nick Metropolis, the prime in-
stigator for all three machines, spent a few years.

(Figure III- 1 shows MANIAC I.11under construc-
tion. ) The word MANIAC is an acronym for

machine names, such as ENIAC and EDSAC,

prevalent then. Now one wonders if it may have
been a stimulus instead of a deterrent. The late
George Gamow, well-known astronomer and
physicist, had his own interpretation of the
acronym. Talking to John von Neumann, he
suggested that maybe MANIAC should stand for

Metropolis gnd ~eumann &vent ~wful gontrapt ion.
The MANIAC I computer at LASL is often con-

fused with the I&S computer at the Institute for Ad-
vanced Study in Princeton (Fig. HI-2). At the plan-

Fig. III-1.

~athematical Analyzer, ~umerical @tegrator, ~nd

Somputer. Nick tells me that he chose the name par-

. . tly in the hope of stopping the rash of acronyms for
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Fig. III-2.

ning stage in 1948, MANIAC was to resemble the
machine being built in Princeton by von Neumann
and Julian Bigelow. However, when it was com-
pleted in 1952, it was quite a different machine. One
of the hardware differences was the size of the
Williams tubes used for memory: 2-in, tubes on the

MANIAC instead of the 5-in. tubes on the IAS com-
puter. Two-in. tubes were chosen by Jim



Richardson, the chief engineer on the MANIAC pro-
ject, because they required less space, Three-in.
RCA tubes were substituted later. By the way, do
not confuse either of these machines with the
JOHNNIAC built at Sperry Rand Corporation by
Willis Ware.

MANIAC I was a vacuum-tube machine powered
by a room full of batteries (Fig. III-3). Figure III-4

Fig. III-3.

..-
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Fig. III-4.

shows MANIAC I. The arithmetic unit with the
three registers is in the middle with the operation
controls on the sides and in the back. The word
length was 40 bits; if you look closely, you can see 10

bits of register in each of the 4 central panels. The
memory is on top. There are 2 Williams tubes in
each of the 20 boxes. The 2 monitor tubes at the
ends were for viewing the contents of any of the 40
tubes. Each tube could store 32 by 32, or 1024, bits
of information; hence, MANIAC I had a memory
capacity of 1024 words. Out of the figure on the
right, or perhaps it had not been installed yet, was a
10 000-word Engineering Research Associates drum
for auxiliary storage. On the far left is the row of
switches that served as the user’s console as well as
part of the engineer’s console. The user’s console
was later moved to a table. The controls used by the
engineers to tune the memory and view its contents
were accessible on the front of the memory boxes
and below the memory. I can still remember the Fri-
day when those controls were recklessly twiddled by
a brilliant, but rather naive, mathematician named
John Holladay. After spending several hours that “
weekend readjusting the controls, an engineer” (I
believe it was the late Walter Orvedahl) installed
some very attractive switches just below the
memory. These “Holladay” switches were for the un-
authorized person who could not resist twiddling;
they did absolutely nothing.

Actually, there was good rapport between the
engineers and the programmers, or coders as they
were called in those days. Nick, who is still at LASL,
and later Jack Jackson, now with IBM, were the
primary design architects of MANIAC I and its
system, but suggestions for hardware modifications
as well as operational procedures were proposed ar-
bitrarily by users or engineers. There are many ex-
amples of this user-engineer interaction throughout
the service of MANIAC I and MANIAC II. One was
Lois Cook Leurgans’ naming of the hardware
breakpoints “red” and “green” after the color of the
pencils she used to indicate the temporary stopping
points in her program. (She is shown at the console
in Fig. III-5. ) The suggestion for the successful
console-controlled breakpoint, called the purple
breakpoint, came from Bob Richtmyer, an avid
MANIAC user, who is now with Colorado Univer-
sity. Also, it was interaction between engineers Jim
Richardson and Grady McKinley and coders Bob
Bivins and me that led to the development of the
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platen-rotating Flexiwriter. This was a paper-tape
input device on which the two-dimensional expres-
sions of Madcap 3 (developed about 1960) could be
typed. Perhaps the best example of all was the
design of the bit manipulation instructions in the
early 1960s used specifically by the set-theoretic
operations of Madcap 4.

I have forgotten who (perhaps it was engineer
Allan Malmberg) suggested attaching a simple am-
plifier to pick up noises or music (depending on your

point of view) from the running computer. It was an
almost indispensable diagnostic device for both
MANIAC I and MANIAC II. Nick tells the story of
the time that he was chatting with Bob Richtmyer
in a corner of the MANIAC room while one of their
programs was running. Bob, besides being a well-
known theoretical physicist, is also a noted musi-
cian. As they were chatting, Bob heard a slight
change in the sound emanating from the amplifier
and announced that he thought box 19 was being
skipped. (He was referring to flow diagram box 19.)
Sure enough, upon examination they discovered a
computer malfunction was preventing entry to box
19.

Let me point out another interesting feature of
MANIAC. Note that the register flipflops with at-

tached neon lights were on the front of the machine

(see Fig. III-4), and so the binary digits* that they
contained could be seen directly. The whole
machine was, in effect, part of its console. Further-
more, by using clip leads to short one side of the
vacuum-tube flipflops, you could actually change
the contents of a register (while the machine was
stopped). A skilled operator, like Don Bradford or
Verna Ellingson Gardiner, could fetch a word into a
register, make a change in it using clip leads, and
store it back in memory in about the same time that
most modern operators can type a one-line com-
mand on a terminal.

Figure III-6 shows another of the early coders,
Marj Jones Devaney, working at the I/O station. In

Fig. III-5.

Fig. III-6.

front of her is a teletype printer and to her left is a
mechanical paper-tape reader. Later, that reader
was replaced by a more reliable Feranti photoelec-

tric reader. In general, we found what is well known
today that electronic equipment is preferable to
mechanical equipment.

The fast line printer for MANIAC I is shown in
Fig. III-7. The Analex (serial number 1) was a cylin-
der printer capable of putting out up to 10 lines per
—————___
‘\Ve called t hem “bigits”for a shorttime beforecommonadop-
tion of the term “bit.”
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Fig. III- 7.

second. Note that the paper was not fanfold and
that the paperfeed was downward. We had a basket
on the floor to receive the output, but it was quite
inadequate. It was common to see prominent scien-
tists crawling along the floor to study results. The
printer must have been fairly well tuned when it
produced this sample output; I remember the lines
being more wavy most of the time.

46

+7

4U

J5 ICI A4213Q 024
]4 Dcz?r 02s

15 !C2 &A28z 026
!b 0C2B1 025

17 1C3 AA2C8 f)oc

1s ocz~r 033

J9 1C4 AA 250 ~’al

1A 0A 24A Bgl

JO 1C5 0C25U op\

01 AA25Q 00!

02 1C6 B1324f. 005

03 Colcc 491

01 lCT AA20t Aoc

02 OA25f 002

us Ice ?AICW CDS

04 AA2SU ~g!

us 1C9 .9800C 000

U6 cOt CA 481

07 lCA CS 018 041

U1 AA 25& 002

02 ICB fiA 24A sot

03 Ocz%f 002

Note that the character set was hexadecimal with A
through F representing 10 through 15. This output is
part of a program listing, where the absolute in-
structions are in the five-column field. There were
two instructions per word on MANIAC I, so the ab-
solute word addresses just to the left of the instruc-
tions appear only on every other line. The numbers
in the far-right field are the so-called “descriptive”
addresses used by the programmer because we had a
rudimentary assembly language. The numbers in
the far-left field are flow-diagram box numbers for
ease in referring back to the problem formulation.

MANIAC I ran a wide variety of problems from
hydrodynamics to chess and played a prominent
role in the development of the Monte Carlo method.
Those were really exciting times. The list of scien-
tists who prepared problems for the MANIAC or
who actually operated the machine is truly im-
pressive: von Neumann, Fermi, Richtmyer, Teller,
Pasta, Ulam, Gamow, and the Rosenbluths are a
few. The machine was fairly easy to operate, and do-
it-yourselfers, like Fermi and Richtmyer, often
carried calculations through themselves, including
keypunching on the Flexiwriter to produce paper-
tape input and making changes with clip leads.
Others had the coder/operators do their calcula-
tions. However, Rlchtmyer recalls his surprise one
Sunday when he found Edward Teller and Lothar
Nordheim, neither of whom was known for his dex-
terity, operating the machine with no coder or
engineer present.

Figure HI-8 shows a piece of physics code that was
run on the MANIAC. Note that we used von
Neumann flow diagrams to speci~ calculations.
These were translated by the coder into assembly
language then assembled and run on the computer.

k’lg. 111-8.
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We believe that the first “performance measure-
ment” was done on MANIAC I. Using an inter-
pretive approach, Gene Herbst (now with IBM),
Nick, and I were able to get a dynamic count of the
instructions used in various calculations. Table HI-I

TABLE III-I

ANALYSIS OF THE CODE FOR A PROBLEM IN

HYDRODYNAMICS

AA
AB
AC
~:

AF
BA
BB
BC
;s

K
CB
cc
CD
CE
CF
DA
DB
Dc
DD
DE
DF
EA
EB
EC
ED
EE

K

F:
FD

E

Totals

Vccabdary Static
Symbol Count

7
c.

11s1

P;p:f

Count

13.s
0.6
0.0
0.0
0.0
0.0
8.0

;:
0.0
0.0
0.3
2.9
4.2

;:
0.0
0.0
8.0
0.2
13.6
4.2
24
0.s
0.0
10.2
9.0

k;
1.6
3.2
3.6
0.0
0.0
2.4
0.2

‘(%W
34W
309
0
6
0

27:
2149

0
0
0

33:
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0

249:

41:
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322:
2430

d;

llti
1003

0
0

8!

28333

Percentage
of Dynamic

Count
,—

12.3
1.0
0.0
0.0
0.0
0.1
9.6
7.s
0.0
0.0
0.0
0.0
1.1
3.3

$:
0.0
0.0
8.8
0.2
14.6
4.0
2.6
0.0
0.0
11.3
8.5
0.1

H
3.8
3.7
0.0
0.0
0.0
0.2

Time

314.9
27.8
0.0
0.0
0.0
3.6

247.0
193.4
0.0
0.0
0.0
0.3
16.6
46.8
20.1
34.6
0.0
0.0

2S92.9
83.0
149.7
1197.8
106.8
0.8
0.0

209.6
100.3

Sk:
6.4
&s.o
S3,0
0.0
0.0
0.0
6.1

Yxi

Percentage
O( Time

5.4
0.4
0.0
0.0
0.0
0.0
4.2
3.3
0.0
0.0
0.0
0.0
0.2
0.8
0.3
0.6
0.0
0.0
4s.1
1.4
4.3
20.8
1.8
0.0
0.0
3.6

:;
0.9
0.1
1.s
1.4
0.0
0.0
0.0
0.1

shows the results for a hydrodynamics calculation.
The very high percentage of time (45.1%) used by
the multiply instruction (DA) was noted for input to
the design of MANIAC II.

Not all of the computing on MANIAC I was
numerical. We also had some fun with com-
binatorial problems. We wrote a code for the queens
problem in chess, just as most students do today,
and calculated the 92 solutions for the 8 by 8 board
(one solution is shown in Fig. II-I-9). At the time, I
was too inexperienced to program on MANIAC the
group operations with which to calculate the solu-
tions inequivalent under reflections and rotations; I
can remember spending an afternoon in my office
with the 92 machine-produced solutions and my
chessboard grinding out the 12 inequivalent SOIU-
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tions by hand. I believe it was my independent dis-
covery of backtracking in the early days of MANIAC
I that nurtured the interest in combinatorial
algorithms that I still have today.

We also had a chess-playing program on
MANIAC I. However, because of the slow speed of
MANIAC (about 10000 instructions per second) we
had to restrict play to a 6 by 6 board, removing the
bishops and their pawns. Even then, moves
averaged about 10 minutes for a two-move look-
ahead strategy. The program played several games,
both against itself and against humans; it even won
one game against a beginner who had been taught
how to play specifically for our experiments. We
wanted to determine the level of play of the
program. As I remember, we concluded that the
program was equivalent to a beginner with about a
half-dozen games experience. Perhaps the most ex-
citing game was one played with Martin Kruskal, a
Princeton physicist; Kruskal gave MANIAC queen
odds. The game was a stand-off for some time; once
after a surprising move by MANIAC, Kruskal even
murmured, “I wonder why he did that?” In the end,
however, Kruskal did win; but when he checkmated
the machine at move 38, it responded with one more
move, illegal of course. We were dumbfounded for a
while, until we traced the trouble and realized that
the program had never been taught to resign. When

I



confronted with no moves, it got stuck in a tight
loop. As some of you may recall, tight loops were of-
ten hard on electrostatic memories. In this case, the
tight loop actually changed the program, creating
an exit from the loop, whereupon the program found
the illegal move. You might call that a “learning”
program.

MANIAC I did not actually leave service until
1965, * but it was replaced at LASL in 1957 by the
faster, more powerful, easier-to-use MANIAC II
(Fig. III-10).

The chief advantages that the second-generation
machines, MANIAC II and IBM 704, had over the

Fig. III-10.

first-generation MANIAC I and IBM 701 was
floating-point arithmetic. As Ed Voohees mentioned
in “Sec. II, a substantial portion of the software effort
on the early machines involved producing sub-
routines to do our arithmetic in floating point,
letting the user think more at his own level without
complicated scaling. With the advent of the more
powerful second-generation machines, attention
could be given at a higher level, and we then saw the
beginning of real programming languages; FOR-
TRAN on the 704 (1957) and Madcap on MANIAC
II (1958). However, whereas Madcap has evolved
and improved over the years along with MANIAC II
and with our understanding of languages and
algorithms, FORTRAN has been essentially static.
In 1958, Roger Lazarus and I participated in the——_
*Itwentto theUniversityof NewMexicoandwasusedthereun-
til 1965 whenit wasretired.

programming of a neutronics hydrodynamics
calculation in FORTRAN to learn the language.
Some of the features that annoyed us then, like re-
quired parentheses in IF statements, are still there.
It is too bad FORTRAN was frozen and became a
standard so early.

I am not going to say much about Madcap,
because most of its development took place in the
1960s and 1970s. However, Fig. III-II shows a small

Li - (24]~Li

if Li=O:

Si+Pi+l Qi~ Si

otherwise:

Qi = Pi+f , nest deeper

pi Si lAi~~i~Kil

( )

- pi

porperno ( ) = P, ; go to exil

Fig. III-1 1.

piece of a Madcap program written in 1965. The
two-dimensional features are exemplified by the
subscripts and binomial coefficients. The set-
theoretic notation was added in 1963 and expanded
with a structure former notation in the latest Mad-
cap in 1972. Two other features that I developed in
Madcap of which I am particularly proud are type
propagation in lieu of declarations and an im-
plementation of activation record retention that
allows incorporation of a very useful function data
type.

I wish to conclude with a crude analogy between
the floating-point libraries on the early machines

and the development of FORTRAN preprocessors
today. In both cases, we were or are attempting to
tack on features that should have been or should be
an integral part of the basic computational tool.
While the hardware upgrading was accomplished
fairly easily in the late 1950s, the sheer size of the
computing industry today makes widespread accep-
tance of the conversion to higher level languages
such as Algol 68, Pascal, or even Madcap, painfully
slow if not impossible. I am certainly glad com-
puters got index registers, floating-point arithmetic,
and the like when they did; the added complexity of
computing without these features would be
considerable.
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Iv
CONTRIBUTIONS TO MATHEMATICS

by

Roger B. Lazarus

First, I want to talk about a particular area of
physics that I was involved in personally: the es-
timating of the energy release of nuclear devices.
Then, I will just mention, for the record and for the
fun of reminiscence, some of the early problems that
I remember that were done in the early 1950s. Most
of them, but not all, were done on the MANL4C I.
Finally I want to close with some speculative
remarks entitled, “Why Was It More Fun?”

The whole Los Alamos Project was started with
the “estimate” that if the fission reaction released
both energy and extra neutrons, then a chain reac-
tion could be brought into existence that would give
an explosion. And that is what it was all about.

In the 1940s during the war, and in the 1950s, the
main challenging calculational problems were those
of shock hydrodynamics and neutron transport.
There was also radiation transport as a problem,
and generally, that is easier than the neutron
transport.

The hydrodynamics problems are described by
hyperbolic nonlinear partial differential equations
in space and time. It is the nature of those equations
that discontinuities in the dependent variables can

come about spontaneously, so that the
straightforward replacing of partial differential
equations with partial difference equations can run
into trouble because the derivatives can become in-
finite.

1 was not really quite sure of who did what first. I
found in the preface of the 1957 edition of
Richtmyer’s book Difference Methods for Initial-

Value Problems, * the following sentence. “Finite-
difference methods for solving partial differential
equations were discussed in 1928 in the celebrated
paper of Courant, Friedrichs, and Lewy but were

put to use in practical problems only about fifteen

———————.
‘Kobert D. Rlchtmyer, .Di//ererzce Methods for Initial-Value
Prublcms, (IntersciencePublishers,Divisionof .John\$riley&
Sons, 1957).

years later under the stimulus of wartime
technology and with the aid of the first automatic
computers ....” Well, the rest of the paragraph talks
about the LASL part of the whole thing.

The accounting machines that Jack Worlton
showed you, which were used primarily for shock
hydrodynamics, were used only for the smooth part
of the flow. The accounting machines would run as
far as they could, and when it was necessary to do
the shock fitting-to apply the jump conditions
across the shock—that was done by hand. It was
that hangup that led to the invention by Richtmyer
and von Neumann of a thing called pseudo viscous
pressure, which is an extra term added to the dif-
ference equations that will smear out the shock over
a few zones, the number of zones being essentially
independent of the shock speed and material. It will
do this in such a way as to preserve the important
quantities: shock strength and speed. That inven-
tion was made specifically for a calculation done on
the SSEC. That was in the late 1940s. That method
of smearing is still in use.

There was a two-space dimensional R-Z cylin-
drical geometry hydrodynamics code run on the
ENIAC, and I imagine it was the first two-

dimensional hydrodynamics done anywhere. But
usually, in the 1940s and the 1950s, one worked with
a single space variable, either spherical symmetry or
the symmetry of an infinite cylinder. There are in
hydrodynamic calculations both numerical in-
stabilities and physical instabilities. Physical in-
stabilities, such as mixing and picking up waves
when one substance slides across another, are sup-
pressed by the assumption of symmetry. This led to

a very deep part of the early computing problems.
When I came to LASL in early 1951, my first

assignment was to do a yield calculation on a CPC
for a pure fission bomb. That machine was so simple
and so incapable, in modern terms, that at least on
the Model-1 CPC, it was not really possible to do
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partial differential equations at all. Simplifying
assumptions were made, essentially parameterizing
the shape of everything, so that one could solve or-
dinary differential equations. But that same year, in
the summer of 1951, my second job was to help with
a code that had been written for SEAC for a thou-
sand words of memory. It was really quite a substan-
tial calculation that directly integrated the finite
difference approximations to the partial differential
equations. So there was quite a contrast, of which I
do not remember being particularly conscious. The
focus was on the application—what approximations
were reasonable, what you needed to do, and then
you looked around to see if you could do it.

The neutron transport part of things is described
by a linear integro-differential equation in which the
rate of change of the number of neutrons at a given
place, direction, speed, and so on, depends on the
scattering of all the neutrons at that point and going
in all directions. There was quite a range of dif-
ficulty for that problem. The easiest case I can think
of was to find a steady-state solution for a system of
spherical symmetry with a homogeneous scatterer
and within the diffusion limit, which is to say short
mean free path. That really is a very simple
problem, The hardest, perhaps, would be something
where there was no spatial symmetry, where the
scatterers were in motion, where the mean free path
was long compared to the dimensions, and, as an ex-
tra difficulty, perhaps there were only a few
neutrons involved so that you had a discrete func-

tion.
A problem geared to this latter class was most dif-

ficult and was what led to what is perhaps the most,
or at least one of the most, far-reaching LASL in-
ventions, namely, the Monte Carlo method. In fact,
one of the most important early problems was that
of initiation probability—given a slightly super-
critical assembly and one neutron, what is the
probability that that neutron, before being absorbed
or escaping or having all its daughters escape, will
lead to an explosive chain reaction? You can
describe Monte Carlo easily in that tranport con-
text, which is where it is perhaps most obviously ap-
plicable, but Monte Carlo grew in conjunction with
the growth of probability theory itself. Now it is ex-
tremely widespread and used far from transport
problems where you are actually tracking things.

The first method that I used, on the CPC code for
the neutron transport problem, was called Serber-

Wilson. I assume it was invented in part by Serber
and in part by Wilson. It had a lot of hyperbolic
functions, and exponential integrals that were all
entangled with the hyperbolic functions; and one
used those marvelous WPA (Work Project Ad-
ministration) tables, which were perhaps the only
good result of the Depression of the 1930s. The CPC,
at least the Model-2 CPC, also had those functions.
It had an electronic 604, or whatever it was, that
would give you those. But the terms and expressions
containing these functions were not physical expres-
sions, and they were very difficult to scale. So when
I moved from the CPC to MANIAC I, carrying over
Serber-Wilson, I found myself building essentially
floating-point software—automatic scaling
software. It was very annoying. Luckily, this was
replaced by the family of methods Bengt Carlson
came up with in the early 1950s and which are still,
at least generically, the primary method of choice
for neutron transport. The dependent variables were

the currents themselves, the neutrons per square
centimeter per second for certain energies, and they
were easy to scale. It was a tremendous blessing for
fixed point. It also happened to be a fundamentally
superior method in the long run.

From the CPC to the IBM STRETCH computer,
there was approximately a factor of 104 increase in
speed and in memory size. The factor in run time for
a typical yield calculation was 10”. Beginning on the
CPC, at the end on STRETCH, and in fact today on
CRAY-1, the really difficult problems take about 15
hours and the easy ones take half an hour. Another
thing that has not changed, besides the run time, is
the agreement between calculation and experiment,
by an appropriate measure. At least, one can ob-
serve that tests of nuclear devices still seem to be
necessary. The answer to that paradox is, of course,
the increase in complexity of the things we are try-
ing to do. When we say 10% agreement, we do not
mean between the same measures and quantities. It
might be between some spectrum now, and it was
between some single number then.

I would like to wrap up this part on estimating
yields by particularly stressing the word estimating,

the difference that is suggested by the connotation
of estimating uersus calculating. It seems to me that
we were more conscious then that we were es-
timating something. I remember quite early think-
ing in terms of what I called the fudge function,
which was simply a function over a parameter space
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whose value is the ratio of the truth to what I
calculated. I saw my job, which was to predict the
energy release of some proposed design, as being a
problem in interpolation or extrapolation on the
fudge function. I was calculating the yield for a
given design, but that is not the number I would
predict. I would interpolate or extrapolate on all the
parameters I could think of and get the fudge func-
tion value, 1.32 or whatever, and multiply the
answer by that. The trouble, of course, is the un-
known dimensionality of the parameter space,
which is to say knowing which of the probably in-
finite number of things that were actually changed
were relevant. There were certainly times when one
thought that the phase of the moon was the relevant
parameter that would explain the mystery.

The physics that we added as time passed and as
computers grew in capability was added, in general,
where this fudge function was ill-behaved or
perhaps where we only had a single point. To say we
had only a single point is equivalent to saying that
we were starting into a new dimension, where
something was to be varied for the first time. Then
we could clearly not interpolate, nor could we ex-
trapolate. We could either assume it did not matter,
which in some cases was patently absurd, or we
would have to add to the physics. But, all the time
we were conscious of the fact that we could not add
all the physics. If we got a correct answer, it had to
imply that the errors had cancelled precisely. There
was no possibility that we would calculate all the
processes correctly. The process of adding physics
was one usually of replacing what I always dis-
tinguished as fudge ~actors (which are usually things
called the effective such and such, or the net
equivalent so and so) with the relevant equation.
For example, in the early days, we did not keep scat-
tering cross sections as a function of energy. We kept
the one number that was the cross section averaged
over the fission spectrum or whatever approximate

energy spectrum we expected.
Then, with all these fudge factors, of which we

had really quite a few, there was a process of tuning
the code to give an attractive fudge function,
ideally, one which would be unity over all the
measured points, but in any case, something that
you felt comfortable with. That was part of the job:
to tune the code. I remember that just before the 704
came we had a 701 code that was really nicely tuned.

When we moved to the 704, we threw away all those

scale factors, all those powers of 2, with great joy
because they were really hard to keep track of. Of
course, the code on the 704 did not repeat, so we
started debugging. We went on and on until we were
really sure we had checked all the logic, and then we
discovered that one of our fudge factors that we
thought was in there with a 2+2 scale factor was in
there with a 2-2. Given the pressure of time, the best
we could do was change the fudge factor by 16 and
swallow our pride. If we had put the correct fudge
factor into the 704 code, we would have loused up
our fudge function. It stayed that way, as I remem-
ber, until the test moratorium in the late 1950s.
Then we finally had time to retwiddle.

Let me now switch to just giving a list and a few
comments on some of the early MANIAC I
problems. MANIAC I was a 1024-word machine
when it was born—two instructions per word. Later
it got a drum. One of the first problems, besides the
yield calculation that was my bread and butter, was
something called Quintet, which was a five-
dimensional integral for scattering corrections in ex-
perimental physics. I remember it took approx-
imately a second to get the integrand. It seemed like
an easy problem until you really took some nominal
number of points (I think a half a dozen when we
first started) and took the fifth power; then sud-
denly it was large. That is where I learned about
Gaussian quadrature. There were, of course, no in-
dex registers then; a quintuple DO-loop involved
bringing out your instruction and adding the num-
ber or subtracting the number from your address
and storing it back. Well, that was minor as a
problem.

A more important problem was the Fermi, Pasta,
Ulam nonlinear oscillator investigation that led to
what is now still quite a live field, called soliton
theory. There was the first Monte Carlo equation of
state that was, I think invented by Marshall and
Arianna Rosenbluth (well, it is possible that Teller
made the original suggestion), where you tried to
calculate the actual equation of state of the material
by stochastic processes on sample molecules. There
was what I assume was the first stellar evolution
calculation, done by Art Carson and George
Gamow. There was, I think, the first chess; it was
not strictly chess; it was 6 by 6 chess, It was a
slightly reduced board. But it was quite important

24



as being, I think, the first or at. least a very early
class of computing that led to what is now called ar-
tificial intelligence.

There was a code worked on by Verna Gardiner
with Gamow for trying to discover the code for DNA
selection of amino acids, or whatever that is, which
of course was not successful. Other things were virial
coefficients, nuclear scattering problems, and
Schrodinger equation integrations. Intranuclear
cascades were another Monte Carlo thing; in a

heavy nucleus one actually tried to count the
production of cascades of pions within the nucleus.

I noticed when the title was mentioned, it said

“mathematics.” I really have thought physics was

what LASL was about. But if I was really supposed
to talk on math, I had better mention at least a cou-

ple of examples. There was a calculation of group
characters on MANIAC 1, done by Paul Stein and
others. There was perhaps the beginning of what a

lot of people now think of as experimental
mathematics, where you try things and explore us-
ing the computer, trying to form conjectures or get

some new insight. It was believed, as I suppose it is
by most mathematicians today, that ideas are not

worth anything until you prove something, but at

least there was an important role computers could
play at the experimental level. One that I was in-
volved with, an idea of Stan Ulam’s, was in the area
of pseudo prime numbers: integers that have not the
defining properties of prime numbers but have their
same probability distribution within the set of all
integers. It was discovered that many of the proper-
ties of primes apparently are due to their distribu-
tion only, not to their unique defining property.
There were also some cell multiplication studies;
Ulam also was involved with that.

In parallel with all these problems (probably
every one I mentioned was coded in absolute), there
was the business of subroutines and assembly
routines. I do not really know who started what, or
what credit LASL can take and get away with it, but
it was just sort of common sense. You got tired of
coding the sine function over and over again, so you
borrowed somebody ’s. I remember personally being
quite negative about subroutines. It seemed to me
outrageous to lose control of where your numbers
were in memory. That may be partly because of the
1951 SEAC experience, which was the first thing I
had todo with a really modern computer. I was han-

ded a code, all written, that required 1023 words. I
was told we were going to take this in August and
put it on the SEAC (which actually had a 1024-word
memory) and “would you please make sure that it is
correct. ” That seemed a reasonable thing at the
time. It was right there. Every bit was put down that
the machine could see. So I worked for a couple of
months and I found three coding errors. As it turned
out, those were the only three coding errors there
were. Unfortunately, I made a mistake fixing the
three errors, so there was still a coding error when we
got to Washington. Again unfortunately, I needed
two more words to fix those three errors, and that

came to 1025. Luckily that was a four-address
machine—A, OP, B, C, and GO TO D—so you
had a free branch on every instruction. You could
put everything in where you wanted except for
arrays, so I just picked a constant, decoded it, and
arranged addresses so that some instruction had the
numerical value and off we went.

Maybe that story leads naturally into the topic,

“Why Was It More Fun?” I have six things listed
here, of which the first is “Maybe it was not more
fun. ” There is selective recollection; there is the
nostalgic fallacy. It is hard to judge. When the ses-
sion started, it struck me as particularly appropriate
that they were doing that jackhammer work outside
because it was true that that was the feeling I got of
working conditions around the computer, especially
at New York University with UNIVAC I in 1953,
with the air full of dust. But it was fun, and what
could it have been? It could be that there were no
operating systems. There was more a feeling of man
against the elements; that you were searching for
the maximal exploitation of a set of hardware. It was
just you and it. Perhaps it was that we had, I think,
at least for these big problems, a deeper un-
derstanding of a simpler calculation than we have
today. Today I think we have a shallower un-
derstanding of more complex calculations. Perhaps
it was that there was no subdivision of labor. At
least if you read some of the Marxists, they will tell
you most everything is less fun now because of sub-
division of labor. People do not grasp the whole of
what they are doing. We certainly did then, because
we did everything ourselves. Perhaps it was because
there was no management or at least the manage-
ment was invisible. In those days, at least according
to my selective recollection, the scientist did
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science, instead of management. Lastly, and with respect to the hardware and with respect to the
perhaps more seriously, I will echo the point that I physics. We were so far from putting it all in. It was
think Ed Voorhees made. There was more prior so new that we were not trapped into this confusion
analysis and estimating of what you were doing, es- between estimating and calculating. We did not
pecially in the fixed-point computer era. There was think we were getting the answer to the original
more checking; and there was more skepticism, both physics problem.

I
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