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ONETRAN:

A DISCRETE ORDINATES FINITE ELEMENT CODE

FOR THE

SOLUTION OF THE ONE-DIMENSIONAL MULTIGROUP TRANSPORT EQUATION

by

T. R. Hill

ABSTRACT

1. Program Identification: ONETRAN

2. Computer for which program is designed: CDC-7600, IBM-360

3. Description of Function: ONETRAN solves the one-dimensional multigroup trans-
port equation in plane, cylindrical, spherica~and two-angle plane geometries.
Both regular and adjoint, inhomogeneous and homogeneous (keff and eigenvalue
searches) problems subject to vacuum, reflective, periodic, white, albedo or
inhomogeneous boundary flux conditions are solved. General anisotropfc scat-
tering is allowed and antsotropic Inhomogeneous sources are permitted.

4. Method of solution: The discrete ordinates approximation for the angular vari–
able is used with the diamond (central) difference approximation for the angular
extrapolation in curved geometries. A linear discontinuous finite element repre-
sentation for the angular flux in each spatial mesh cell is used. Negative
fluxes are eliminated by a local set-to-zero and correct algorithm. Standard
inner (within-group) iteration cycles are accelerated by system rebalance, coarse-
mesh rebalance, or Chebyshev acceleration. Outer iteration cycles are accelerated
by coarse-mesh rebalance.

5. Restrictions: Variable dimensioning is used so that any combination of problem
parameters leading to a container array less than NAXCOR can be accommodated.
On CDC machines MAXCOR can be about 25 000 words and peripheral storage is used
for most group-dependent data.

6. Running Time: ONETRAN is approximately twice as slow as DTF-IV per inner iter-
ation for the same space-angle mesh. However, ONETRAN has twice as many un-
knowns per spatial mesh cell and a coarser spatial mesh than DTF-IV will norm-
ally give equivalent accuracy. Furthermore, ONETRAN will usually converge to
DTF-IV equivalent accuracy in fewer total iterations.

A 6-group, 106-interval mesh, S2 keff calculation with four outer iterations
of an EBR-11 core requires 7.5 s on the CDC 7600. A 20-group, 134-interval
mesh, S4 keff cell calculation with 12 outer iterations requires 5.5 min on

the CDC 7600.

7. Unususl Features of the Program: Provision is made for creation of standard
interface output files for ~ constants, inhomogeneous sources, angle-integrated
fluxes, and angular fluxes. Standard interface input files for ~ constants,
inhomogeneous sources, cross sections, and total or angular fluxes may be read.
All binary operations are localized in subroutines RRED and RITE. Flexible
edit options, including restart capability are provided.

8. Machine Requirements: Five interface units (use of interface units is optional),
five output units, and two system input/output units are required. A large
bulk memory is desirable, but may be replaced by disk, drum, or tape storage.

9. Related Programs: ONETRAN may be used to provide initial conditions to the TIMEX
code, a time-dependent kinetics version of ONETRAN.

10. Naterial Available: Source deck, test problems, results of executed test problems,
and this report are available from the Argonne Code Center.



1, INTRODUCTION

ONETRAN is a program

one-dimensionalmultigroup

designed to solve the

transport equation in

plane, cylindrical, spherical, and two-angle plane

geometry. The program solves both regular or ad-

joint, homogeneous or Inhomogeneous, time-independ-

ent problems subject to a variety of boundary

conditions.

ONETRAN was created primarily to provide init-

ial conditions compatible with the TIMEX1 kinetics

code. In addition, ONETRAN provides a significant

advance over presently available 1-D transport codes

by Implementing the most current techniques avail-

able; namely:

● coarse-mesh rebalance
2
of both the

inner and outer iterationa, and the

● discontinuous linear finite element

ONETRAN

scheme resulting in a very accurate

and stable discretization of the

spatial variable.

is very similar to TWOTRAN-113 and TRIPLET4

in nomenclature, coding, and input specifications.

The major features of ONETRAN include:

(1)

(2)

(3)

(4)

(5)

(6)

direct or adjoint capability,

plane, cylindrical, spherical, or
two-angle plane geometry options,

arbitrary aniaotropic scattering
order,

two different seta of built-in S
Nconstants,

vacuum, reflective, periodic, white,
albedo, or inhomogeneous source
boundary conditions,

inhomogeneous source, keff, alpha or
time-absorption,concentration, and
delta or critical size calculation
optiona.

(7)

(8)

(9)

(lo)

(11)

(12)

(13)

(14)

(15)

user choice of none, whole system re-
balance, coarse-mesh rebalance, or
Chebyahev acceleration of the inner
iterations; and coarse-mesh rebalance
acceleration of the outer iterations,

optional print suppress of large input
and output arrays,

user choice of a single fission spec-
trum, zone-dependent fission spectra,
a single fission matrix, or zone-de-
pendent fission matrices,

flexible edit and restart options,

optional input of flux guess, inhomo-
geneous distributed and boundary
sources, SN constants, and cross sec-
tions from standard interface files,

5

optional output of scalar and angular
fluxes, inhomogeneous distributed and
boundary sources, and SN constants to
standard interface files,

optional FIDO format6 input of croaa
sections,

optional specification of a pointwise
density for cross-section spatial
dependence, and

a group-at-a-time storage organization
to permit execution of exceptionally
large problems.

The next section of this report containa the

theoretical development of all the methods and ap-

proximationsused in ONETRAN. Section 111 is a

user’s guide for preparation of ONETRAN input and

Sec. IV contains detailed programming information to

facilitate local modification of the code. The con-

tents of this report follow the guidelines for

documentation of digital computer programs accepted

as an American Nuclear Society standard.

.

.

.



11, THEORY

In this section the energy, angular, and spa-

tial variables of the transport equation are dis-

cretized to obtain a set of linear algebraic equa-.
tions. The exact transport equation is discussed

r
and the spherical harmonics expansion of the scat-

tering sources is performed in Sec. ll.-A.The multi-

group treatment of the energy variable and the dis-

crete ordinates approximation of the angular vari-

able are treated in Sec. 11.E. Section 11.C. is

devoted to a discussion of the discontinuous linear

finite element scheme used to discretize the spa-

tial variable. The solution algorithms used to

solve the set of algebraic equations are presented

in Sec. 11.D.

A. The Analytic Transport Equation

The time-independent inhomogeneous

equation is

v.
J

(QIJI)+U(r,ll) V(r,E,Q) = _dE’ d Q.’

1
‘G I/IdE‘

transport

or eigenvalue problem will be referred to aa a keff

problem. The ONETRAN code will solve both types of

problems.

1. Particular Forma of the Divergence Operator

The form of V . ~~ for the three geometries

treated by ONETEAN is given in Table I in terms of

the coordinate systems sketched in Figs. 1-3.

In the standard plane geometry, the angular flux

is assumed independent of the azimuthal angle ~ so

that the angular dependence can be reduced to the p

interval of (-1, +1). ONETRAN also permits the two-

angle option in plane geometry where no assumptions

of symmetry are imposed. In this case the complete

unit sphere of angular directions must be considered.

In cylindrical geometry, the angular flux is assumed

symmeti”icin the C angular cosine and symmetric a–

bout the @ = 0°-1800 plane. Thus, only one-quarter

of the unit sphere must be considered in the angular

dependence. In spherical geometry, the angular flux

Us(r,E’+E,~.~’) ~(r,E’,~’)

d~’ X(r,E’+E)

where @ is the particle flux (particle number den–

sity times their speed) defined such that ~ dE dvd~

is the flux of particles in the volume element dV

about r, in the element of solid angle dfiabout ~,

in the energy range dE about E. Similarly, Q dV dE

dfiis the number of particles in the same element

of phase space emitted by sources independent of ~.

The macroscopic total interaction cross section ia

denoted by U, the macroscopic scattering transfer

probability (from energy E’ to E through a scatter-

ing angle with cosine ~ . ~’) by us, and the macro-

Scopic fission cross section by Of. All of these

quantities may be spatially dependent. The number

of particles omitted isotropically (1/41T)per fis-

sion is V, and the fraction of these liberated in

the range dE about E from fissions in dE’ about E’

is X(r,E’+E).

. The homogeneous transport equation is written

.- in the same manner as Eq. (1) except that Q is zero

and the term representing a source of neutrons due

to fission is divided by the eigenvalue keff. In

this report the inhomogeneous problem will be re-

ferred to as a source problem and the homogeneous

VUf(r,E’) ~(r,E’,f2’)+ Q(r,E,~), (1)

TABLE I

FORMS OF V . n+—

Dependence Definition
Geometry of of Variables

Plane *(X,U) p=g . Q
x—

or
C=(l-P2)ZCOS$

$(x,!J,@) rl=(l-p2)%sin@

Cylindrical ~(r,p,rl) p=; .Q
r—

C=$z.g

rl=(l-tz)%in~

LI=(l-E2)4COS0

Spherical +(r,P)

L-Q.!

QQ?12
r2 ar

3
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Fig. 1. Coordinates in plane geometry.

A
ox

Fig. 2. Coordinates in cylindrical geometry.

ia also assumed .independentof the azimuthal angle

~ so that the angular dependence is reduced to the p

interval of (-1, +1).

2. Spherical Harmonics Expansion of the
Source Term

In the ONETRAN program, the scattering transfer

probability ia assumed to be represented by a finite

Legendre polynomial expansion of order ISCT

Fig. 3. Coordinates in spherical geometry.

If this expansion is inserted into Eq. (l), and the

addition theorem for spherical harmonics used to

expand Pn(~.~’), the scattering term may be written

after integration over the azimuthal angle for

plane and spherical geometries as

lT dE’ d~’ us(r,E’+E,&-~’) ~(r,E’,~’)

. ...

= Id”~ (2n+lb~(r,E’+E) Pn(P) On(r,E’), (3)

n=O

where the moments of the angular flux are defined

1

$n(r,E) =
J

#l’n(P) 4J(r,E,l.O.
-1

(4)

For cylindrical and two-angle plane geometries, the

scattering term becomes mare complicated since the

associated Legendre polynomial terms from the addi-

tion theorem cannot be integrated out. Dropping———
the spatial and energy variables, this term i.s

.

..

4
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where NM is the number of flux moments given by
where for two-angle plane geometry the variable ~ is

replaced by p. Using the trigonometric relation
ISCT+l for plane and spherical geometry,

NM= (ISCT+2)2/4 for cylindrical geometry, or
Cos !L(l$l-$’)= cos !?@ cos L $’ + sin !?,@sin !@’, (6)

(ISCT+1)2 for two-angle plane geometry,

Eq. (5) may be written

(7)

where the moments of the aneular flux are defined
and Rn(~) is a spherical harmonic appropriate to

(8)
that geometry and @n the corresponding angular flux

moment. For cylindrical and two-angle plane geom-

etry, the two-dimensional arrays of spherical

Y(C’,4’)14T, (9)

and where either the sin or cos of Eq. (9) is chosen harmonic moments are stored as one-dimensional ar-

depending on its coefficient (sin or COS) in Eq. (7). rays, indexed in the order shown in Tables III and

A tabular array of the Pn(t) Legendre functions

is ahown in Table II. In cylindrical geometry, the

angular flux ia assumed symmetric in ~ so that the

odd flux moments (n – ! odd) vanish. Likewise, the

angular flux is assumed symmetric in @ so that the

sine moments of the flux vanish. Thus, in cylindri-

cal geometry, only the moments indicated in Table

111 are required. In the two-angle plane geometry,

no assumptions of symmetry are made on the angular

flux. Thus the complete array of spherical harmon-

ics, as indicated in Table IV, is required.

In all cases, the scattering term may be writ-

ten in the general form

m NM

S.T. =
/x

dE‘ (2n-1) c?(r,E’+E) Rn(~) @n(r,E’),

o n.1

Iv.

In a similar fashion, the inhomogeneous source

term of Eq. (1) is expanded in spherical harmonics

NMQ

Inhomogeneous Source =
z

(2n-1) Rn(~) Q#r,E),

n=l
(11)

where the number of

the order of source

I
IQAN+l

NMQ = (IQAN+2)214

(IQAN+1)2

source moments NMQ is related to

anisotropy IQAN by

for plane and spherical
geometry

for cylindrical geometry, or

for two-angle plane geometry,

and~(r,E) isthecorresponding source moment.

(lo)

5
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TABLE 11

TABULAR ARRAY OF SPHERICAL HARMONICS: Pg
n

!z—

Po ----

PI P; - - -
n

I
P2~P; --

P3 P; P; P; -

P4 P; P: P; P:

SPHERICAL HARNONICS

TABLE III

STORAGE: CYLINDRICAL GEONETRY

9. Pf .0s 44

TABLE IV

SPHERICAL HARMONICS STORAGE: TWO-ANGLE PLANE GEOMETRY

B. Energy and Angular Approximations

In this section the multigroup approximation of

the energy variable and the discrete ordinates ap-

proximation of the angular variable are given.

1. Multigroup Equations

The energy domain of interest in assumed to be

partlclonea Into ltic3Intervals or wlam ffig,g = L,

2, .... IGM. By convention, increasing g represents

decreasing energy. If we integrate Eq. (1) over &g -

after making the spherical harmonic expansion of .

Eqs. (10) and (11), we can write

\
v. (fJ+g) +Ug $g(r,Q)

IGM NM

.

Xq
(2n-1) U~,h+g Rn(~) @nh(r)

h=l n=

+E O (r)‘Ufh ‘h+g lh
h=l

$
m

+ (2n-1) Rn(~) ~g(r),

n= g.

Here, the flux for group g,

(12)

1,2,....1GM.

(13)

is no longer a distribution in energy, but is the

total number of particles in the energy interval.

For this reason, when group structures are changed,

the effect on the angular flux or its moments must

be evaluated by compsring ag/AEg. Because of Eq.

(13), energy integrals in ONETRAN are evaluated by

simple sums.

The cross sections subscripted with g are

averages, e.g.,

(14)

but, of course, @ is not known and must be approxi-

mated by some means. If in Eq. (14) the angular de-

pendence of ~ is nonseparable, then u will depend
g

on angle. No provision for such dependence is made

in ONETRAN. Recipes for taking this dependence in-

to account, as well as for improving the averages
n

when scattering is severely anisotropic, are‘~h+g
8

given by Bell, Hansen, and Sandmeier.

I
6

I
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2. Discrete Ordinates Equations

The three terms on the right-hand side of Eq.

(12) represent sources of neutrons due to scattering,

fission, and inhomogeneous sources, respectively.

All coupling between the IGM multigroup equations is

contained in these terms. To simplify notation for

the following analysis, we write all three sources

simply as Sg, which we will treat as a known quanti-

ty. Of course, Sg depends on the unknown flux ~g,

but we will generate SE iteratively using the latest

values of Q .
g

es in ONETRAN,

subscript, Eq.

v. (g +)

For det~ils of the iterative process-

see Sec. 11.D.5. Omitting the group

(12) is written

+ U ~(r,$l)= S(r,~). (15)

The discrete ordinates equation may be derived

by directly differencing the angular variable in Eq.

(15). The resulting equation in cylindrical and

spherical geometries will conserve neutrons only in

the limit of small angular intervals and may result

in complex and unrealistic coupling of the angular
9

variable. The customary procedure is to difference

both the angular and spatial variables simultaneous-

ly, but due to the finite element approach used on

the spatial variable this will not be done. Instead

a heuristic derivation of the discrete ordinates e-

quation for each of the three geometries will be

given.

a. Plane Geometry

From Table I, it is observed that no angu-

lar derivative appears in the divergence operator so

that no angular coupling is present. For the stand-

ard plane geometry, the angular interval of us(-1,

-1) is diacretized into a set of MM quadrature points

Pm and associated quadrature weights Wn ordered, as

shown in Fig. 4. The quadrature weights are normal-

MY
ized so that

&
w = 1,
m

m=

analogous to dV/2 in Eq. (4). The (angular)

cell–centered angular flux is then assumed to be

given by

urn(r)SV(r, Mm) (16)

and the angular flux moments of Eq. (4) are approx-

imated by

*

On(r) =*1 WmPn(Pm) *m(r). (17

For the two-angle plane geometry option, the

angular domain of the complete unit sphere is again

discretized into a set of MM quadrature points (pm,

@m) and associated quadrature weights wm. The norm-

MY
alization is again

z
w = 1,
mm.

analogous to d~/4n in Eqs. (8) and (9). The

ordering of these quadrature points Is illustrated

in Fig. 6 for an S4 quadrature. The built-in quad-

rature set of ONETRAN actually chooses pm and Cm as

either the Gauss-Legendre or

Legendre quadrature points.

lar flux is again assumed to

and the angular flux

are approximated by

moments

the double Gauss-

The cell-centered angu-

be given by

Pn(um) $m(r)

(18)

of Eqs. (8) and (9)

(19)

and

For both of the plane

ordinates approximation of

Eq. (15) is

(20)

geometries, the discrete

the multigroup transport

2$ -
lJm+ + u +m(x) = Sin(x), (21)

where S-(x) is the (known) source evaluated at the
mth ‘“

angular quadrature point.

b. Cylindrical Geometry

From Table I, the multigroup transport

Eq. (15) may be written in cylindrical geometry as

#z#!u?& +ro$(r, Q)=r S(r,fJ). (22)

The angular domain of one quadrant of the unit

sphere is discretized into a set of MM quadrature

points (pm, ~) and associated quadrature weights

&
,.,..

w normalized so that
m’

w= 1. The ordering of
m.

these quadrature points is illustrated In Fig. 5 for

7
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Fig. 4. Ordering of S6 directions in plane and
spherical geometries. The starting direc-
tion only applies to spherical geometry.

Fig. 5. Ordering of S< directions in cylindrical
geometry. “

[

v

P

z

Y

x As

-//

w
Fig. 6. Ordering of S4 directions in two-angle

geometry. The ordinates in the 8th octant
plane

an ‘fjquadrature. The (angular) cell-centered angu-

lar flux ia assumed to be given by

Vm(r) = V(r, urn,~) (23) ‘

and the angular flux moments are approximated by t

Eqs. (19) and (20). In addition we have the (angu-

lar) cell edge fluxes on the same ~ level denoted

by Vm_%(r) and Vfi(r). We then write the discrete

ordimtes approximation to Eq. (22) as

(24)+ r 6 $m(r) = r Sin(r). (

Consider now the case of divergencelesa flow in

which ~ = S/~ = constant. Since rl= flsin~

and v = ~ - ~z COS$, then 3rl/3+= p and it ia eaaily

shown that the angular coupling coefficients a must

satisfy the recursion relation

‘m+%-am-&=-wm ‘m’
(25)

with the requirement from neutron conservation that

the first (~) and last (al%) coefficients on a <

level must vanish. It can be shown
10

that Eq. (24)

becomes identical to Eq. (22) in the limit of vanish-

ingly small angular intervals.

c. Spherical Geometry

From Table I, the multigroup tranaport Eq.

(15) is written in spherical geometry as

U * + r 3[(~~B2)v1 + r2 U ~(r,p) = r2 S(r,U).

The angular

a set of MM

(26)

domain of UE(-1,+1) is discretized into

quadrature points pm and associated

Mu

Lquadrature weights Wm, normalized so that Wm = 1.
.

The ordering of these quadrature points is illustrat-

ed in Fig. 4 for an ‘6 quadrature. The (angular)

cell-centered angular flux Is aesumed to be given by

and

The

Win(r)~$(r, pm) (27)

the angular flux moments approximated by Eq. (17).

(angular) cell edge fluxes are denoted by$m_%(r)

..

are not shown.

8



r

..

and V+(.) . We write the discrete ordinates approx-

imation to Eq. (26) as

a(r2@m)

[

+ ‘m+% 8m.%
Pm ar 1yVti+(r) -~+m.%(.) r

m m

+ r2 u ~m(r) = r2 Sin(r). (28)

Considering the case of divergenceless flow, then

the angular coefficients 8 must satisfy the recur-

sion

8*4

with

relation

- $m-g=-2W m

the requirement

IJm,

m=l, ....MM. (29)

from neutron conservation that

the first (6%) and last (~W+) coefficients must

vanish. Aga~n it can be show~lo that Eq. (28) be-

comes identical to Eq. (26) in the limit of vanish-

ingly small angular intervals.

d. Diamond Difference Assumption and
Starting Directions

For the curved geometries discrete ordin-

ates transport equation, Eqs. (24) and (28), there

are three unknown functions: the (angular) mesh cell

‘dge ‘luxes’ $m++
(r) and ~m_+(r), and the cell-

centered angular flux, ~m(r). The $m=%(r) edge flux

will be assumed known from the previous angular mesh

cell computation and imposing continuity at the

(angular) mesh cell boundaries. The standard dia-
11

mend difference assumption (in angle only) is made

to relate the edge and cell-centered fluxes, viz.,

$m(r) =+ [Vm_%(.) +$W+(.)l. (30)

Thus in each (angular) mesh cell, we need only solve

the transport equation for one function, ~m(r).

To initiate the computation in the first angular

mesh cell, ONETRAN uses special zero-weighted direc-

tions to calculate ~%(r). For spherical geometry,

this special direction is the straight-inward direc-

tion p = -1, as illustrated in Fig. 4. For cylin-

drical geometry, these special directions correspond

to ordinatea directed towards the cylindrical axis,

n = O, 0 = 180°, as illustrated in Fig. 5.

The starting direction calculations are treated

separately from the calculations for the other direc-

tions and are discussed further in the following

section.

c. Discretization of the Spatial Variable

The approximations that have been made thus far

are independent of the treatment of the spatial var-

iable and are identical to those used in other one-

dimensioml discrete ordinate transport codes.
6,12

In this section, we will depart from the traditional

usage of the diamond difference scheme and develop a

linear discontinuous finite element scheme for the

spatial discretization. Use of the discontinuous

scheme is based on the favorable experience of such a

method in the two-dimensional, triangular mesh

transport code TRIPLET.
4

These discontinuous methods

are found to result in a very accurate and stable

difference scheme (especially for optically thick

mesh cells) that interacts well with the rebalance

acceleration (see Sec. 11.D.5.) algorithm.

Difference schemes for the transport equation

fall into two broad categories: implicit and explicit

methods. In an implicit method no attempt is made

to solve in the direction in which neutrons are

streaming. Instead, variational or weighted resi-

dual methods are used to determine a set of linear

algebraic equations for all the unknowns. This set

of equations is then solved, often by direct methods,

to obtain the final solution. An implicit method

couples all or some adjacent mesh cell with no re-

gard for the direction of neutron travel. An ex-

plicit method, on the other hand, sweeps once through

the mesh, solving for the unknowns in the direction

in which neutrons are streaming. This is also equiv-

alent to solving a set of linear algebraic equations,

but here the matrix to be inverted is triangular.

An explicit method couples only the mesh cells visi-

ble when looking backward along the direction in

which neutrons are traveling. The finite element

method developed below, like the diamond difference

scheme, is explicit in nature.

Finite element methods for solving differential

equations like Eqs. (21), (24), and (28) usually in-

volve the assumption that the unknown function ~m(r)

can be approximated by some member of a finite-

dimensional set of functions. This set of functions

is often referred to as the trial space. A particu-

lar member of this function space is selected by

some procedure like minimizing a functional or re-

quiring the residual to be orthogonal to a set of

weighting functions. The selected member is the de-

sired approximate

equation.

solution to the differential

9



The finite element method used in ONETRAN is de-

rived using a weight and integrate technique. The

trial space consists of functions that are piecewise

linear and discontinuous across mesh cell boundar-

ies. More precisely, if vi(r) is our approximation

of the exact solution to the discrete ordinates equ-

ation in mesh cell i (dropping the discrete ordinate

index m), then we assume a linear Lagrangian repre-

sentation of the form

Vi(r) = * [(ri+% - r) *i-% + (r - ri_%) $f~l, (31)
i

where Arf = r
i+% - ‘i-k and Vi_%, 41iq5are the un-

known discrete ordinates angular flux on the mesh

cell left and right boundaries, respectively. To

complete the specification of the trial space, we

must assign a unique value to the approximate flux

on the mesh cell boundaries. It is essential to the

following analysia that the flux on the mesh cell

boundary is the limit of the flux as one approaches

the boundary in the d%rection in which neutrons are

streaming. This is illustrated in Fig. 7 for the

two possible cases, u > 0 and p < 0.

For the angular mesh cell, we impose continuity

on the mesh cell edges and assume the diamond dif-

ference relation, so that the (angle) extrapolated

angular flux is

ri+

Fig. 7.

\

\p<o

(32)

Linear discontinuous representation of the
angular flux in the ith mesh cell. The ●

indicates the actual value of the angular
flux on the mesh cell boundary. The angu-
lar flux from the previous mesh-cell bound-
ary is denoted @b.

The arrangement of the angular flux node points in

a single space-angle mesh cell is illustrated in

Fig. 8.

With the above assumptions inserted therein,

the discrete ordinates equations Eqs. (21), (24),

and (28) in the (i,m)th mesh cell become respectively,

P
AA [(ri++- r) Vi_%+ (r - rf-~) vi++]Ari dr

+< [@iiJ5-
r) Vi-% + (r - ri-~) ~i+!i1

X* [(riM- r) s~_%+ (r- ri-%) si~l, (Ssa)
i

urn

q% [r(ri++
- r) Vi_% + r(r - ri-%) ~i~al

am# -q ~l_+$m_+++ [*i* + ‘i-* m-
m m

+< [r(ri+%
+r(r-r

- ‘) @i-% ~-k) $f#J

Z+ [r(riw- r) si_%+r(r - r~-k) si+%l (aab)
i

and

Pm
~+ [r2(riW - r) $~-%+r2(r -r~-%) $~+~1

i

+ am+%
a

w— [*ig, +* L_4-Qm_+12r -~$m-~2r
m

$rn.llz

-1/2 ‘4+,/2

2 #m+,,z rl+llz

Fig. 8. Angular flux nodal valuea for the i,m
(space, angle) mesh cell.

10



I

. .

2
L [r2(ri+%- r) Si_%+ r (r - ri_%) SiM],

: Ar
i

for rs(ri_%, r
i+%)‘

(33C)

where the sources on the right-hand aide have also

been approximated by a linear Lagrangian represent-

ation analogous to Eq. (31). In the spherical geom-

etry Eq. (33c), the relation

Here, a = am-k
+ati, ~b is the angular flux on

(36)

(34)

for m = starting direction. Since am_% = O, so that

and

r

the boundary of the previous mesh cell as indicated

in Fig. 7, and the remaining symbols are defined in

Table V.

For the starting direction sweepa in cylindri-

cal and spherical geometry there is no angular re-

distribution so that

has been used, where the new curvature coefficients

a satisfy the recursion relation of Eq. (25).

Since Eq. (33) cannot be satisfied identically

for all rc(ri% , ri~+) we require the residual to be

orthogonal to certain weight functions. Specifical-

ly, we operate on Eq. (33) with ~ri++ dr and
r.
1-%

‘ri*(r - ri_%) dr for the rightward-directed
r<_L. -z r.

1++ ‘ii-%
sweeps (~ > O), and ~ dr and ~ (ri%- r)dr

‘i-% ri-%

for the leftward-directed sweeps (p < O). This re-

sults in the following system of equations for the

mesh cell edge fluxes:

am+%—-o=-p
w m
m

for m = starting direction from Eq. (25), then

(37)

(38)

for m = starting direction.

The relationship of Eq. (38) replaces the cur-

vature terms inEq. (33). We again operate with

jriw~dr and ~ri+(ri#+
- r)dr. This results in

r.
1-+ ‘i-%

AA.
am.%—+UV am++

lW i-% PAi%+ AAi Wm—+OV.
m ~+%

a
m+%

—+CZllz3+ r.5 w
am.%
—+ciz2

1 VZ4 + 25 w
m m

%
@i-++ AAi w

“m-%
~“ ‘i-+

AA—
i Wm + u‘ii-%

m

alrd%—+026lJz8+ Zlo w
am+%—+OZ7PZ9 + Zlo w

m m

1.
,

p>o, (35a)

(35b)

11



Qw!xuY
Ar

A

‘+

AA

v.

v+

‘1

‘2

‘3

‘4

‘5

‘6

‘7

‘8

‘9

‘lo

Plane
Geometry

‘+ - ‘-

1

1

0

~r

~r

10Ar

20Ar

-30

+30

0

20Ar

10Ar

-30

+30

0

TABLE V

TAELE OF GEOMETRIC FUNCTIONS

Notation:
‘+ “ ‘i+%’ ‘- = ‘i-~

The i subscript is omitted from all quantities

Cylindrical Spherical
Geometry Geometry

‘+ - ‘- ‘+ - ‘-

21rr 41rr2

21ir+ 4Tr+2

A+-A A+-A

~Ar(r++ 2r_) ~ Ar(r+2 + 2r+r_ + 3r 2,

~Ar(2r+ + r_) ~ Ar(3r+2 + 2r+r_ + r-2)

5(r++ r_)Ar (3r+2 + 4r+r_ + 3r 2)Ar

5(3r+ + r_)Ar (12r+2 + 6r+r- + 2r_2)Ar

-lO(r+ + 2r_) -5(r+2 + 2r+r_ + 3r_2)

10(4r+ - r_) 5(9r+2 - 2r+r_ - r_2,

30Ar 20(2r++ r-)Ar

5(r+ + 3r_)Ar (2r+2 -+ 6r+r + 12r-2)Ar

5(r+ +r_)Ar (3r+2 - _+ 4r+r + 3r 2)Ar

10(r+ - 4r_) 5(r+2 +2rr
i--

- 9r_2)

10(2r++ r_) 5(3r+2 -+ 2r+r + r_2,

30Ar 20(r+ + 2r_)Ar

the following system of equations for the mesh cell

edge fluxes:

[

- &Ai-% + Ai%) + ‘Jvi-~ -@i
+ u ‘i+%

II

+~-+

~(z8 ‘~z~o) +crz6 1
1.1(z9-–z2 ~o)+az7 +i*

1
‘i-% ‘i-+ + ‘i+ ‘i~ - p ‘i++ ‘b

. 1
1 (

, for (35C) :

P = starting directions. It should be noted that equations are obtained. For curved geometries,

by imposing continuity on the mesh cell boundary for these are a weighted diamond difference slightly

the second equation in Eq. (35) (vi-% =+bfOrp>O difEerent from that of Reed and Lathrop.13

and ~iw = ~b for p < 0, the diamond dffferen~e

12



For the diamond difference case in a source-

free plane geometry mesh cell (S = O), the solution

of Eq. (35a) is eaaily ahown to be ~i~ = - ~b as

the optical thickness of a mesh cell becomes in-

finitely large (uAr/p + m). Thus, negative fluxes

are a problem for such mesh cells. For the discon-

tinuous case, it is easily shown the +f-% = ~iti + O

for mesh cells with an infinite optical thickness.

Negative fluxes may still appear for the discontinu-

ous caae, but the worst possible situation occurs

for uAr/p = 8.196 at which ~i_% = + 0.366 ~b and

$i+!+
= - 0.0981 ~b. Thus, negative fluxes are much

less in magnitude with the discontinuous scheme than

for the diamond difference solution.

There are two important disadvantages to the

linear discontinuous finite element scheme: computa-

tional times and core storage requirements. Although

an explicit solution of Eq. (35) may be expressed,

it ia much more complicated than the corresponding

diamond difference solution, requiring approximately

twice as many operations(other than divides). Thus

the computation costs will be greater than for other

transport codes based on the diamond difference.

Since the mesh cell edge values for the fluxes and

sources are required (as compared to only the cell-

centered quantities for a diamond difference code),

the core storage for these quantities are doubled.

In addition, all the finite element arrays for quan-

tities in Table V must be stored on the fine mesh.

It is possible that a choice of different weight

functions in the derivation of Eq. (35) could result

in a system both simpler to solve and requiring less

core storage, but this has not been investigated.

On the other hand, it is found that a coarser

spatial mesh is usually sufficient to give an accu-

racy equivalent to that obtained by a diamond differ-

ence solution.

D. Solution Algorithms

The basic algebraic equation that is actually

, solved by ONETRAN is Eq. (35) for each space-angle

mesh cell. In this section we detail the algorithms

used to implement the solution of Eq. (35) in the

ONETRAN code.

1. Boundary Conditions

Information about the right and left boundary

flux values may be specified by the ONETRAN user des-

ignating one of the following boundary conditions:

●

●

●

●

●

●

Vacuum boundary condition -- the angular flux

on the boundary is set to zero for all incom-

ing directions: @
incoming = 0“

Reflective boundary condition -- the incoming

angular flux on the boundary is set equal to

the outgoing angular flux on that boundary in

the direction corresponding to specular reflec-

tion: 4incoming = ‘outgoing(-pm)“

Periodic boundary condition –- the incoming

angular flux on the boundary is set equal to

the outgoing angular flux in the same direction

on the opposite boundary:

vincoming(r = ‘left’Um) = ‘outgoing(r = ‘right’pm)

and

@incoming(r = ‘right’Um) = ‘outgoing(r = ‘left’pm)“

White boundary condition -- the incoming angu-

lar flux on the boundary is set equal to a

single value such that the net flow through

the boundary is zero, viz.,

where the sums range over all outgoing direc-

tions. This condition is used primarily for

cell calculations in cylindrical and spherical

geometry where it is applied to the outer radial

boundary.

Albedo boundary

lar flux on the

supplied albedo

condition -- the incoming angu-

boundary.is set equal a user-

times the outgoing angular flux

on that boundary in the direction corresponding

to specular reflection:

@incoming = avoutgoing(- ‘m)”

The albedo factor a is an energy group-depend-

ent quantity. The reflective boundary condi-

tion corresponds to a = 1.

Inhomogeneous source boundary condition -- the

incoming angular flux on the boundary is set

13



equal to a user-supplied source:

@incoming%) “ %“

The inhomogeneous boundary source is both group-

and angle-dependent.
b

Use of the reflective or alhedo boundary condi-

tion requires the SN quadrature ordinates to be sym-

metric about p = O.

At the atart of each sweep of the spatial mesh

(for a given discrete ordinate direction), the sub-

routine SETBC is called which returns the value of

the boundary angular flux for that direction, namely

~b. l%is is the boundary flux, ~, of the adjacent

mesh cell as used in Eq. (35). Thus the equalities

indicated above for the boundary conditions will not

actually be true due to the discontinuity of the

angular flux at the mesh cell boundary. Furthermore,

for the reflecting boundary condition at the origin

in cylindrical or spherical geometry, this reflect-

ing boundary makes no contribution to the source

‘em ‘n ‘q” ’35) ‘ince Ai-% = 0“
2. Sweep of the Space-Angle Mesh

The unknown angular fluxes are ordered so that

the difference scheme is stable and so that the co-

efficient matrix is lower triangular. Physically,

this corresponds to proceeding in the direction of

particle flow.

The angular mesh is swept in the same sequence

in which the quadrature directions are ordered as

indicated in Figs. 4, 5, and 6. For a particular

quadrature direction, the spatial mesh is then awept

either from left to right (p > O) or from right to

left (~ < O). For curved geometries, there are NLEV

starting directions (ISN/2 for cylindrical, 1 for

spherical). The angular flux, Qm_%, is generated

on the fine mesh for all NLEV starting directions

(stored in the array AFE). The angular mesh is then

swept for all inward directions (U < O). For each

direction, the spatial mesh is swept from right to

left, generating the mesh cell edge fluxes ~i_4,

vi+% (stored in the array AFC). In each spatial

mesh cell, the angular extrapolation is made by Eq.

(32) (overstored in array AFE). The angular mesh is

then swept for all outward directions (U > O), with

the spatial mesh nnw swept from left to right. This

sweeping of the space-angle mesh is performed in sub-

routine INNER.

14

3. Negative Flux Fixup

As briefly mentioned in Sec. 11.C., it is pos-

sible for the mesh cell edge angular fluxes in Eq.

(35) to be negative, primarily in optically-thick

mesh cells with no sources present. In such cases

the offending angular fluxes are usually small in

magnitude, are rapidly damped in space, and have

little effect on integral quantities. Nonetheless,

many transport code users become alarmed by

the presence of these negative fluxes. Consequently,

a negative flux fixup has been incorporated into

ONETRAN, which results in an increase in computation

time of (at least) approximately 3%. This is the

cost of the test for negative fluxes only, and does

not include the expense of computing the fixed-up

flux.

The flux fixup algorithm proceeds as follows:

(for rightward sweeps):

(a) After the mesh cell edge fluxes are com-

puted, the far or extrapolated angular flux, ~iw,

is checked for positivity. (The near angular flux,

~i-%, will always be positive for positive sources.)

If it is positive, the computation proceeds normally.

If the total source in the mesh cell is negative, the

flux fixup is bypassed.

(b) If ~i+% is negative, the second equation

of Eq. (35) is replaced with the requirement that

this flux vanish,
‘iiJ*

= O, and the first (conserva-

tion) equation of Eq. (35) is solved for the near

an@lar‘lUX’‘J’i-+”
If the computation time for a problem is signif-

icant and negative fluxes are not a serious problem,

the negative flux fixup algorithm (in subroutine

INNER) may easily be deleted.

It is also possible to generate negative fluxes

with the angular diamond difference extrapolation of

Eq. (32). This is not normally encountered and a

fixup test and correction is not made.

4. Adjoint Problems

The ONETRAN program solves the adjoint transport

equation by transposing the scattering and fission

matrices and inverting the group order of the problem.
c

Tranposltion of the scattering matrix converts the

normal, predominately downscattering problem to an -.

upscattering problem while the group order inversion

restores this downscattering dominance and eliminates

unnecessary upscattering iteration. The solution of

the resulting problem in the direction g ia then

I



identified with the adjoint solution in the direction

-g.
14

5. Iterative Processes

We assumed in writing Eq. (15) that the source

S(r,~) is a known function. It is clear that if

scattering or fission is present, this source func–

tion is not knownbut depends upon the moments of the

angular fluxes being computed. In ONETRAN this

source is generated in an iterative fashion using

the latest flux information available. For the ini-

tial iteration a flux guess must be supplied as in-

put that permits the generation of the source func-

tion. Sources in ONETRAN are approximated,like the

angular flux, by the linear discontinuofisLagrangian

representation of the form of Eq. (31). This re-

quires the sources, Si_% and Si+%, to be computed at

the mesh cell edges.

In the following analysis we develop the itera-

tive strategies used in ONETRAN for solving the dis-

crete transport equation by writing these strategies

for the analytic multigroup equations. We believe

that details of the iteration process are clearer

when presented in this manner, but the reader must

keep in mind that all implied operations are actual-

ly performed in the discrete domain by methods de-

scribed earlier in this report.

The multigroup transport equations can be writ-

ten in operator notation as

(39)

where the matrix operators, L, X, Ss, Sd, Su, and F

represent streaming, collision, in-group or self-

scattering, downscattering, upscattering, and fis-
th

sion processes, respectively in the g energy

group. The form of the operators appearing in Eq.

(39) can be inferred by comparing that equation with

Eq.

egy

The

and

(12).

ONETRAN uses the standard dual iteration strat-

for solving the discrete analog of Eq. (39).

two nested iterations are referred to as outer

inner iterations. The outer iteration represents

a aweep through all the groups, while the inner it-
.. eration is performed within each energy group. Let

+k
us assume that the angular flux ~ is available

from a previous outer iteration or from the input

flux guess, if k = O. The outer iteration then takes

the form

L tk+l+~tk+l= (ss + Sd)p+l + (Su + F)~k+ &

(40)

Note that upscatter and fission sources are computed

from the old flux ~k (in subroutine SOURCE) but that

self-scatter and downscatter sources are computed

using the new flux
~k+l.

We can solve Eq. (4o)for this new flux in the

following manner. We first note that the matrix Sd

is lower triangular, so that if the groups are

solved in order beginning with the first group this

term causes us no difficulty. That is, the down-

scatter source into group g involves only the new

flux in groups g’ such that g’ < g. An effective

-k th
source Q to the g

g
group can then be computed as

-k
Qg = (Sd~k+l)g+ (Sulk)g+ (F~k)g+ (~)g, (41)

th
where the notation ( ) signifies the g

g
component

of the vector in parentheses. Having calculated

T;, we must solve the following equation for the new

flux +
k+l

in the g
th

g
group

(42)

The operators Lg, Ig, and S
th

represent the g
S!3

component of the diagonal matrix operators, L, E,

and S The above equation cannot be solved easily
s.

because of the presence of the self–scatter term,

which couples all directions. The methods developed

in Sec. 11.B. and Sec. 11.C. are capable of solving

the discrete form of Eq. (42) if scattering sources

are assumed known. Thus a second iteration, the

inner iteration, is suggested. In ONETEAN, this

iteration takes the form

where L is the inner iteration index. The discrete

form of the operator Lg + Zg can be inverted easily

by a sweep through the space-angle mesh as described

in Sec. 11.D.2.

The inner and outer iterations have been de-

scribed above for an inhomogeneous source problem.

The inner iteration remains unchanged for a keff

problem, but the outer iteration is altered slightly.
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In place of Eq. (40) we have

L~k+l + ~ tk+l= (s. + Sd)ll’+l+ (Su +-y

In the above equation we have divided the fission

source by the parameter Kk. This parameter is

computed as

.k . * k_,,

with K = 1 and <.> representing ano
group, angle, and space variables.

Kk approach keff for the system:

integration over

The parameters

% +k eff as k + c-.

6. Convergence Acceleration Methods

In most problems the inner and outer iterationa

described above converge rapidly. There exist prob-

lems (primarily optically-thick regions with a scat-

tering ratio near unity), hcwever, for which these

algorithms require excessive iterations for converg-

ence to a satisfactory precision. The ONETRAN user

is provided a choice of three methods for accelera-

tion

●

●

●

Each

of the inner iterations:

whole-system rebalance,

coarse-mesh rebalance, or

Chebyshev acceleration.

outer iteration is accelerated by coarse-mesh

rebalance. The details of these techniques are de-

scribed below. The recommended option for acceler-

ation of the inner iterations is coarae-mesh rebal-

ance. There are some problems in which coarse-mesh

rebalance has a destabilizing effect on the inner

iterations.
2

Experience with the TRIPLET code in–

dicates this to be much less likely with a discon-

tinuous spatial difference scheme than with the con-

tinuous diamond difference scheme. Should the

coarse-mesh rebalance cause the inner iterations to

diverge, or have minimal effect on the convergence

of the inner iterations, then the Chebyshev accel-

eration is the recommended alternative. In the un–

likely event that the inner iterations diverge with

either Chebyshev or whole-system rebalance, the ac-

celeration of the inners may be bypaased completely

by appropriate choice of the input parameter IACC.

a. Rebalance Inner Iteration Acceleration

If the conservation equation, the first

equation of Eq. (35), is multiplied by Wm and summed -
th

over all MM directions for the i mesh cell, the

resulting equation (suppressing the m subscript on

the angular fluxes)

x
pm<o

+

+

+

is a

~(vi-+‘$’i-++ “i-l-%‘$ii-11)

(Si+ “i+ + ‘ii-%‘i-d

s,g+g ‘vi-~+l-++vf-l+o~++)
0° (43)

statement of particle balance. Here we denote

@bLand @br as themth angular flux on the boundary

of the left and right mesh cells, respectively, and

~ti~ as the mesh cell edge scalar fluxes, viz.,

MM

m=1

In Eq. (43) the self-scatter term has been separated

‘Ut ‘f ‘he ‘ources si*+
to indicate that this scat-

tering source depends upon the flux from the pre-

vious iteration as denoted by the p superscript.

All anisotropic sources (scatteringor otherwise)

vanish under the m summation due to orthogonality

of the spherical harmonic functions, provided the

quadrature set correctly integrates these functions.

If the quadrature aet does not correctly integrate

these higher spherical harmonic polynomials, the

numerical quadrature error term will appear as a

nonphysical contribution to the source term in the

balance equation, Eq. (43). If this quadrature

error is greater than the input precision specified

for problem convergence, then convergence to this

precision will be unattainable.

The particle balance in Eq. (43) is satisfied ..

only when ~ = @p (i.e., the converged solution).

It has long been realized
15

that enforcing particle

balance accelerates the iterative convergence. The

object of the rebalance technique is to find a factor

16



by which all fluxes in a zone may be multiplied to

ensure that leakage plus absorption equals sources

in that zone. Usually, application of the factor

quickly brings all flux amplitudes within the zone

close to their final amplitude, and subsequent iter-

ations merely refine the flux shapes in the zone.

To describe the terms entering the rebalance

equation, we assume a coarse mesh superposed upon

the fine mesh. In ONETRAN, the coarse mesh is taken

to be the material mesh, and no special coarse mesh
th

is used for the rebalance. For the k coarse-mesh

zone we compute the leftward and rightward flows,

the zone effective

‘mlumb$+‘+k-+s (45)

‘m ‘m ‘i+ ‘k#+’
(46)

absorption,

MM

‘k =E(Ut-#g+g)z‘vi.+*i-3,j+vi+?f‘i+!.j)wm>
ick m=l

(47)

and the isotropic component of the zone source,

!fM

QQk=Zz (vi_+ ‘~_++ ‘i+-l+‘i-@+hm (48)

ick m=l

where S~+ is the nonself-scatter portion of S used

in Eq. (43), i.e., the portion that does not change

during the inner iteration. If boundary flux sources

occur, they are placed in QQk in the zones adjacent

to the boundary.

If all fluxes are now multiplied by the appro-

priate rebalance factor, fk, we obtain the rebalance

equation,

‘k (FLk_k + ‘%ct%+“k) =QQk+ ‘k-l ~-++ ‘k+l

, by equating losses in the coarse-mesh zone (outflows

plus absorption) to the sources (true source plus

.. inflows from adjoining zones). This equation repre-

sents a tridiagonal system of equations for the re-

balance factors, fk, which may be solved directly by

forward elimination-backwardsubstitution. If the

outer boundary condition is a vacuum condition, then

the corresponding Incoming flow is zero. For reflec- . _

ting and white boundary conditions, we set the fac-

tor outside the boundary equal the factor just in-

side the boundary. For example, suppose the right

boundary is reflecting. Then, at the boundary we

‘et ‘k+l
= fk so that

fk(FLk_%+ ~%- FLk*+ ABk)

‘ QQk+ fk_l ~ k-+- (50)

The term ~~- FLk&isthe net flow through

the boundary and should vanish when the reflecting

condition is satisfied. Such conditions are iden-

tically satisfied at the nonimplicit left boundary.

With a periodic boundary condition, the outgoing

flux on the left, say, is used as the incoming flux

on the right. Thus we set f. of Eq. (49) tO f~.

This results in a nontridiagoml system and an

iterative solution for the rebalance factors is now

required.

The above discussion described coarae~esh re-

balance acceleration. The ONETRAN user also has

the option of using whole-system rebalance in which

the entfr= system is assumed to be a single coarse-

mesh zone. This single rebalance factor is easily

seen to be the ratio of the total source to the net

leakage plus the absorption.

b. Chebyshev Inner Iteration Acceleration

The ONETRAN user is also provided the al-

ternative of using a modified form of Chebyshev ac-
celeration16

on the inner iterations. We can write

the inner iteration of Eq. (43) in the form

(51)

where k is the fnner iteration index and B =

(L + Z)-%s is the iteration matrix. The spectral

radius of the fteration matrix, p(B), is estimated

by

(52)
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where the Euclidean norm of the

culated from the scalar flux as

IIE$II= b$: -$;-1)2i

error vector is cal-

(53)

and where the summation ranges over all spatial

points. The relaxation factors, (OL,are then cal-

culated recursively by

1
%+1 =

. (54)
P2(B) Wt

1- 4

It is know~6 that in the limit as L + CU,this

Chebyahev relaxation factor becomes identical to the

optimum relaxation factor of successive over-relax-

ation.
4+1

The Chebyshev-acceleratedscalar flux, ~ ,

is then given by

(55)

The Chebyshev acceleration ia applied only to the

scalar flux, but not the higher moments. The

Chebyshev acceleration factor, which is group-depend-

ent, is actually

1
m = P(B) ‘

(56)

and may be input at the option of the user.

In the Chebyshev acceleration in ONETRAN, the

whole-system rebalance factor is calculated and ap-

plied to the flux moments prior to the calculation

and application of the Chebyahev acceleration

factora.

c. Rebalance Outer Iteration Acceleration

To accelerate the outer iteration, ONETRAN

calculate a different set of coarse-mesh rebalance

factora for each Qroun. This ollterit.eratinnre-

balance process ia advantageous because it acceler-

ates all types of problems, e.g., inhomogeneous

source problems with upscatter andfor fission, or

eigenvalue problems with or without upscatter. These

outer rebalance factors are group-dependent and cal-

culated by the flows and absorption defined in Sec.

11.D.6.a.

The source for the outer rebalance consists of

the inhomogeneous source (if any) plus the scattering

source (if any) plus the fission source (if any).

If there is a fission source present, a source it-

eration is performed to determine the outer rebal-

ance factors. If there is no inhomogeneous source

present, this source iteration can also be used to

estimate the eigenvalue, saY keff. In this case,

we replace the inhomogeneous source, QQk, of the

rebalance equation, Eq. (49), with the fiaaion source

plus scattering source, viz.,

f:-1 %-+ + ‘;( ~-~+ ~+~ + ‘k)

+ f;+l %.%
= (RSV* FSk+ SSk)f;-l. (57)

Here FS and SS are the fission and scattering source

In the kth coarse mesh zone and RSV is the outer

rebalance eigenvalue. The m superscript is the in-

dex for this power iteration to determine the re-

balance factors, which are now the eigensolutions

of Eq. (57).

7. Convergence Tests

There are three Ievela of iterative processes

in the ONETRA.Nprogram:

(1) the inner iteration in which the within-

group scattering source andlor the bound-

ary flux at an implicit boundary cl,anges,

(2) the outer iteration in which the fission

or upacattering source changea or which

is necessitated by incompletely converged

inner iterations (usually in slowly con-

vergent inhomogeneous source problems),

and

(3) the parametric eigenvalue search iterat-

ion in which, after a converged outer

iteration, the value of a material concen-

tration, a coarse-mesh boundary, or a

time absorption (see Sec. 111.B.9.) is

changed.

TWO additional iterations are alao required: itera-

tion for the coarae-mesh rebalance factors when the

periodic boundary condition is present (in subrou- 1

tine REBAL) and the power iteration on the fission

source for the outer iteration rebalance factors

(in subroutine GREBAL).
‘.

All of the iterative processes are compared to

various convergence precision to terminate the it-

erations. These convergence precision are:
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EPSI

EPSO=EPSI

EPSX=(l+IGM*e’100 ‘psl)*Eps1

EPST=1O
-2

XLAX

EPSR=lO-l*EPSI

Inner iteration converg–
ence precision. This
convergence precision
is an input parameter
and is aet to 10-4 if a
zero (blank) is entered.

Outer iteration converg-
ence precision.

Outer iteration rebal-
ance factor convergence
precision.

Chebyshev norm converg-
ence precision.

Search lambda converg-
ence precision for pa-
rametric eigenvalue
searches, an input pa-
rameter. Default value
if not specified on the
input: XLAX=1O*EPSI.

Rebalance factor iter-
ation convergence pre-
cision for periodic
boundary condition.

For the inner iteration process, the itera-

tion are terminated when

max 1
i

!2,
where +* is

the ?.thinner

th
the i mesh cell edge scalar flux for

iteration after application of the re-

balance factors. If the number of inner iterations

exceeds the value of IITL, an input variable, the

inner iterationa are terminated. When 11- Al <

10*EPSO (see below for definition of A), then IITL

ia switched to IITM, another input variable.

For the Chebyshev acceleration of the inner it-

erations, the first few estimates of the spectral

radius, p(B) in Eq. (52), may be inaccurate and lead

to unstable accelerations. Consequently, the

Chebyshev acceleration is not applied to the scalar

flux until the change in this spectral radius has

stabilized and is less than EPST,

IPL+l(B)- PL(B)\ < EPST.

Both of these convergence tests on the inner iter-

.. ations are made in subroutine INNER.

In determination of conv~rgence of the outer

iterations, ONETRAN calculates the parameter

~k . Fission aourcek +.Inhomogeneous Source
,.1 (58)

for the kth outer iteration. l%us k c 1 for a sub-

critical system, A = 1 for a critical system, and

1 > I.for a supercritical system. The outer itera-

tions are terminated when

11-~1 <EPSO and ~ 11- figl <EPSX, (59)—

where f
ig

are the outer iteration coarse-mesh rebal-

ance factors for group g and coarse-mesh zone i.

For the power iteration on the fission source

for the outer rebalance factors as described in Sec.

11.D.6.C., we terminate the iteration when

II
n

max 1- % < EPSX

i,g f.
W

for inhomogeneous

no fission, or

II in
l-=---

An-l
x

source problem with upscatter but

< EPSX

source problems with fission orfor inhomogeneoua

eigenvalue searchea (IEVT>l), or

I l-An I <EPSX
x

for keff calculations (IEVT=l). Here we denote n

as the index for this fission source power itera-

tion and Ax the same ratio of Eq. (58) for each of

these power iterations. These above outer itera-

tion convergence tests are all performed in subrou-

tine GREBAL.

For parametric eigenvalue searches, the outer

iterations are continued for the initial system

(i.e., the system described by the initial eigen-

value guess) until

I~k _ ~k-lI <EPSO,

st which time the initial eigenvalue is adjusted as

described in Sec. 111.B.9. For all subsequent sys-

tems, the outer iterations are continued until

I Ixk-Ak-l <XLAx

Fiaaion sourceK-L + Inhomogeneous Source before the eigenvalue is again modified. The
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elgenvalue modifications will continue until the out-

er iteration convergence criteria of Eq. (59) sre

finally satisfied. These parametric eigenvalue con-

vergence tests are performed in subroutine NEWPAR.

Finally, for problems with periodic boundary

conditions, the rebalance factor iteration is term-

inated when

I f:
max

i l’l- f:-’-1 <EPSR,

In difficult problems with a large amount of

upscattering and fission, it is frequently found

that convergence of the outer rebalance factor, the

second criteria of Eq. (59), is the most difficult .

condition to satisfy. Many times the eigenvalue

will be accurately converged, yet the fluxes will

still not be in very good balance. In such cases,

it may become necessary to limit the number of outer

iterations (with the input parameter OITM) or modify

the code so that EPSX is a larger multiple of EPSI.

where f: is the i
th

coarse-mesh reblance factor for

this jth iteration. This convergence test is per-

formed in subroutine REBAL.

.,
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111, A GUIDETO USERAPPLICATION

In this section we provide information needed

by the user to understand ONETRAN options and to

prepare input for the code.

A. Overall Program Flow

A schematic flow chart for ONETRAN is given in

Fig. 9. The subroutine names in which that comput-

ation is performed is indicated beside each block.

nmm
2SPUT2

IllrTN.
INITQ
ISITF

Olnm.

IsNEX

CiunAL

smaARY

INPurl

+

@a---
o’-mer

Icer.cfon
Oa.verged or

L2mit
Reached?

.,..

a

Co.p.t e
Fismion GSEML
Source 4Apply

Rebalance
Factors

(5End

Fig. 9. Simplified logical flow diagram for ONETRAN.

25. ue~alla 01 rrugram upclons

1. Cross Sections

a. Input Formats

The ONETRAN program accepta cross sections
5

either from the standard file ISOTXS, in FIDO for-
6

mat, or in the standard Los Alamos format as de-

scribed in this section. In upscattering p.roblgms,

the program does not need the special UUP cross sec-

tion which is required in earlier Los Alamoa pro-
12

grams. In ONETRAN, it is assumed that Uup is NOT

present, butuup ia automatically removed from the

card input cross section sets if the user tags the

input number IHS with a minus sign. Note that this

is the opposite procedure for removal of Uup from

that used in other I.ASLtransport codes.
3,4

Cross

sections read with the FIDO format may not contain

#P

The Los Alamos cross section format aasumes that

each nuclide is described by a block of cross sec-

tions of IHM rows for IGM group columns. The row

position of cross sections is specified relative to

the total cross section, Ut (row IHT), and the with-

in-group scattering cross section, Us,eg, (row IHS).

It is assumed that the row order of the cross sec-

tions is as follows:

Row Cross Section Type Group ~
--

t .
‘,

IHT-4

IHT-3

IHT-2

IHT-1

IHT

IHT+l

IHM

I IHS-2

IHS-1

IHS

IHS+l

1.HS+2

k“.
IHS+M

u
n,2n

o
tr

u
a

V(s
f

u
t

a
S,g+N+g

u
s,g+2+g

os ,g+l+g

u
Sss-%

LY
s,g-l+g

c1
s,g-2+g

ua, g-M+g
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In this format, group g+l corresponds to a

group of lower energy than group g. The symbol

ua ~2+g denotes the scattering transfer probability

fr;m group g-2 to group g. The format allowa N

groups of upscatter and M groups of downscatter;

i.e., the scattering matrix need not be square.

However, all cross section blocks must have the same

values for HIM, IHS, and IHT. The fission cross

section, U
f’

times the mean number of neutrona per

fission, V, must be located in row IHT-1, and the

absorption cross section, Ga, must be entered in

row IHT-2. The transport cross section, Utr, must

be entered in position IHT-3 if the transverse buck-

ling correction is to be made using Utr rather than

u
t

as detailed in Sec. 111.B.2.c. The (n,2n) scat-

tering cross section, U must be entered in
n,2n’

position IHT-4 if the scattering matrix ia used to

represent (n,2n) reactions, as detailed in Sec. 111.

B.1.g. The user is free to enter additional cross

sections at the top of the format. These extra

cross sections are not used in the calculation, but

are used for reaction-ratecomputationa in the flux

edits.

b. Cross Section Mixing

The user is free in ONETHAN to enter

macroscopic cross sections and bypass the mixing

algorithms; specification of the input value MS = O

is all that is required for this. If MS # O, the

user must provide three sets of MS numbers which

are stored in the vectors MIXNUM, MIXCOM, and MIXDEN.

These numbers are used in the following algorithm

to manipulate cross sections blocks:

Do 315 M=l,MS

N - MIXNUM(M)

L = MIXCOM(M)

AD = MIXDEN(M)

Do 315 I=l,IHM

IF(L.EQ.0) GO TO 310

IF((AD.EQ.O.O).AND.(IEVT.EQ.3)) GO TO 313

C(I,N) = C(I,N) +AD*C(I,L)

GO TO 315

313 C(I,N) = EV*C(I,N)

Go To 315

310 C(I,N) = AD*C(I,N)

315 CONTINUE

In this algorithm, cross section block N is created

22

or altered by adding multiples of block L or by

multiplying the block N by a factor. Let ua con-

sider some examples.

Suppose we have entered 45 cross section blocks

as input. Then any mixtures that are made must be
.

given b:

enter:

%!!

46

46

46

47

47

47

47

48

48

48

48

49

49

49

49

49

49

*
ock numbers higher than 45.

MIXCOM

*

o

1

20

0

2

3

0

0

15

14

48

0

33

34

0

49

46

Suppose we

- .,

MIXDEN

*

0.0

0.0478

0.0333

0.0

0.75

0.25

0.1179

0.0

0.0049

0.0078

0.0

0.0

0.5

0.5

0.187

0.0

0.1

For this example we have MS = 17 instructions. In

the first three instructions, block 46 is cleared

(set to zero) and then made up of 0.0478 parts of

block 1 and 0.0333 parts of block 20. If block 1

and 20 are microscopic cross sections in barns,
24

then 0.0333 and 0.478 times 10 are the atomic

densities. In the second set of inatructiona,

block 47 is cleared and then made up of 0.1179

times the result of adding three-fourths of block

2 to one-fourth of block 3. In the next set of in-

structions, block 48 is cleared and made up of

portions of blocks 15 and 14. If IEVT (the input

eigenvalue type option) is 3, then the resulting

block 48 is multiplied by EV (the input eigenvalue
*

guess). In this type of problem the program at-

tempts to find a value of EV such that the resulting

concentration of block 48 renders the system criti- ..

cal. If IEVT # 3, the line of instructions 48, 48,

*
To preserve the Input values. If these need not
be saved, mixtures can be created in lower block
numbers.



0.0 would not alter the composition of block 48. In

the final sequence, block 49 is made up of 0.187

times one-half of block 33 and block 34; provision

is made to search for the concentration of this

portion of 49 to which is always added 0.1 of the

previously mixed block 46. It should be clear that

there are many possibilities not covered in this

example, but by examining the FOHTRAN instructions

above, the user should be able to prepare his own

set of mixture instructions.

c. Anisotropic Cross Sections

In the ONETRAN program it is assumed that

the scattering transfer probability can be repre-

sented by a finite Legendre polynomial expansion,

i.e.,

ISCT

x

2n+l
us(E’ + E,vo) = ~ pn(lJo)U~(E’+ E), (60)

n=o

where ISCT is an input control integer. Thus if

ISCT > 0, additional blocks of scattering transfer

cross sections must be entered for those nuclides

for which anisotropic scattering sources are to be

computed. Note that the anisotropic scatterin~

blocks do NOT contain the (2n+l) factor as in some

transport codes.
6

Should the cross section blocks

contain this factor, they may easily be removed

via the mixing tables. In these blocks, the rowa 1

s,eh (the energy aver-through IHT are zero, and an

age of u~(E’ + E) in groups g and h) is entered as

for the isotropic component of the cross section.

It is assumed in ONETHAN that blocks of anisotropic

cross sections which are used in the calculation

have block numbers in ascending sequence, startin~

with the isotropic cross section block. For ex-

ample, suppose that block 50 is the isotropic cross

section block for hydrogen and that ISCT = 3. Then,

bloclc51 must be O: for hydrogen, block 52 must be

{
3

, and block 53 must be 0s. If a material ia made

. by mixing two anisotropic scatterers, then the

anisotropic blocks must also be mixed with the same

.. densities to form anisotropic blocks for the mate-

rial. In each zone in which aniaotropic scattering

sources are computed the number of anisotropic scat-

tering blocks must be the same, namely ISCT.

d. Adjoint Cross Sections

In adjoint calculations, cross sections

are entered just as for a direct calculation. The

program then transposes the scattering matrices and,

because this usually changes a downscattering prob-

lem to an upscattering problem, reverses the group

order of the blocks. Further, the effective ab-

sorption in an adjoint calculation is not simply re-

lated to Ua. That is, the effective absorption is

normally

(Ua)eff =Ut -E Cr:,eh.
all h

(61a)

But when the scattering matrix has been transposed,

the effective absorption is

(Ua)eff = u;- Z U“
s,h+g”

all h

(61b)

e. Cross Section Checking

As input cross sections are processed in

subroutine CSPREP, the effective absorption of Eq.

(61) is computed and compared to the input value of

u. If the relative difference between the input
a

total cross section and the computed total cross

section exceeds EPSI (inner convergence precision),

an error message is print-cd. However, the computa-

tion will proceed normall-yusing the input absorp-

tion cross section with no attempt being made to

correct this inconsistency.

f. Fission Fractions

The ONETRAN user may specify the fission

fractions as either a spectrum (Xg: the probability

of a fission in ~ group releasing a neutron in

group g) or a matrix (Xh+g: the probability of a

fission in group h releasing a neutron in group g).

These fission fractions may also be coarsemesh-

dependent. The fission fractions are conventionally

normalized to E x =lor~xh+g=l. This normal-
gg

ization is not checked by ONETRAN and any lack of

normalization will be reflected proportionally in

k
eff”

The fission fractions are specified by the in-

put parameter IFISS:

IFISS Option

1 A single fission spectrum for the entire
system

2 A fission spectra for each of the IM
coarse-mesh regions.

3 A single fission matrix for the entire
system.

4 A fission matrix for each of the IM coarse-
mesh regions.
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For coarse-mesh-dependentfission spectra (IFISS=2),

the fission fractions are ordered as:

[xl ... !qGMli=l . . . . . . . . . . [X1 . . . xlGMli=lM,

and loaded as a single block. For coars&mesh-de-

pendent fission matrices (IFISS=4), the fission

fractiona are ordered as:

[

[Xl+l““”xlGM+l]~=l...[X1+l““”xl~l]i=IM

1
,

[xl+I@f““”xIGM+IGM1i=l...[X1+lH. .“xIGM+IGM]i=IM

and each row is loaded as a single block.—

. (n,2n) Reactions

The ONETRAN user may utilize the scatter-

ing matrices to represent (n,2n) reactions by ~-

W the input parameter ~ negative. If

‘(n,2n)h+g
is the reaction cross section for a

neutron in group h releasing two neutrons in group

“ ‘henL* a(n,2n)h+g
must be entered as the scat-

tering transfer matrix, a in order to obtain
s,h+g’

the proper neutron multiplication Ln the scattering

computation by ONETRAN. The total (n,2n) reaction

cross section,

a=
n,2n

x
a(n,2n)h+g ‘

g

must then be entered in cross section position

IHNN = IHT - 4. This cross section is then used to

correct the group sum of the outacatter term in the

system balance tables.

If IHT ia not flagged negative, ONETRAN assumes

no (n,2n) reactiona are present and cross section

position IHNN may be used for any other cross sec-

tion to be used in the reaction-rate computations in

the flux edits.

h. Fine-Mesh Density Factors

The ONETRAN user has the option of speci-

fying fine-mesh density factors to describe a point-

wise spatial variation of the macroscopic cross

sections. Thus, the macroscopic cross section is

multiplied by DEN(I) whenever the cross section is

required in mesh cell I. These density factors are

2. Geometry and Boundary Condition Specifica-
tions

a. Spatial Mesh

To specify the spatial domain on the

problem, user supplies IM+l coarse-mesh boundaries

(defining IM intervals). Except for the firat

radius in cylindrical or sphericalgeometries, this

set need not begin at 0.0, but must form a monotone

increasing sequence. The user also supplies Ii4

integera which indicate how many fine-mesh intervals

are in each coarse-mesh interval. The fine-mesh

spacing is uniform between the coarse-mesh bound-

aries. This results in a total of IT fine-mesh fn-

tervals, indexed from left to right. Finally, the

user specifies the boundary condition on the left

and right boundaries.

The coarse-mesh boundaries define IM zones.

The user must supply a number for each of these

zones (IDC array) to designate which cross section

block belongs in the zone. That is, the material

mesh ia identical to the coarse mesh. If anisotropic

scattering is desired in any zone, the block number

for that zone is flagged negative, otherwise the

scattering is computed as isotropic. l%is indicates

that the next ISCT blocks in numerical sequence con-

tain the anisotropic scattering cross sections for

this zone. The scattering will be computed as

isotropic if lSCT > 0 and IDC is not flagged nega-

tive or if ISCT = O (regardless of the sign on IDC).

All of the above Information is converted by

subroutine MAPPER into a pictorial description of

the system.

b. Boundary Conditions

The ONETRAN user must select one of the

following five boundary conditions for each of the

system boundaries:

●

●

Vacuum boundary

angular flux on

to zero for all

condition -- the

the boundary is set

incoming directions.

Reflective boundary condition -- the

incoming angular flux on the boundary

is set equal to the outgoing flux in

the direction corresponding to specular

reflection.

I

,

..

very useful in problems such as air transport cal-

culattona where a single material is present but

with a continuously varying spatial density.
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. .
@ Periodic boundary condition -- the incoming

angular flux on the boundary is set equal to

to outgoing flux on the same direction on

the opposite boundary.

* White boundary condition -- the incoming

angular flux in the boundary is set equal to

the single value such that the net flow

through the boundary is zero, namely:

~ Wm Pm 4(P )m outgoing

4incoming(pm’)=n’ ~w ~ ‘
mm

m

where the sums range over all outgoing direc-

tions. This condition ia used primarily for

cell calculations in cylindrical and spher-

ical geometry where it is applied to the

outer radial boundary.

@ Albedo boundary condition — the incoming

angular flux on the boundary is set equal to

a user–supplied albedo times the outgoing

flux in the direction corresponding to specu-

lar reflection.

Use of reflective or albedo boundary conditions

requires the S~ quadrature set to be symmetric about

p=o.

c. Buckling Absorption

Leakage from the transverse dimensions of

a multi-dimensional system may be simulated by a

user-specified buckling height and width (for plane

geometry only). These buckling dimensions must be

in units consistent with the cross sections (in cm

if cross sections are in cm-l). If diffusion theory

ia assumed adequate then the flux shape in the trans-

verse direction z is of the form cos nzlg, so that

the flux vanishes at the extrapolated half-heights

* X12. If this assumption is substituted into the

multi-dimensional form of the transport equation,

Eq. (l), then the transverse leakage appears as a

buckling absorption cross section of the form

u
2

a,BHT ‘: ‘u * BHT! 1.4209) ‘

where u is the total cross section, BHT is the act-

ual buckling transverse dimension (height or width),

and 1.4209/cfis twice the Mi.lneproblem extrapola-

tion distance. If the input buckling height (BHGT)

is tlagged negative, then the transport cross sec-

tion, U ~, is assumed to be in cross section posi-
t

tion IHTR = IHT - 3. The extrapolation distance of

1.4209/otr is then used so that the buckling absorp-

tion is

0
a,T3HT=; (0* BHT+T1 4209 ~,. )2.

tr

The buckling absorption is added to both the

total cross section (CT) and absorption cross sec-

tion (CA) arrays in subroutine INITAL. Consequently,

the absorption in the output coarse mesh balance

table also contains this buckling absorption. The

activities computed in the final edits do not con-

tain this buckling absorption.

If BHGT is not flagged negative, then CTtris

assumed to not be present and cross section position

IHTR may be used for any other cross section to be

used in reaction-rate computations in the flux edits.

3. Angular Quadrature Coefficient Specifica-
tions —

The ONETRAN user has the option of obtaining

the angular quadrature coefficients from interface

file ISNCON,
5
one of two built-in sets in subroutine

SNCON, or frOm card input. The input param-

eter IQUAD specifies the source of these coeffici–

ents. The number of quadrature coefficients (MM)

is determined from the input SN order parameter ISN

and the geometry type specification (IGEOM) as

ISN for plane and spherical geometry

ISN*(ISN+2)/4 for cylindrical geometry
MM= (IGE0M=2), or

ISN*(ISN+2) for two-angle plane geometry
(IGEOM=4).

The built-in constants are either the PN

(Gaussian) quadrature constants for: S2, S4, S6,

‘8‘ %2.’ ’16’ ’20’ ’24’ ’32’ ‘r ’48; ‘r ‘he ‘PN

(double Gaussian) quadrature constants for: S4, S8,

s129 ‘~6) S24S S32, S409 S48, S64, or S96. For

most problems, the PN set is the recommended set.

However, for thin-slab problems in which the angular

representation of the leakage flux is important, use

of the DPN quadrature set is recommended.

For problems with anisotropic scattering, it

is important that the SN order be chosen sufficiently
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large such that the spherical harmonic polynomials

are correctly integrated. Otherwise, the numerical

quadrature error may introduce a nonphysical contri-

bution to the neutron balance, preventing conver-

gence of the problem to the desired precision.

For user input SN constants, it 1S necessary

that they be correctly ordered as illustrated in

Sec. 11.B.2. In addition, if the sums 1 -
Z“.*
m

and
x Pm, and~ Vm Pm

-5
are greater than 10 , an

m n

error message is printed.

4. Source Options

The ONETRAN user may specify an aniaotropic

distributed sourceand the boundary flux at either

boundary of the system. The inhomogeneous distri-

buted source must be represented by a finite spher-

ical harmonic expansion of the form

4!%
Q(r,Q) = L (Zn-1) Rn(Q) Q#r), (62)

n=l

where the energy group index has been omitted. For

standard plane or spherical geometry, the moments

of the source are

1

IQJr) = + d~ Pn(u) Q(r,~), (63)

-1

and for cylindrical and two-angle plane geometry

and

C&r) = ~

as defined

(64)

source is specified for the MM/2 incoming directions

in the same order as the SN quadrature ordinatea as

illustrated in Sec. 11.B.2.

5. Source Inrmt Options

If a distributed source of anisotropy IQAN ia

designated, then

I
IQAN+l for plane and spherical geometry,

NMQ =
or

(IQAN+2)2/4 for cylindrical geometry, or

(IQAN+1)2 for two-angle plane geometry,

components (spherical harmonic moments) of the source

must be entered for each group in the order listed

In Tables III and IV. The complete dimensions of

the inhomogeneous distributed source for a single

group are Q(NMQ,2,1T). Appropriate choice of the

source input parameter IQOPT will reduce the amount

of input required as specified below.

Boundary sources may also be specified by set-

ting the input boundary source triggers IQL=l andlor

IQR=l for the left and/or right boundary sources,

respectively. This requires the input of the bound-

ary sources for all MM/2 incoming directions and for

each group. For IQOPT positive or zero, the complete

boundary sources at each direction for each group

are required input. For IOOPT negative, the energy

spectra of the boundary sources are required input,

and the boundary sources are assumed isotropic in

angle.

in a similar fashion for the flux momenta

in Sec. 11.A.2. The anisotropic source components

are entered in the order indicated in Tables III

and IV.

When using the anisotropic distributed source

option, the order of anisotropic scattering, ISCT,

must be at least as large as IQAN ao that the req-

uisite number of spherical harmonics, Rn(~), are

computed.

The ONETRAN user is alao allowed to specify

the incoming flux on either boundary. This boundary

(65)

The ordering of the source input is:

1. Distributed sources (if any); for all

groups of an anisotropic order; for all

orders of source anisotropy, then

2. Left boundary sources (if any), right

boundary sources (if

One can imagine the sources to

lowing FORTRAN statements:

any); for all groups.

be read by the fol-

1

,

. .
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. .

Do 10 N=l;Nt@

no 10 G=l,IGM

10 READ ((QG(N,K,I),K=1,2),I=I,IT)

IX3 12 C=l,IGM

READ (QLG(M),M=l,MM/2)

12 READ (QRG(M),M=l,MM/2)

*4

5

The IQOPT parameters available to the user are:

JQW QQ!?.!l

o Zero distributed source (no input)

*1 Energy spectrum for the distributed
source: EQ(IGM). One spectrum for each
NMQ component.

*2 Flat distributed source on the fine mesh:
Q(IT). One distribution for each group
and each NMQ component.

+3 Linear distributed source on the fine
mesh: Q(2,1T). The first subscript is
the left edge and the right edge sources,
respectively. One distribution for each
group and for each NMQ component.

A single energy spectrum for the distri-
buted source: EQ(IGM), followed by a
single linear distributed source on the
fine mesh: Q(2,1T). The distributed
source is formed by the product of the
energy spectrum and the fine-mesh spa-
tial distribution. One spectrum and one
spatial distribution for each NMQ
component.

Input of both distributed and boundary
sources from standard interface file
FIXSRC mounted on unit IFIXSR.

6. Flux Input Options

Options for reading the input flux guess are

specified by the input integer ISTART. If ISCT is

the order of anisotropic scattering, then

—. . . .. . . . .
*Z Flat distributed tlux distribution on the

fine mesh: F(IT). NM distributions input
for each component for ISTART=+2; one
distribution input for the scalar flux
component only for ISTART=-2, the higher
components being assumed zero.

3 A problem restart dump is read from unit
NDMP1. See Sec. 111.B.7.

~4 The scalar flux guess is read from stand-
ard interface file RTFLUX or ATFLUX
mounted on unit ITFLUX for ISTART=+4.
The complete angular flux is read from
standard interface file RAFLUX or AAFLUX
mounted on unit IAFLUX for ISTART=-4. If
the interface file output is requested
(IFO=l), these flux files will be over-
written with the computed fluxes at the
end of the problem.

7. Flux Dumps and Restart Procedures

The three types of dumps that are taken have the

same form, and each may be used to restart a problem.

Aperiodic dump is taken every DUMPT minutes where

DUMPT is a program variable which can be set to meet

particular installation requirements in the main

program segment. A final dtnnpis always taken after

the successful completion of a problem, and a time

limit dump is taken after a user-specified period of

time (ITLIM). Dumps are written alternately on

units NDMP1 and NDMP2 depending on which is free;

an output message is written to indicate which unit

contains the latest dump.

When problem execution is continued using a

restart dump, certain input parameters can be

changed and edit specifications can be added or

modified. It is possible to use the program to

edit a dump.

To restart a problem, the first card (only) of

NM. I
spherical

ISCT+l for plane and spherical geometry,

(ISCT+2)2/4 for cylindrical geometry, or

(ISCT+1)2 for two-angle plane geometry,

harmonic components of the angular flux

must be specified, ordered as in Tables III and IV.

The ISTART options available to the user are:

ISTART 31@S?ll

o A unit fission guess is automatically
supplied in every mesh cell. No input
required.

*1 Ener~ spectrum: EQ(IGM). NM spectra in-
put for each component for I.START-t-l;one
spectrum input for the scalar flux compon-

ent only for ISTART=-l, the higher compon-
ents being assumed zero.

input control integers is read, with ISTART=3. All

other control integers on this card are ignored.

ONETRAN will then read the dump file, restoring

both small core and large core memories to their

contents at the time the dump was taken.

The second card input contains the following

changed values of the control integers (on a 616

format):

IACC - Acceleration option

OITM - outer iteration limit

IITL - inner iteration limit until I1-AI<1O*EPSO.——

IITM - inner iteration limit after I1-AI<1O*EPSO

IEDOPT - edit option trigger

IFO - interface file output trigger.

The acceleration option cannot be changed to—
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Chebyshev (IACC=3) if the problem was not originally

run with that option.

The third card input contains the following

changed value of the floating point parameter (on

an E12.6 format):

EPSI - inner iteration convergence

precision

All further input (excluding edit) and problem

initiation is then bypaased and execution ia re-

sumed in the subroutine OUTER for the current group

at the time the dump was taken.

If the edit option trigger is on (IEDOPT=l),

all edit option input must follow the restart input

on the standard card input. Any edit input includ-

ed in the original problem run is not saved.

8. Iteration Acceleration Options

The user is provided a choice of four methods

for acceleration of the inner (within group) iter-

ations by

are:

1.

2.

3.

4.

the IACC input parameter. These options

No acceleration -- recommended only if

all other options fail,

System rebalance -- particle balance is

enforced over the entire system,

Coarse-mesh rebalance -- particle balance

is enforced over each coarse-mesh zone.

This is the reconxnendedoption for most

rapidly obtaining the converged solution,

or

Chebyahev acceleration -- the Chebyahev

semi-iterative scheme is used to acceler-

ate the scalar flux after application of

the system rebalance factor. For some

problems in which coarse-mesh rebalance is

very slow to converge or even divergent,

this option is the recommended alternative.

Coarse-mesh rebalance is always performed to

accelerate the outer iterationa.

9. Eigenvalue Searches

It is possible in ONETRAN to perform an eigen-

value search on nuclide concentration (concentra-

tion search), system dimensions (delta search), or

the time absorption (alpha search) to achieve a de-

sired value of k normal
eff’

unit (a critical sys-

tem). The type of eigenvalue search is chosen by
*

the input parameter IEVT as follows :
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IEVT Type of Eip,envalueSearch

2 Time absorption (alpha)

3 Concentration

4 Critical size (delta)

For time absorption calculations, the time-

dependent angular flux is assumed to be separable

in time and space, viz.,

$(r, ~, t) =$(r, ~) eat.

If this assumption is inserted into the time-depend-

ent transport equation, the exponential cancel and

a fictitious cross-section term of the form a/v
g

aPPesrs as a correction to the total and absorption

cross sections. Here Vg is the neutron speed as-

sociated with energy group g. The exponential fac-

tor a is then the eigenvalue sought in the time-

absorption eigenvalue search. Obviously, a = O for

an exactly critical system, and”a > 0 for a super-

crftical system.

For concentration searches, the modification of

the cross-section concentrations takes place as in-

dicated in Sec. 111.B.l.b.

For delta searches, the coarse-mesh boundaries

can be modified selectively to obtain a critical

system. The modified coarse-mesh boundaries, %,
are calculated from the initial input boundaries,

~, by

%+1 = ‘i + (~+1 - %)*(1 + EV*~) ,

k=l, 2, .... IM, (66)

where EV is the eigenvalue sought in the delta ei.gen-

value search. The factors ~are the coarse-mesh

radii modifiers which are input by the OtiETRANuser

and control how the coarse-mesh boundaries are mad-

ified. Clearly, if ~ is zero, the thickness of

the kth zone is not altered. If all ~ are unity,

the system dimensions are uniformly expanded (EV > O) “

or contracted (EV < O). Many sophisticated changes

can be made, limited only by the ingenuity of the

user. For example, an interface between two zonea

*
Not included here are the options IEVT=O for in-
homogeneous source problems and IEVT=l for keff
calculations.



may be moved while the remainder of the system is

left unchanged.

In all three eigenvalue searches, the appropri-

ate system parameter is adjusted to achieve a de-

sired value of k This value is taken to beeff”
unity (criticality)unless the input parametric

eigenvalue trigger (IPVT) is set to unity. In this

case, the parametric value of keff is entered as an

input number (PV).

For concentration and delta searches, it ia

also possible to adjust the appropriate system

parameter to achieve a system changing exponenti–
atally in time at the rate e by setting the param-

etric eigenvalue trigger equal to 2. In this case,

the parametric eigenvalue (PV) entered by the ONE-

TRAN user is the desired exponential factor a. Ob-

viously, a = O corresponds to the normal concentra-

tion or delta search.

Regardless of the parameter being adjusted,

the search is executed by performing a sequence of

k calculations, each for a different value of
eff
the parameter being treated as the eigenvalue.

Each of the successive keff calculations is accel-

erated by coarse-mesh rebalance, but the search for

the desired value of k is conducted by subroutine
eff

NEwPAR. Regardless of the nature of the problem,

the search is for a value of the parameter which

makes the value of k defined in Eq. (58) unity.

In the following description of NEWPAR, it is

helpful to refer to Fig. 10 in which the deviation

of A from unityis plottedagainst outer iteration

number.

F
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Fig. 10. Variation of 1 during a hypothetical
eigenvalue search.

For the initial system, NEWPAR continues the

outer iteration until two successive values of A dif-

fer by less than EPSO. For subsequent sequences of

X values, a different convergence precision, XLAX,

is used. After the first converged A sequence is

obtained, the initial value of the eigenvalue (EV)

is altered by EVM, an input value. If X > 1 (multi-

plying system), the new eigenvalue is equal to EV +

EVM; if k < 1 (decaying system), the new value is

EV - EVM. These alterations correspond to the ad-

dition or the subtraction of an absorption, e.g.,

as in a time-absorption search or a poison-concentra-

tion search. For delta calculation (IEVT=4), EVM

must be negative to change EV in the right direction.

Basically, after two values of keff(A) are Ob-

tained for two different system configurations, sub-

routine NEWPAR attempts to fit a curve through the

most recent values to extrapolate or interpolate to

a value of unity. Depending on the amount of inform-

ation available and the size of [l - k], this fit

proceeds in different ways. A parabolic fit cannot

be made until three converged values of A are avail-

able, and is not attempted unless [l - Al is greater

than an input search lower limit (XLAL) and less than

an input search upper limit (XIAH). If a parabolic

fit is tried and the roots are imaginary, a straight-

line fit is used. If the roots are not imaginary,

the closest root is used as the new value of EV.

Once a bracket is obtained (change of sign of A.- 1),

the fit procedure is not allowed to move outside the

region of the bracket. Should a parabolic fit se-

lect an eigenvalue outside the bracket regfon, this

value is rejected and the new value is taken to be

one–half the sum of the previous value and the value

previous to that.

Whenever the parabolic fit is not used, (i.e.,

11-AI <XLAL)a linear fitisusedand the new

eigenvalue is computed from

(EV)new

where POD is

which may be

= (EV)old + POD*EVS*(l - A), (67)

an input “parameter oscillation damper”

used to restrict the amount of change

in the eigenvalue. In Eq. (67), EVS is a measure

of the slope of the curve. When 11- Al > XLAH,

(1 - k) in Eq. (67) is replaced by XLAH (with the

correct sign) to prevent too large a change in EV.

After [l - Al < XLAL, the value of EVS is fixed and
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kept constant until convergence to prevent numerical

difficulty in the approximation of the derivative

when A is close to unity.

Because parametric search problems represent

sequences of keff calculations, it behooves the user

to study the use of subroutine NEWPAR in order to

optimize his calculations. It also behooves the

user to pose soluble problems. That is, there are

many problems, especially concentration searches,

for which solutions are not possible, and discover-

ing this by trial and error is the hard way. Ideal-

ly, the user will have some estimate of the critical

parameter available from a lower order computation.

Convergence in time-absorption calculations is

typically one-sided. If EV (the eigenvalue a) is

negative, then there is a possibility that the cor-

rected total cross section will become negative. If

this happens, the automatic search procedure may

fail dramatically. For this reason POD = 0.5 or

less is frequently used in such searches.

10. Adjoint Computations

The ONETRAN program solves the adjoint trans-

port equation by transposing the matrices of scat-

tering coefficients and inverting the group order

of the problem. The solution of the resulting prob-

lem in direction ~ is then identified with the solu-
14tion of the adjoint equation in direction ‘~.

The inversion of the group order is made be-

cause the transposition of the scattering matrices

usually converts a downscattering problem to an up-

scattering problem. Because of the inversion, the

user must:

(a) Enter any inhomogeneous sources, includ-

ing boundary fluxes, in inverse group order,

(b) Enter any flux guess in inverse group

order, and

(c) Remember that any output is in inverse

group order, i.e., that groups labeled 1, 2, ....

are really groups IGM, ICM - 1, etc. Similarly, the

output flux from an adjoint problem must be inverted

before insertion into a direct problem. On the other

hand, an output flux from one adjoint problem is in

the proper group order for use in another adjoint

problem.

The group order of the group speeds and the

fission speetrum is inverted by the program.

11. Edit Options

The ONETRAN user is provided with two types of

edit options, zone edits

different zone and point

performed.

a. Zone Edit

and point edits. As many

edits as desired may be
.,

An edit zone is a collection of fine-mesh

intervals which have the same zone number. The user

defines a zone by entering a set of IT numbers

(NEDZ array) which associate with each interval on

the fine mesh a zone identification number (zone

id.). The intervals of an edit zone need not be

contiguous. For each group and zone, a table con-

taining the macroscopic activities (for cross-sec-

tion positions 1 through IHT) is given. The macro-

scopic activity ~(g,IPOS) in zone k and group g

for crosssection position IPOS is defined by

zq(g, IPos) = C(g,IpOS,mi)oiVi for i E zone k,

J
1.

(68)

where mi is the material id. (cross-sectionblock

identification number) for mesh cell i, C(g,IPOS,mi)

is the cross section for group g in position IPOS

for material mi, Vi is the mesh cell volume, and @i

is the average flux in mesh cell i. Thus Ak is the

activity computed with the macroscopic cross section

actually used in the problem, summed over all mesh

cells in zone k.

For each zone edtt, the ONETRAN user is pro-

vided the option of calculating constituent activi-

ties and microscopic activities for any material de-

sired. The constituent activity ~(g, IPOS) for

material j

~(g,IPOS)

in zone k is defined by

.x C(g,IPOS,mi)@iVi6jm for i & zone k.

i i

(69)

‘ere 6jmi
equals unity if material j equals material

mi, the mtiture table density (MIXOEN) if material j
,

is s “constituent” of material m
i’

and is zero

otherwise. A “constituent” means that material j ..

aPPears as an entry in the MIXNOM array with density

MIXDEN (see Sec. 111.B.1.3.) that is used to form

material m
i“

Thus, if material j is used to form a

matieral j’, which is used to form material mi, then
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material j is not a “constituent” of material m.
1

within this definition.

The microscopic activity for material j in zone

k is defined by

EA@,IPOS) = C(g,IPOS,j)@iVi for i E zone k. (70)

i

Thus < would be the activity obtained in zone k if

material j were uniformly distributed throughout the

system, even though material j may not actually have

appeared in the problem cross sections.

The edit input parameters NCA and NNA specify

the number of constituent activities and number of

microscopic activities to be calculated. The user

must then enter NCA material i.d.’s for the constit-

uent activities and NNA material i.d.’s for the

microscopic activities.

To edit a material which is not actually a part

of the problem, the ONETRAN user may add a mixture

instruction to the mixture tables; or, if interested

in only a few cross sections, he may add these cross

sections to other blocks in rows IHT-5, IHT-6, etc.

Finally, following any constituent activities

or microscopic activities, the zone edit provides

the zone relative power density (group sum of the

zone volume integral of v x fission rate divided by

the zone volume), normalized to that of a user-des-

ignated zone. The zone relative power density (un-

normalized) is defined by

xx C(g,IHT-l,mi)$iVi

PDk =
i

~ vi
for i E zone k. (71)

i

If the user selects zone zero (NORMZ=O), the normal-

ization is to the whole system power density.

b. Point Edit

The point edit feature of ONETRAN provides

the user with the option of obtaining the pointwise

. variation of the activity across each fin~mesh in-

terval. The user must enter the fine-mesh i.d.’s

over which the point edit is desired (NEDPT array)
..

and the cross-section material i.d.’s for the micro-

scopic activities (IDMA array). The pointwise micro-

scopic activity for material j in mesh cell i is

A~+%(g,IPOS) = C(g,IPOS,mi) @i*%. (72)

c. Data Input Rules

Except for the control parameters, cross sec-

tions, and edit parameters, all floating-point num-

bers and integers are read into ONETRAN in special

formats by the LOAD subroutine. These formats are

[6(11,12,E9.4)]for reading floating-point numbers

and [6(11,12,19)]for integers. In each word of

both of these formats, the first integer field, 11,

designates the options listed below. The second

integer field, 12, controls the execution of the

option, and the remainder of the field, 19 or E9.4,

is for the input data. All data blocks read with

these formats must be ended with a 3 in the 11 field

after the last word of the block. The available

options are given in Table VI.

OPTIONS FOR

Value of 11

0 or blank

1

2

3

4

5

9

TAELE VI

SPECIAL READ FORNATS IN LOAD

Nature of Option

No action.

Repeat data word in 9 field number
of times indicated in 12 field.

Place number of linear interpolants
indicated in 12 field between data
word in 9 field and data word in
next 9 field. Not allowed for
integers.

Terminate reading of data block. ~
3 must follow last data word of all
blocks.

Fill remainder of block with data
word in 9 field. This operation ‘
must be followed by a terminate (3).

Repeat data word in 9 field 10 times
the value in the 12 field.

Skip to the next data card.

Five illustrations of the use of the special formats

are given below. These illustrate:

1-

2-

3-

4-

5-

Zero is repeated 47 times,

Zero is repeated 470 times,

Four interpolants are inserted between 0.0
and 5.0 giving six data numbers: 0.0, 1.0,
2.0, 3.0, 4.0, 5.0,

Four interpolants are inserted between 0.0
and 5.0, two between 5.0 and 7.0, and 7.0
is repeated 10 times, and

After reading O and 4 we skip to the next
card and read 7.

A special routine, WRTTE, is used to print some

of the two- and three-dimensional arrays that occur

in the program. l%is routine can be used for one-,
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two-, or three-dimensionalarrays and has an option

for printing a portion of an array, e.g., the mixed

1. Job Title Cards

The user begins by indicating on a card in an

16 format the number of title or job description .

cards he wants to use. He then enters the descrip-
-..— -,.

tive material on these cards which are read with a
.

18A4 format.

2. Input of Control Numbers

On cards 1 through 3, the user enters the fol-

lowing control integers which are read in a 1216

format and on cards, 4, 5, and 6 the following con-
cross-section blocks, if any.

trol floating-point

D. Description of Input Data

In the following pages the input data for ONE-

TRAN are listed in exactly the order in which they

are entered in the code. The data are divided into

four categories: (1) job title cards, (2) control

integers on cards 1 through 3 and control floating-

point numbers on carda 4, 5, and 6, (3) problem-

dependent data on subsequent cards through the LOAD

routine, and (4) edit input.

Number of Name of

Word on Card Variable Comments

CONTROL

1

2

3

4

5

6

7

8

9

10

11

12

CONTROL

1

2

3

numbers in a 6E12.4 format:

INTEGERS (1216)--------------------------------------------------------------------m 1

ITH 0/1 (direct/adjoint)type of calculation performed.

ISCT O/N (isotropic/Nthorder anisotropic) order of scattering calculations. NM

spherical harmonica flux components are computed.

ISN SN angular quadrature order. Must be an even number.

IGM

IM

IBL

IBR

IEVT

ISTART

IQOPT

IG!33M

IQUAD

Number of energy groups.

Number of coarse-mesh intervals.

0/1/2/3/4 (vacuum/reflective/periodic/white/albedo)left boundary condition.

0/1/2/3/4 right boundary condition.

0/1/2/3/4 (inhomogeneoussource/keff/alpha or time absorption/concentration

searchldelta or cri.ttcalsize search) eigenvalue type.

O/Ztl/&2/31*4input flux guess and starting option. See Sec. 111.B.6.

O/klli2/i31k4/5 inhomogeneoua source input option. See Sec. 111.B.5.

1/2/3/4 (plane/cylindrical/spherical/two-angleplane) geometry option.

l/2/k3 (built-in Pn/built-in DPn/+: card Input, -: interface file) source of

SN quadrature constants w and p.

INTEGERS (1216)----------------------------------------------------------------------m 2

MT Total number of materials (cross section blocks including anisotropic cross

sections) in the problem.

MTP Number of input material sets from interface fi.1.eISOTXS. CAUTION: Each

material set from this file yields ISCT+lmaterials. See LMTP below.

MCR Number of input materials from the code-dependent input file. If MCR is neg-

ative, each MCR material is read as a single block on the FIIXIformat, termin-

ated by the FIDO terminator: T.

. .
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. . . ----- -... . . . ... .. ... . .,. ... . ..
4

5

6

7

8

9

10

11

12

MS

IHT

HIS

IRM

IDEN

IQAN

IQL

IQR

IAcc

Number ot mixture InstructIons. see sec. lL1.B.l.D. ana lcems MliiNUH,M~&U.M,

MIXDEN below.

Row of total cross section in the cross-section format. If IHT is flagged

negative, then n,2n scattering is present in the scattering matrices and cross-

section position IHT-4.

Row of within-group scattering cross section in the cross-section format. For

Problems with upscattering (IHS>IHT+l), IHS must be flagge~ ~e at~ve if #P is

present in the cross-section input table and to be removed. Not applicable

for FIDO format input.

Total number of rows in the cross-section format.

0/1 (no/yes) space-dependent density factors.

O/N (isotropic/N
th

order anisotropic) order of source anisotropy. NMQ

spherical harmonics source components are required input. CAUTION: ISCT21QAN

is required.

0/1 (no/yes) left boundary source.

0/1 (no/yes) right boundary source.

O/1/2/*3 (none/system rebalance/coarse mesh rebalance/Chebyshev,-: read

Chebyshev factors) inner iteration acceleration option.

CONTROL INTEGERS (716, TI1, 4I6)----------------------------------------------------------------C~ 3

1

2

3

4

5

6

7

8

9

10

11

OITN

IITL

TITM

IFISS

IPVT

IEDOPT

IPLOT

11

12

13

14

15

16

ITLIM

IFO

IANG

Maximum number of outer iterations.

Maximum number of inner iterations (per group) until 11 - AI < 10*EPSO.

Naximum number of inner iterations (per group) after 11 - kl < 10*EPSO.—

ONETRAN requires that II~>IITL.

1/2/3/4 (fission spectrumfzone-dependentfission spectrum/fissionmatrix/zone-

dependent fission matrix) type of fission fractions.

0/1/2 (none/keff/alpha) parametric eigenvalue trigger. Valid only for

IEVT>l if IPVT=l. Valid for all IEVT if IPVT=2.

0/1 (no/yea) edit option input.

0/1/2 (no/semi-log/linear)scalar flux plotting option.

0/1 (no/yes) input flux print suppression trigger.

O/1/2/3/4 (all/isotropic/none/allcell-centered/isotropiccell-centered) final

flux print trigger. The standard flux print contains both cell-centered and

cell-edge fluxes. The cell-centered options print only the cell–centered

fluxes, greatly reducing the volume of output.

0/1/2 (all/mixed/none)cross-section print trigger.

0/1/2 (none/all/cell-centered)final fission print trigger.

0/1/2/3 (all/unnormalized/normalized/none)source print trigger.

0/1 (no/yes) fine mesh geometry table print suppression trigger.

O/N (none/N second) time limit.

0/1 (no/yes) interface file output trigger.

O/~1 (no/yes) store of angular flux. TANG is negative for print of angular

flux. If IANG#O, the TIMEX angular flux file NTIMEX is written.

CONTROL FLOATING POINT DATA (6El2.4)------------------------------------------------------C~ 4

1 )32/ Eigenvalue guess. It is satisfactory to enter 1.0 for concentration search

(IEvT=3) and 0.0 for all other problems.

2 EVM Eigenvalue modifier used only if IEVT>l. See Sec. 111.B.9. above.
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3 Pv Parametric value of keff for subcritical or supercritical systems or a for l/v

time absorption. Used only if IPVT#O. See Sec. 111.B.9. above.

4 XLAL Lambda lower limit for eigenvalue searches. Default value is 0.01. See Sec.

111.B.9. above.

5 XLAH Search lambda upper limit. Default value is 0.5.

6 XLAx Search lambda convergence precision for second and subsequent values of the

eigenvalue. Default value is 10*EPSI.

CONTROL FLOATING POINT DATA (3El2.4)----------------------------------------------------------C~ 5

1 EPSI Inner iteration convergence precision. Default value is 1.E-4.

2 NORM Normalization factor. The total number of source (IEVT=O) or fission partf-

cles (IEVT#O) is normalized to this number if it is nonzero. No normaliza-

tion is performed if NOHM=O.O.

POD Parameter oscillation damper used in eigenvalue searches. Default value if

not entered is 1.0. See Sec. 111.B.9.

CONTROL FLOATING POINT DATA (2El2.4)-------------------------------------------------------------Mm 6

1 BHGT
-1

Buckling height (in cm if cross sections are in cm ). If BHGT is flagged

negative, the transport cross section in position IHT-3 is used for calcula-

tion of the buckling absorption.

2 BWTH Buckling width (plane geometry only).

3

3. Problem-DependentData

In the input data listed below, all the items

are dimensionless except for the source, flux, veloc-

ities, mesh specifications, cross sections, and

mixture densities. The dimensions of

these quantities are arbitrary in the following

sense. Macroscopic cross sections define a unit of
-1

inverse length (usually cm but occasionally km-l)

in which the mesh boundary valuea are measured. For

source problems, the flux will have the dimensions

of source/cross section where croaa section is the

quantity used in the calculation. Normally distri-

buted sources are in unita of particles/length3/

Block Name Number of

and Dimension Format Entries

IHR(IM) S(I) IM

WGT(MM) S(E) MM

u(MM) S(E) MM

C(IHM,IGM,MIN)

solid anglefsec (the energy-dependence is removed

by the multigroup approximation, i.e., /QdE is used,

aee Sec. 11.B.1.), microscopic cross sections are

in units of barns x length2/cm2, nuclide number den-
24

sities in units of 1.0 x number/lenRth3, and veloc-

ities in le~gthfsec, although Los Alamo~ velocities
-8

are habitually measured in units of length/10 s.

With the exception of the cross sections from

the code-dependent card input file, all the follow-

ing data are loaded by the LASL block loader using

the special formats described in Sec. 111.C. We

denote these formats by S(I) for integers and S(E)

for floating point numbers.

Comments

Number of fine mesh intervals in each coarse mesh.

SN quadrature weights. Enter only if IQUAD=+3.

SN quadrature B cosines. Enter only if IQUAD=+3.

Cross-section blocks. MIN=MCR+MTP*(ISCT+l). Three

options are available for reading cross sections. The

LASL input format may not be mixed with the FIDO format.

1. LASL Input. If MCR>O, MCR blocks of IHM*IGM numbers

are resd in a 6E12.5 format. Each block is preceeded

. .

by an identification card read in a 18A4 format.
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LMTP(MTP) S(I) MTP

Input flux guess S(E)

FLUX(NM,2,1T)

Input sources S(E)

Q(NMQ,2,1T)

QL(MM12)

QR(MM12)

2. FIDO Input. If MCR<O, MCR blocks of data are created

from FIDO input. The 14* card must not preceed the

FIDO input data.

3. Interface File ISOTXS. When MTP+O, MTP material sets

are read from standard interface file ISOTXS. on

this file each material set consists of ISCT+l cross-

section blocks for the isotropic and ISCT anisotropic

cross sections. The first (isotropic) component of

the first material is stored in cross-section block

MCR+l, the first component of the second material ia

stored in cross section block MCR+ISCT+2, etc.

Should the ISOTXS file not contain ISCT anisotropic

components, zeroes are supplied for the components

not present. If the ISOTXS file contains more com–

ponents than needed, only the first ISCT+l components

sre read. The maximum number of upscatter groups and

downscatter groups (MAXUP, NAXDN) in the ISOTXS file

must be consistent with the choice of IHT, IHS, and

IHM. If they are not consistent, this will be

flagged as an error.

Position numbers of material sets to be read from ISOTXS.

Do not enter unless MTP>O. The material sets are loaded

into the C block in tbe order they appear on the ISOTXS

file, and not in the order they appear in the LMTP array.

Number of entries depends on option. See Sec. 111.B.6.

ISTART Number of entries

-4 Angular flux from standard interface file on

unit IAFLUX.

-2 IT

-1 IGM

o None.

+1 NM sets of IGM.

+2 NM sets of IT.

3 Problem restart dump from unit NDMP1.

+4 Scalar flux from standard interface file on

unit ITFLUX.

Number of entries depends on option.

See Sec. 111.B.5. The sources are loaded as: (a) distri–

buted source (if any) for each group; for each anisotropic

component; (b) left boundary source (if any) and right

boundary source (if any); for each group. For IQOPT flag-

ged negative, an energy spectrum is input for each

(assumed isotropic) boundary source. For IQOPT positive

or zero, the complete angular distribution of the bound-

ary sources is input, a distribution for each group.
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RAD(IM+l)

IDC(IM)

CHI(ICM,IM)

VEL(ICM)

MIXNUM(MS)

MIXCOM(MS)

MIXDEN(MS)

RM(IM)

DEN(IT)

LB(IGM)

RB(IGM)

AF(IGM)

S(E)

S(I)

S(E)

S(E)

s(I)

S(I)

S(E)

S(E)

S(E)

S(E)

S(E)

S(E)

IM+l

IM

IGM

MS

MS

MS

m

IT

IGM

IGM

IGM

ZQE Number of entries for distributed source

o None.

*1 ICM; one for each NMQ components

*2 IT; one for each group; for esch NMQ components ‘

*3 2*IT; one for each group; for each ~Q

components

● 4 IGM and Z*IT; both for each NMQ components.

Coarse-mesh radii.

Cross-section msterial identification numbers. These

numbers assign a cross-section block to each coarse-mesh

interval. These numbers must be flagged negative for an

anisotropic scattering source to be calculated in that

coarse-mesh interval.

Fission fractions. Fraction of fission yield emerging in

each group. Msy be either a spectrum (Xg) or a matrix

(Xg,+g) and may be coarse-mesh zone-dependent. See Sec.

111.B.l.f.

IFISS Number of entries

1 IGM; single fission spectrum.

2 IGM*IM; IM seta of spectra loaded ss a single

block.

3 IGM sets of length IGM; single fission matrix,

loaded by rows in blocks of ICM length.

4 IGM sets of length IGM*R4: IM sets of matrices,

loaded by rows in blocks of IGM*IM length.

Group speeds. Used only in time-absorption calculations.

Numbers identifying cross-section block being mixed. See

Sec. 111.B.l.b. Do not enter If MS-O.

Numbers controlling cross-section mixture process. See

Sec. 111.B.l.b. Do not enter if MS=O.

Mixture densities. See Sec. 111.B.l.b. Do not enter if

MS=O.

Coarse-mesh radii modifiers. EnterSee Sec. 111.B.9.

only if T.EVT=4.

Fine-mesh density factors. Enter only if IDEN=l.

Left boundary group albedos. Enter only if IBL=4.

Right boundary group albedos. Enter only if IBR=4.

Chebyshev acceleration factors. Enter only if IACC=-3.

4. Edit Input

The edit input, entered only if IEDOPT=l, con- edit control integers and the zone_edit arrays sre

sists of control integers entered on cards indicated read first for all NZEDS edits, then the point edit

by EDIT 1, 2, or 3; and the remaining edit input control integers and point edit arrays are read for

entered in the special format through the LOAD sub- all NPEDS edits.

routine discussed above in Sec. 111.C. The zone-
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EDIT

ZONE

ZONE

CONTROL INTEGERS (216)-— --------------------------------------—----——-------------------—---EDIT 1

1 NZEDS Number of zone edits.

2 NPEDS Number of point edits.

EDIT CONTROL INTEGERS, Enter only if NZED > 0 (4I6)----------------------------------------------EDIT2

1 Nz Total number of zones.

2 NCA Number of constituent activities calculated.

3 NNA Number of microscopic activities calculated.

4 NORMZ Zone identification number for normalization of power density.

If NORMZ=O, whole system normalization ia performed.

EDIT ARRAYS THROUGH LO~-------------------------------------------------------------------

IDCA(NCA) S(I) NCA Cross-section material identification numbers for con-

stituent activities. Enter only if NCA>O.

IDNA(NNA) S(I) NNA Cross-section material identification numbers for micro-

scopic activities. Enter only if NMA>O.

NEDZ(IT) S(I) IT Zone identification numbers. These numbers assign a zone

number to each fine-mesh interval.

POINT EDIT CONTROL INTEGERS, Enter only if NPEDS > 0 (2I6)------------------------------------------EDIT 3

1 NIPE Number of fine-mesh intervals to be included in the point edit.

2 NPNA Number of microscopic activities calculated in the point edit.

POINT EDIT ARRAYS THROUGH LO0------------------------------------------------------------------------

IDMA(NPNA) S(I) NPNA Cross-section material identification numbers for

microscopic activities.

NEDP(NIPE) s(I) NIPE Fine-mesh identification numbers to be included in the

point edit. Do not enter if NIPE=IT (point edit over

all fine-mesh intervals).

E. Output Description for a Teat Problem

The ONETRAN program comes with a set of twelve

test problems plus an example problem designed to

illustrate many of the ONETRAN options whose out-

put is presented on the following pages. Each page

of the output ia numbered, and we refer to these

numbers in the text below.

The problem is a
239

Pu cylindrical core con-

taining a central absorbing rod and a weakly aniso-
238

tropic scattering U (with some
239

Pu) blanket.

The object of the calculation is to obtain the crit-

ical thickness of the Pu core, maintaining the ab-

sorber and blanket radii constant. Aa seen from

the first output page (l), the problem la run with

S4 angular quadrature, three energy groups, and

coaracmesh rebalance acceleration of the inner it-

erations. The fission fractions are zone-dependent

fission matrices with the values:

[

.6 .3

239pu) = .4
‘g’%’(

.5

.4 .4

[

.7 .25

‘g‘*g
(238U) = .6 .35

.5 .45

1
.1

.1

.2

1
.05
.05

.05

All the integer and floating point input control

data is printed on output page (l). The SN angular

quadrature coefficients are the built-in S4 Gaussian

quadrature set and are printed on output page (2).

The level index, level weights, and level cosine

columns refer to the u levels of Fig. 5. The LI,

XI, and PHI columns refer to the ~ level index, ~

angle cosine, and @ angle of Fig. 5. The remaining

problem input is printed on output pages (2) through

(4).
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The coarse mesh and material map is printed on (e)

output page (4), indicating anisotropic scattering

in the blanket and five fine-mesh intervals in each

coarse mesh. The cross-section mixing instructions,

the mixed cross sections, the coaraeaesh snd fine-

mesh geometry tables, and the fission fractions fol-

low on output pages (4) through (6). Following the

summary of convergence precision on output page

(7), a monitor of the calculation is printed. The

“rebalance convergence” column contains the maximum (f)

deviation from unity of any rebalance factor for

the coarse-mesh rebalance performed on each outer

iteration. The lambda column is the A factor of

Eq. (58). The eigenvalue in this case is the EV of

Eq. (66).

On output page (8), the system balance tables

for each group and the group sum are printed. These
(g)

group-dependent quantities are computed

tine SUMS and defined as follows:

(a)

(b)

(c)

(d)

SOURCE = total inhomogeneous

in subrou-

‘%Tti - %T~
source = QG =

g

QRm +
x

“m Pm A% QLm,

where Qi is the inhomogeneous distributed

source, QLm is the left boundary source,

and QRm is the right boundary source;

FISSION SOURCE = total fission source to

group g = FG =
g

IGM ~~

z ‘h+g x
(Wf)h @i hvi;

,
h=l i=l

SELF-SCATTER = self-scatter in group

g=ss=
g.-

‘-4)~“:,g+g‘i ‘i’
i=l

OUT-SCATTER

SOUT =
g

I
ABSORPTION = absorption in group g = ABG =

g
.?..
L1

Eu’
a,g ‘i ‘i’

i+

where 0’ is the absorption cross sec-
a,g

tion for group g plus any buckling ab-

sorption plus any time absorption (EV/vg);

IN-SCATTER = in-scatter source to group

g=SIN=
g

~.,;h+g~,i,hvti
h=l i=l
h+g

RIGHT LEARAGE = Net current out of system

right bcundary = RL =
g

= out-scatter

‘i‘

from group g =

t ~ is the total cross section forwhere a’

group g Pius any buckling absorption plus

any time absorption (EV/vg);

. z WmUrn A
IT+% ‘m,IT+%

‘m>i)

-z

t
wm I~mI‘lT+~ ‘m,IT-P+;

‘m;O

(h) NET LEAKAGE = Net current from the whole

system = NL = RL
g g

- (F~-~)

=RL
g
-(

z ‘m ‘m ‘% ‘m,%

‘m>l)

wmluml~ $m,+);

Um<o

and

(i) NEUTRON BALANCE = BAL
g

NL +ABG +SOWl?
. 1- ~.

QGg+FGg+ ST.Ng

A repeatof the convergence parameters, the final

iteration monitor and the final coarse-mesh radii fol-

low the balance tables. Output pages (9) through

.
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(11) contain the scalar fluxes and fission rates

for each group. The cell-centered flux is simply

the average of the the two cell-edge fluxes, $l&.

The fission rate is printed on the cell-centered

format, reducing the amount of printed output for

this array by a factor of seven. The zone edit

begins on output page (12) with the print of the

zone edit input arrays. The edit zones are seen to

be identical to the coarse-mesh material zones. The

constituent activities are calculated for materials

2( 239Pu) and 3 (238U). These are followed by the

zone relative power densities (normalized to the

whole system).

The point edit begins on output page (14) with

the print of the point edit input. This edit cal-

culated the pointwise activities for material 1

(absorber) over the first five mesh intervals (coarse-

mesh zone 1).

Following the point edit output, the messages

indicating the successful completion of the plot and

the writing of the Interface file output. output

page (15) shows the semilog plot of the scalar flux.
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IV, PROGRAMMINGINFOR~ATION

In this section we give some of the details

of the ONETRAN program. The material contained in

this section is designed to help in the local modi-

fication of the program. Much supplementary infor-

mation is provided by the program comment cards.

3. Definition of Variables In Common Blocks

Tables IX and X define the variables stored

in blank common block IA and the named connnonblock

of olW3TRAN. The container array, A, for problem

data is also in blank common. Block IA contains

problem input parameters, first word addresses of

data stored in the A array, and_data genera:ed by

the program.

A. Program Structure

1. Role and Function of Subprograms

We describe in Table VII the function of all

the subprograms in ONETRAN.

2. Relation of Problem Variables and
Program N!!emonics

In much of the material in this manual we have

used variables actually appearing in the FORTRAN of

the program. A list

lem variable symbols

given in Table VIII.

Subroutine

ONETRAN

INPUT1

INPUT2

SNCON

IFINSN

CSPREP

IFINXS

RRADF

IFINF

READQ

IFINQ

of the relations between prob-

and program variable names is

TABLE VII

FUNCTION OF ONETRAN SUEROUTINES

Nain driver of program. Initializes program parameters; calls input, initialization,

computation, and output routines.

Reads header and control

of input data.

Calculates commonly used

input subroutines;

put data.

Reads or generates

spherical harmonic

Reads SN constants

reads

Input Functions

integer and floating point variables, performs some checking

integers, large and small core storage pointers; calls various

problem-dependent Input arrays, performs more checking of in-

SN quadrature

polynomials.

constants; calculates some indexing arrays and

from interface file ISNCON.

Reads cross sections in standard LASL format, FIDO format, or from interface file by

calling IFINXS. Prints cross sections, performs ad-jointtranspositions and reversals

of cross sections,

Interface input of

Reads initial flux

Reads initial flux

ITFLUX or IAFLUX.

Reads distributed

IFINQ.

Reads distributed

checks cross sections, and stores cross sections in LCM.

cross sections from standard interface file ISOTXS.

guess from cards or standard interface file by calling IFINF.

guess, either scalar or angular flux, from standard interface file

and boundary sources from cards or

and boundary sources from standard

standard interface file

interface file FIXSRC.

by calling
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Subroutine

INITAL

GEOFUN

INITQ

LNITF

MONITR

OUTER

SOURCE

INNER

SETBC

REBAL

Suus

GREBAL

NEWPAR

SUMARY

FINAL

EDIT

ZEDIT

PEDIT

IFRITE

TIMEXF

TABLE VII (continued)

Function

Initialization Functions

Performs mixing of cross sections, modifies coarse-mesh boundaries for critical size

calculations, calculates geometric functions by call to GEOFUW, initializes inhomo-

geneous sources by call to INITQ and fission arrays by call to INITF, calculates

macroscopic cross section arrays.

Calculates various geometric functions on the coarse and fine mesh.

Generates volume and surface integrals of inhomogeneous sources for rebalance, normal-

izes sources, stores boundary sources in boundary flux array.

Computes x v~f array for fission source and transposes for adjoint problems, calculates

volume integral for fission source and normalizes fluxes.

Computation Functions

Prints r&um6’ of convergence parameters, monitor line headings, and outer Iteration

monitor data.

Performs a single outer iteration, contains the group loop. Calculates source to the

group by call to SOURCE, performs the inner iterations by call to INNER, calculates

group sums by call to SUMS.

Calculates source to the group from inhomogeneous sources, fission in all groups, and

inscattering from other groups. Calculates total source for inner iteration rebalance.

Performs the imer iterations for a group. Adds within-group scattering to source,

performs sweeps over space-angle mesh, solving the 2x2 system for the edge angular

fluxes, calculates rebalance flows and absorption, performs rebalance or Chebyehev

accelerations, and checks convergence of inner iterations.

Sets the angular flux boundary condition on either the left or right boundary. Called

by INNER.

Performs inversion of tridiagonal matrix for group coarse-mesh rebalance factors.

Called by INNER and GREBAL.

Accumulates quantities in system balance table for each group. Renormslizes fission

source to group and calculates A for k calculations.
eff

Computes fission source, normalizes fission source and flux moments, computes group

rebalance factors by call to REBAL and performs outer iteration acceleration.

Computes new parameters for implicit eigenvalue search.

Output Edit Functions

Prints system balance table for each group and final iteration monitor line.

Controls final edit output. Prints flux moments, angular flux, and fission rate by

call to EDIT. Reads zone and point edit input. Allocates temporary storage for edita

and performs zone and point edits by call to ZEDIT and PEDIT. Calls PLOTTR routine if

specified. Writes interface file output by call to IFRITE.

Prints scalar flux and components, angular flux, and fission rate.

Calculates zone macroscopic activities, constituent activities, microscopic activities,

and power densities.

Calculates pointwise microscopic activities.

Writes interface files SNCONS, FIXSRC, RTFLUX or ATFLUX, and RAFLUX or AAPLUX.

Writes angular flux file NTIMEX for initial condition to TIMEX code. Called by FINAL.

. .
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TABLE VII (continued)

Subroutine

Service Routines

Reads or writes restart dump.

Printa input control integer and floating point variables.

Draws material map of system.

Los Alamos data loader.

Generalized output routine for printing ID, 2D, or 3D arrays, either integer or float-

DUMPER

PRINTP

MAPPER

LOAD

WRITE

ing point.

Prints error messages and sets fatal error trigger.

Handles all binary reading operationa including rewind and bulk memory

Handles all binary writing operations including end of file and rewind

transfers.

Plots scalar flux on film file NFILM. Calls numerous system-dependent

routines.

ERROR

REED

RITE

transfers (LCM).

and bulk memory

plottingPLOTTR

TABLE VIII

RELATION OF PROBLEM VARIABLES TO PROGRAM MNEMONICS

Program

Nnemonic

PN(NM,MM)

.Problem

Variable

Rn(~)

Refer to —

Eqs. (10),(11)

Subroutine

SNCON,INNER

n
‘a’vuf’c’us,h+g

w
m

IJm

C(IHM,MT) SOURCE,INNER Sec. 11.B.1.

WGT(MM) SNCON,INNER Sec. 11.B.2.

Sec. 11.B.2.U(MM) SNCON,INNER

WMU(MM) SNCON,INNER

INITAL,INNER

Sec. 11.B.2.Wm vm

s

0°
S>S%

am#+l”m

m-%fwm
a

%&,

‘%4?5

‘k

‘k

z.
1.

v-, v+

A-,A+

Source to group moments

Flux moments, inner iteration L+l

Scalar flux, inner iteration f.

Scalar flux, inner iteration k-l

‘i-%’si-P*

cT(IT) Sec. 11.B.1.

CS(IT) INITAL,INNER Sec. 11.B.1.

BP(MM) SNCON,INNER Sec. 11.B.2.

BM(NM) SNCON,INNER Sec. 11.B.2.

FL(IM+l) INNER,REBAL Eq. (45)

Eq. (46)FR(IM+l) INNER,REBAL

AB(IM) Eq. (47)INNER,REBAL

F(IM)

Z(10,IT)

INNER,REBAL

INNER

Eq. (49)

Table V
.

V(2,1T)

AI(IM+l)

Q(NM,2,1T)

FLUX(NM,2,1T)

FLUXA(2,1T)

FLUXB(2,1T)

S1,S2

INNER

INNER

SOURCE,INNER

- INNER

INNER

INNER

INNER

Table V

Table V

Sec. 11.B.2.

Sec. 11.B.2.

Eq. (44)

Eq. (44)

Sec. 11.C.
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Program

Mnemonic

PSIB

AFE(NLEV,IT)

AFC(2,1T)

AF1,AF2

RNORM

CN

EVR

ALA

XLA

EV

Position Name

1 ITH

2 ISCT

3 ISN

4 IGM

5 m

6 IBL

7 IBR

8 IEVT

9 ISTART

10 IQOPT

11 IGEOM

12 IQUAD

13 MT

14 MTP

15 MCR

16 Ms

17 IHT

18 IHS

19 IHM

20 IDEN

21 IQAN

22 IQL

23 IQR

24 IACC

25 OITM

26 IITL

Subroutine

INNER

INNER

INNER

INNER

INNER

INNER

SOURCE,GREBAL

GREBAL

GREBAL

GREBAL

TABLE VIII (continued)

Problem

Variable

@b

$&+

‘J’i*+

+i.~s 4i*

l/P(B)

‘%+1

Ilkeff

a

a
x

Eigenvalue

TABLE IX

CONTENTS OF BUNK COMMON BLOCK IA*

Refer to

Eq. (35)

Sec. 11.C.

Eq. (35)

Eq. (35)

Eq. (52)

Eq. (55)

Sec. 11.D.5.

Eq. (58)

Sec. 11.D.7.

Sec. 111.B.9.

Pointer for Array Remarka

Theory

Scattering order

SN order

.

Number of energy groupa

Number of coarse+nesh intervals

Left boundary condition indicator

Right boundary condition indicator

Eigenvalue type specification

Starting option indicator

Source input option indicator

Geometry indicator

Source of SN constants indicator

Total number of materials

Number of cross-section materials from ISOTXS file

Number of cross-section materials from cards

Number of mixture instructions

Position of total cross section in table

Position of self-scatter cross section in table

Cross-section table length

Space-dependent density fsctor trigger

Distributed source anisotropy order

Left boundary source trigger

Right boundary source trigger

Inner iteration acceleration option indicator

Outer iteration limit

Inner iteration limit until 11 - xl < 10*EPSO

.

. .

*
Blank entries are available for future use.
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TAELE IX (continued)

Position

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

?l

72

Name

IITM

IFISS

IEDOPT

IPLOT

ITLIM

IPVT

IFO

11

12

13

14

15

16

IANG

EV

EVM

Pv

XLAL

XLAH

XLAX

EPSO

EPSI

EPSX

EPST

POD

NORM

Pointer for Array Remarks

Inner iteration limit after II - al < 10*EPSO

Fission frsction-type indicator

Edit option trigger

Plotting option trigger

Time limit for problem

Parametric eigenvalue trigger

Interface file output trigger

Input flux print suppression trigger

Final flux print indicator

Cross-section print indicator

Final fission print trigger

Source print indicator

Fine-mesh geometry print suppression trigger

Angular flux storage indicator

Eigenvalue

Eigenvalue modifier

Parametric value of keff or alpha

Search lambda lower limit

Sesrch lambda upper limit

A convergence precision

Outer convergence precision

Inner convergence precision

Outer rebalance convergence precision

Chebyshev norm convergence precision

Parameter oscillation damper

Normalization amplitude
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Position Name

73 BHGT

74 BWTH

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

TIME

TOUT

IDUMF

EPSR

TIMBDP

TACC

IGCDMP

TIN

TSLDMF

NLEV

MIN

IHNN

IHF

IHA

MM

NM

NMQ

M2

NN

1P

IGP

IHMT

ISCP

M2P

IHTR

TASLE IX (continued)

Pointer for Array Remarks

Buckling height

Buckling width
.

Problem execution time

Time in OUTER routine

Time limit dump trigger. Set in OUI’SR

Convergence precision in REBAL for periodic bound-
ary condition

Time before dump

Time accumulated in OUTER

Group Index when dump was taken

Time for INNER

Time since last dump

Number of quadrature < levels

Total number of input cross-section blocks =
MCR+ MTP*(ISCT+l)

Position of u in cross-section table = IHT-4
n,2n

Position of Wf in croaa-section table - IHT-1

Position of us in cross-section table = IHT-2

Number of quadrature angles

Number of spherical harmonic and flux moments

Number of diatrfbuted source moments

MM/2

ISN/2

Number of cosrse-mesh points = IM+l

T.GM+l

I~*MT

ISCT+l

M2+l

Position of U in cross-section table = IHT-3
tr

I

.

“.
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Position.

116

117
.

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152
.

153.

154

155
,“

156

157

158

159

160

Name

ITP

IMGP

IT

IPGP

IFISP

LFLM

EVR

XM

XEND

LAST

LIHR

LW

LU

LWM

LBP

LBM

LDM

LUB

LWB

LUSTRT

LPN

LLI

LI?T

LC

LCT

LCS

LCA

LDC

LMN

LMC

LMD

TABLE IX (continued)

pointer for Array Remarks

Number of fine mesh points = IT+l

~*I@f

Number of fine mesh intervals

Ip*I@f

Zone-dependent fission fraction trigger

Last address of flux block

Eigenvalue reciprocal = l/EV

IN for zone-dependent fission fractions, 1 otherwise

Last LCM position used

Last small core position used

IRR(IM+l)

w(m)

U(MM)

WM(MM)

BP(MM)

BM(MM)

MD(MM)

UB(ISN)

WB(ISN)

USTRT(NLEV)

P(NM,MM)

LI(NM)

m(2*IscT+l)

C(IRM,MT)

CT(IT)

CS(IT)

CA(IT)

IDC(IM+l)

MIXNUM(MS)

MIXCOM(MS)

MIXDEN(MS)

Number of fine-mesh intervals per coarse mesh

Point weights

Point cosines

Point weLghts*cosines

am+%’wm

am_41wm

Reflected direction index

Level cosines

Level weights

Starting direction cosines

Spherical harmonic functions

Level indices

Factorials

Cross-section blocks for a group

Total cross-section * density

Self-scatter cross-section * density

Absorption cross-section * density

Cross-section identification number for each coarse-
mesh interval

Mixture numbers

Mixture commands

Mixture densities

61



Position

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

Name

LDEN

LQ

LQR

LQL

LFL

LFLA

LFLB

LBL

LBR

LAFE

LAFC

LB1

LB2

LRAD

LIDR

LH

LAI

LV

LZ

LR

LRM

LRDA

LDEL

TABLE IX (continued)

Pointer for Array Remarks .

DEN(IT) Fine-mesh densities

Q(NM,2,1T)

QR(MM/2)

QL(MM/2)

FLUX(NM,2,1T)

FLUXA(2,1T)

FLUXB(2,1T)

BL(MM)

BR(MM)

AFE(NLEV,IT)

AFC(2,1T)

Bl(MM/2)

B2(MM/2)

RAD(IM+2)

IDR(IT+2)

H(IM+l)
.

AI(IT+l)

V(2,1T+1)

Z(10,IT)

R(IT+l)

RM(IM+l)

RADA(IM+l)

DEL(IM+l)

Distributed source moments

Right boundary source

Left boundary source

Flux moments

Scalar flux for iterate k-1

Scalar flux for iterate k-2

Left boundary flux

Right boundary flux

Edge angular flux for angular extrapolation

Mesh cell edge angular flux

Left boundary flux, previous iteration

Right boundary flux, previous iteration

Coarse-mesh boundary radii

Coarse-mesh zone identifier on the fine mesh

Fine-mesh ArL in each coarse mesh

Fine-mesh area elements

Fine-mesh volume elements

Finite element polynomial on the fine mesh

Fine-mesh radii ri

Coarse-mesh modifiers for delta calculations

Modified coarse+nesh boundaries

Coarse+uesh thickness

.

.
.

“.
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Position Name

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243
!.

244

245
..

246

247

248

249

250

LQG

LFG

LSIN

LSS

LSOU

LRL

LNL

LABG

LBAL

LCHI

LVEL

LAP

LLB

LRB

LF

LFR

LFLL

LAB

LQQ

LQQG

LCR

LHA

LGA

LFGG

LSGG

LENC

LENQ

LENF

LENS

LNAF

LNFS

TABLE IX (continued)

Pointer for Array Remarks

QG(IGP)

FG(IGP)

SIN(IGP)

SS(IGP)

SOUT(IGP)

RL(IGP)

NL(IGP)

ABG(IGP)

BAL(IGP)

CHI(IM,IGM)

VSL(IGP)

AF(IGP)

LB(IGP)

RB(IGP)

F(IM,IGM)

FR(IM+l,IGM)

FL(IM+l,IGM)

AR(IM)

QQ(IM)

QQG(IM,IGM)

CR(IM,IGM)

HA(IM)

GA(IM)

FGG(IM,IGM)

SGG(IM,IGM)

Tnhomogeneous source to a group

Fission source to a group

In–scatter to a group

Self-scatter in a group

Out-scatter from a group

Right boundary net leakage for a group

System net leakage for a group

Absorption in a group

Balance number in a group

Fission matrix (X VUf) or fission fractions x

Group speeds

Chebyshev acceleration factors for each group

Left boundary group albedo

Right boundary group albedo

Coarse~esh rebalance factors

Coarse-mesh boundary right flows

Coarse-mesh boundary left flows

Effective rebalance absorption

Total rebalance source (fission + in-scatter +
inhomogeneous)

Total inhomogeneous source on the c~rse mesh

Effective absorption on the coarse mesh

Work vector for rebalance inversion

Work vector for rebalance inversion

Fission matrix x VUf/EV

Scattering matrix

Length of LCM cross-section block: LDC-LC

Length of LCM inhomogeneous source block: LFL-LQ

Length of LCM flux block: LAFE-LFL

Length of LCM source to group block: NM*2*IT

Length of LCM angular flux block: 2*IT

Length of LCM fission spectrum: IM*IGM
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Position Name

251 LNFG

252 LNSG

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

KC

KQ

RF

KS

KAF

KFS

KAPST

KFG

KSG

ALR

ALL

SUMMUL

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

SUMMUR

OITNO

IITOT

El

E2

E3

EVP

EVPP

ALA

ALAR

XLAP

XLAPP

EVS

ICNT

TS

IITNO

G

TF

AFA or AF

NGO

NGOTO

TABLE IX (continued)

Pointer for Array Remarks

Length of LCM fission matrix block: IM*IGM
.

.
Length of LCM scattering nmtrix block: T.M*IGM

Origin of LCM cross-section array

Origin of LCM source array

Origin of LCM flux array

Origin of LCM source to group array

Origin of LCM angular flux array

Origin of LCM fission spectrum array

Origin of LCM starting direction angular flux array

Origin of LCM fission matrix array

Origin of LCM scattering matrix array

Right boundary albedo for a group

Left boundary albedo for a group

X Wm pm for leftward directions
m

E w M for rightward dlrectiona
mmm

Outer iteration number

Inner iteration total

l-a

Rebalance factor error

Eigenvalue for previous outer iteration

Eigenvalue for previous-previous outer iteration

a

A for previous outer iteration

Ax for previous iteration

ix for previous-previous iteration

Eigenvalue slope, used in NENPAR

NEWPAR trigger to indicate II - al < XLAL

Total source to a group

Inner iteration number

Group index

Total fission source to a group

Chebyahev acceleration factor for a single group

Convergence trigger set in NEWPAR

P\oblem path trigger set in GREBAL

I

..
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TABLE IX (continued)
I

Position Name
.

296 ICONV#
297

Pointer for Array Remarks

Inner iteration convergence trigger ~

298

299

300

TABLE X

CONTENTS OF NAMED COMMON BI,OCK/UNITS/

The named common block UNITS contains the symbolic namea of all input, output, and scratch devices re-

quired by ONETRAN and which are set in the main program ONETRAN.

Position

1

2

3

4

5

6

7

8

9

10

11

12

Name

NINP

NOUT

NDMP1

NDMP2

ISNCON

ISOTXS

IFIXSR

IAFLUX

ITFLUX

NFILM

NEXI’RA

NTIMEX

Contents and Remarks

Problem code-dependent decimal input

Problem decimal output

First restart dump unit

Second restart dump unit

Interface form of SN constants

Interface form of multigroup cross section file T.SOTXS

Interface form of inhomogeneous source (Q-source)

Interface form of angular flux

Interface form of total flux

Plotting routine output

Scratch unit used in subroutine LOAD

Special angular flux file for TIMEX initial condition

4. Machine-Dependent Subprogram

a. LCM System Routines

LCM (large core memory).is a large bulk

memory from which blocks of words may be quickly

transferred to or from SCM (small core memory).

This random bulk memory is accessed through two

system routines — ECRD (transfer LCM to SCM) and

ECWR (transfers SCM to LCM) -- which process con-

secutive words of SCM and consecutive words of LCM

given an SCM address and a pointer value for LCM.

The pointer value given may be thought of as the

index of a container array. To”read from or write

into a block of core, it is necessary to provide

the read/write routines with the core origin, the

LCM pointer value and the number of consecutive

wOrds to be transferred. For example, if we con-

sider reading the entire FLUX block for group IG

from LCM to SCM, we would have the FORTRAN IV

statements

CALL REED(O,XF+(IG-l)*LENF,FLUX,LENF,l)

which is equivalent to

CALL ECRD(FLUX,KF+(IG1)*LENF,LENF,IER).

In these statements FLUX is the SCM container array,

KF+(IG1)*LENF is the location of the first word of

the IGth group flux array in LCM, and LENF words

are transferred. IER is an error indicator.

b. General System Routines

Additional system routines required by

the code are SECOND (obtains current time), DATE1

(obtainacurrent date), ATAN (arctangent), SQRT

(floating-pointsquare root), EXIT (returns control

to system for next job), COS (cosine), and SIN (sine).
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Use of an end-of-file test is made in INPUTI

to detect the last caae of a sequence of cases. The

test must be replaced by an equivalent statement to

obtain a normal exit.

The subroutine PLOTTR, which plots the scalar

flux on a film file NFILM, calls several LASL plot-

ting subroutines. These 15 routines are described

with comment cards in the code listing to facili-

tate the user’s conversion of the routine to the

plotting software of his installation.

B. External and Internal Data Files

All files used for input, output, and scratch

data are referred to by symbolic name throughout

the code. The user may easily change the physical

unit aasigned a file by modification of the symbol-

ic name which is initialized in the main program of

ONETRAN. Table XI indicates the files required by

ONETRAN.

c. Hardware Requirements .

The ONETRAN code does not require any special

hardware. The LASL CDC 7600 provides 65K (decimal)

SCM and 512K LCM 60-bit words. Only 370K LCM are

available to the user with the operating system

and buffers using the remainder. Type 7638 disk

units provide 84 million decimal words of peripher-

al store per unit.

D. Software Requirements

1. CDC Machines

The code was designed to operate on the CDC

7600 under the CROS operating system
17 which was

developed at Los Alamos. The system uses the CDC

RUN compiler with a CDC optimizer attached. The

disk units provide storage for input, output,

scratch, and resident files.

2. ONETRAN for the IBM-360

Although ONETRAN was written for the CDC 7600,

the coding was performed so that the conversion to

the IBM-360 would involve as few changes as possi-

ble. Past experience has found that the four-byte

(single precision) floating-point mode is adequate

for most problems.

The major change made in the conversion of

ONETRAN is the treatment of peripheral

The vast amount of fast core available

360 is one of the cheaper resources of

66

storage.

on the IBM-

that machine.

Thus the data normally stored in LCM (large core

memory) is stored directly after the A container

array in fast core. The CDC 7600 system routines .

ECRD and ECWR in subroutines REED and RITE, respec-

tively, are replaced by simple routines which move

data to and from sections of the A container array. “

It is thus possible to keep the LCM pointer struc-

ture of the code with no change in logic and with a

slight overhead in time for data movement.

In addition to the storage reorganization, the

following changes are made to eEfect the IBM con-

version of ONETRAN:

1.

2.

3.

4.

5.

The subroutine DATE1, called from INPUT1,

must be provided by the user to return

the date as an A8 word. A local system

routine must be provided for SECOND to

return the floating-point value of the

current time in order for the periodic

and time limit dump optiona to work.

A separate subroutine is provided to

process the FIDO cross-section format.

The CDC 7600 algorithm to read this format

uses a rewind command, resulting in a

prohibitively large amount of wait time

on IBM systems.

Hollerith 6H constants throughout the code

are typed as double precision (REAL*8).

The IF(EOF,NINP) CDC job termination test

in INPUT1 ia replaced with a read using

the IBM END parameter.

Several options are present in subroutine

REED to treat the reading of interface

file identification records. The informa-

tion in this identification record is

presently bypa?sed by dummy reads.

E. Programming Considerations

1. Storage Management

a. Variable Dimensionin~

A single container array, A, in common is .

used for the blocks of data required in executing

a problem. The storage of all data is consecutive

and compact in the A array so that the size of a “.
problem is limited by the total storage required

rather than by the size of individual parameters.

A pointer word is associated with each data block

and is used to index A to locate the block. Fnr

example, LFL ia the first word address of the flux



TAELE XI

ONETRAN FILE REQUIREMENTS

Name

NINP

NOUT

NDMP1

NDMP2

NEXTRA

IAFLUX

ITFLUX

ISNCON

IFIXSR

ISOTXS

NFILM

TIMEX

Logical

Unit

10

9

7

5

18

31

30

32

33

34

12

15

Contenta Remarks

Problem code-dependent decimal The user may wish to equate this file to
input. the system input file.

Problem decimal output. The user should equate this file to the
system decimal printed cutput file.

Restart dump. This unit is used to receive the first re-
start dump when the problem is not restart-
ed from a previous dump. The unit must
contain the restart dump information when
the problem is restarted and will then be
used to receive the second restart dump
(NDMP2 receives the first dump).

Second restart dump unit.

The file is used in the decimal mode by
subroutine LOAD for Hollerith conversions
rather thsn the core-to–core conversions
given by the FORTRAN statements of ENCODE
and DECODE on CDC machines.

Restart dump.

Scratch file.

Interface form of total flux
(either adjoint or regular).

Interface form of angular flux The code requires that this unit be used
(either adjoint or regular). when a flux guess is requested from the

angular flux interface file. The unit is
rewound and the records of the first file
are used as the input guess. output of
the angular fluxes in interface form is
also placed on this file. The file is re-
wound prior to processing the fluxes and an
end of file is placed on the file after the
last write. Data for one problem only is
kept on this file.

The code requires that this unit be used
when a flux guess is requested from the
total flux interface file. The unit is re-
wound and the records of the first file
are used as the input guess. The inter-
face form of the total flux is prepared on
this file as problem output by rewinding
the file and writing the file in standard
format. An end of file is placed on the
file after the last write instruction.

Interface form of SN constants. When the file is used as input, the file is
rewound and read. When used as output the
file is rewound and written, including an
end of file.

Interface form of both dLstri- This file is used as input for the cell-
buted and boundary sources. centered inhomogeneous source. Boundary

sources (if any) are also obtained from
this file.

Interface form of the cross- This file is only used as input when cross
section multigroup file ISOTXS. sections are requested from an interface

file library.

Film file. This file is used as output of the plotting
subroutine PLOTTR. The LASL plotting soft-
ware generates a magnetic tape that is used
to generate film output by an FR-80 or SC-
4020 film recorder. The PLOTTR routine
could be modified by the user to generate
CALCOMP plotter output.

The subroutine TIMEXF generates a binary
file of angular fluxes to be used as initial
conditions by the TIMEX code.

TIMEX angular flux file.
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block in A and A (LFL) is the first word of the flux

array. When subroutine calls are written, the ad-

dress of a data block, say A(LFL), is passed through

the argument call. In the subroutine the data block

ia variably dimensioned so that it may be easily in-

dexed by its subscripts, e.g., FLUX(N,I,J).

b. Allocation of Large Core Memory (LcM)

The allocation of storage in large core

memory (LCM) is handled in the same manner as core

storage. Most of the group-dependent arrays are

stored in LCM so the dimensionality is ICM times the

core requirement of the array. For example, there

are IGM*NM*2*IT LCM locations required for

FLUX(NM,2,1T).

Certain blocks of data are stored contiguously

in core so that they may be read in and out of LCM

in a single stream. For example, the flux block

includes FLUX(NM,2,1T), FLUXA(2,1T), FLUXB(2,1T),

BL(MM), and BR(MM). The first word of this block

is LFL, and the last word is LAFE-1. The cross-sec-

tion block includes the cross sections C(IHM,MT),

the total cross section, CT(IT), the scattering

cross section, CS(IT), and the absorption cross sec-

tion CA(IT). The first word of this block is LC,

and the last word ia LDC-1. A complete list of LCM

storage is given in Table XII.

c. Computation of Required Storage

The easiest way to compute the storage re-

quired by a problem is to load the problem for a

short run and let the code compute LAST, the amount

of SCM and LASTEC, the amount of LCM. The computa- .
tion is made very early in problem execution and

this result is printed before most of the data is

read. An approximate formula for I.ASTia

LAST=MT*IWM + IT*(24+NLEV+4*NM)+7*IM*IGM

The amount of LCM is given by

LASTEC=IGM*(MT*IHM+2*NM*2*IT+3*MMi-5*IT+3*IM*IGM)

+ NM*2*IT+ConditionalBlocks

where the conditional block size is

2*IT if IACC = f 3

plus

2*IT*I~*(MM+~EV) if IANG + o.

d. Temporary Storage Requirements

The amount of fast core storage actually

calculated for LAST ia the maximum of two quantities.

The total SCM required for problem execution and

temporary SCM required for problem input. Usually,

the problem data requirement i.amuch larger than

the temporary storage requirement during Input, but

occasionally, the input-cross-sectionrequirement

(I~*IHM) is largest.

TABLE XII

LCM STORAGE PARAMETERS

LCM First

Word Address

KC

KQ

KF

KFS

KFG

KSG

KS

KAF

KAFST

Length per Block

LENc=T.HM*m+3*IT

LENQ=NM*2*IT+2*MM/2

LENF=NM*2*IT+2*(2*IT)+2*MM

LNFS=IGM*IM

LNFG=IGM*IM

LNSG=IGM*IM

LENS=NM*2*IT

LNAF=2*IT

LNAF=2*T.T

Number of

Blocks

IGM

IGM

IGM

IGM

IGM

KM

.
J.

MM*IM

NLEV*IGM

Contents

Cross-section blocks by group

Inhomogeneous distributed and boundary
sources

Scalar flux and moments, boundary fluxes,
and fluxes from previous iterations

x or x Wg array for each group

X Vuf $ array for each group

Us @ array for each group

Source to group array

Angular flux array by group. Stored only
if IANG#O

Starting direction angulsr flux array by
group. Stored only if IANG#O

.
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At the end of problem execution, additional

temporary storage is required to perform the edits.
.

This temporary storage is reallocated foreach zone
,

and point edit. Temporary storage is also required

if the interface file output is requested. This

temporary storage is also usually less than the

problem data storage. The actual allocation is

performed in subroutine FINAL.

e. Overstorage of Data in Core

In ONETRAN, a certain amount of overstor-

age is used to reduce the total amount of small core

memory (SCM) required; i.e., more than one array nay

reaide in the same SCM location as the problem pro-

gresses. This is done primarily with the CHI(IM,IGM)

and FGG(IM,IGM) arrays. A similar overstorage is

performed when the temporary storage is allocated

for input in the INPUT2 subroutine.

2. Restart Tape Composition

The restart dump is composed of the following

records: common block length LENIA, common block IA,

data common block A, and LCM data blocks in the

order in which they appear in LCM. The final dump

contains the current group (IGCDMP) value of zero.

Both the reading and the writing of the restart

dumps is performed by subroutine DUMPER.

3. Standard Interface Files

The standard interface files read and written

by ONETRAN are Version III files.
5

The coding which

process these files are all written as separate sub-

routines. All files are rewound prior to either

reading or writing so that the interface files for

several problems may not be stacked on the same

file. In the reading of the interface files, the

first record containing the file identification data

HNANX,(HUSE(I),I=1,2),IVERS is skipped by a dum-

my read statement. For input or output of the

scalar or angular flux files, no physical unit dis-

tinction is made for regular or adjoint problems.

If a standard interface file is used for an input

flux guess and a standard interface file output iac

. requested, the input file information is destroyed.

Since the discontinuous representation (two values

per mesh cell) of the distributed source and fluxes
,’

is incompatible with the standard interface file

(one value per mesh cell), only the cell-centered

values of these quantities are read or written.
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