Record Number: 184

File Name (TITLE):	Stimate	of Blas	et and	Full
File Name (TITLE):	on M	ial s	hat - Of	D. FUY.
Document Number (ID):	1347	63		·
DATE:				
Previous Location (FROM	n): <u> </u>			
AUTHOR: F. B.	Porsel)		
Addditional Information:				
.* 90				
OrMIbox:				
CyMIbox:				

326 US ATOMIC FNERGY COMMISSION

WITH DELETIONS L

EX AUTHORITY OF DOE! OC

5

or a process

1 29/88

Location SNL

RG

Collection CenTRAL RECORDS

Folder O-1 TVY

134763

1716

ANNEX "A"

ESTIMATE OF BLAST AND THE HUAL AFFECTS ON MIKE SHOT - OPERATION IVY

1

Lt. Col. Francis B. Porsel, Group Leader, J-10, Blast Measurements Group, Los Alexos Scientific Laboratory

CHAPTER I

GENERAL

The large size of the Mike weapon, together with a considerable uncertainty in predicted yield, present ususual problems in estimating blast and thermal effects.

Because of the limited size of knimetok Atoll, one cannot afford the luxury of protecting island installations against any possible yield, and for that anther, it would be imprudent to attempt to do so. Portunately, the blast and thermal effects scale in such a way that no prohibitive problems are introduced, but every reasonable precaution must be taken and improvity used to reduce the calculated rick to a minimum.

The Test Director has formulated the policy that personnel protection will be based on an absolute upper estimate of yield. Structures or things will be protected on the basis of a reasonably probable yield. The wisdom of this policy is especially evident in blast, where the structural criterion for damage is seldom known better than a factor of 2; for the marginal case at low pressures, experience indicates that the effort required to protect structures is usually much greater than the effort required to repair whatever minor damage might occur.

The most likely value of yield for Nike shot is of the order 5 to 10 MT, and there is a very small probability that the yield may go as high as 50 MT. Both blast and thermal effects are such that the yield of 5 to 10 MT is reasonably safe. It is understood that should the probable yield later appear to be in the order of 50 MT, Los Alessos Scientific Laboratory will so inform all test personnel and the general conclusions of this paper should be reviewed at that time.

CHAPTAR &

BLAST STRUCTS

2.1 General BEST AVAILABLE COPY

Certain factors land simplicity to the estimate of blast effects on the Nike shot. Because if is a surface burst, a relication factor of 2 has been assumed for those predictions, meaning that the blast wave is a hemisphere whose peak pressures and waveforms and radii are appropriate to a bomb of twice the yield in free air. Because of the large scaled size of the emplosion, compared with the shot islams, the burst is essentially ever water, to tak is an essentially

SC009 1807

reflecting surface in all sespects. During the early strong shock phase, the rate of work by the shock front on air as compared to its rate on soil or water is in a ratio more than 100 to 1 in favor of air. It follows that less than 1 per cent of the energy will be transmitted to soil or water during these stages. Recent atomic tests have been concerned with the effect of thermal radiation in attenuating the peak pressures in a blast wave; this effect will be at a minimum on Nilms shot because of the glancing angles of incidence of thermal radiation; however, the "Thermal effect" will not be completely sheart because the fireball attains a large vertical height in a short time.

Other factors lead to difficulty in estimating the effects. The rise of the fireball and consequent afterwind lead to an attenuation of the blast wave at close distances which is difficult to estimate; this effect is at a maximum because of the low height of burst. Hext, considerably higher temperatures may be achieved in this explosion than on an ordinary nuclear explosion; this leads to greater losses in energy through irreversible heating, to a different "partition of energy", to the possibility of a greater freetion of energy appearing as the real radiation, and to the possibility of a smaller comparable blast yield. Again, the explosion is so large that the stansphere can no longer be considered as homogeneous; the top of the blast wave will be in rurefield stansphere at a time when ground pressures are still in the region of practical interest. Considerable blast experimentation will be devoted to this point which may lead to a variation of 25 per cent in yield. Again, atmospheric inversion may focus energy upward or downerd at long distances, but for an ordinary beach, this effect is usually at pressures may 0.1 pei. On Hike shot, the scaled height of these inversion layers are such that some fecuseing (or defecusing) of energy may seem at pressures of interest. Finally, on the space scale involved here, layers of clouds are close enough to be of some coners both from the standpoint of energy reflection as well as from the standpoint of providing a shield from thermal radiation.

For the most part the uncertainties listed are expected to be in the order of 25 to 50 per cent in black yield, and small compared to the design uncertainty of 5 to 50 HZ, and not sufficiently large to require specific naturals breakens.

For the most part, the data used in making these estimates were taken from IM problem M, which was assumed to be 10 MT. This isomeorystive became it implies that blast officiency of an atomic book is 0.65 compared with MTT. The esteal officiency may be as low as 0.5 for a conventional wapper and parkage lower for a very large magnes. Hereover, experience on structures are usually based on presents gauge readings, and these are generally lower, parkage 20 per cost, than the "ideal" values quoted here.

The state of the s

BEST AVAILABLE COPY,

SNL

2.2 Derived Curves

2.2.1 Peak Overpressure vs Distance

Figure 1 shows the peak reflected overpressure as a function of distance for the yields indicated. Although these values have been taken from the IBM solution (in order to be consistent with other curves which follow) these predictions are in good agreement with predictions made on the basis of Greenhouse tever shots. There is a substantial difference; the towar explosions were on a scale small enough that the pressures recorded were essentially over a land surface. In this case, the explosion cours over water, the present theory indicates that somewhat higher peak pressures should be observed than if the explosion occured entirely over land. Within the first few miles from the bomb, the peak pressures may be reduced considerably from the value shown here by the thermal effect on the ground prior to shock arrival. At long distances, such as at Parry and Knimetok, the pressures may be lower or higher for reasons cited in Sec. 2-1 shows. However, at long distances, the peak pressure is a slowly varying function of yield, such that on eight-fold increase in yield merely doubles the pressure.

2.2.2 Peak Material Velocity ve Distance

Coincident with the arrival of the shock wave is a wave of material velocity whose peak value as a function of distance is given in Fig. 2. The relationship between peak material velocity and post pressure is

$$u = \frac{5 \frac{\Delta P}{P_0}}{\sqrt{7(6\Delta P + 7)}} \cdot C_0$$

where

Carrier of the section of the sectio

u = material velocity

Co ambient sound velocity

● P/P = overpressure, is atmospheres

The duration of this wind is comparable to the position duration of the plant pressure.

2.2.3 Presente va Time

BEST AVAILABLE COPY

Figures 3, 4, 5, and 6 give estimates for the pressure vs time wave at relevant measure levels of 1,000, 100, 10 and 1 pet and indicate the variation in the form of the pressure wave at these pressure levels. At high pressures and close in there is no regative phase; pressure decays assymptotically to sero. Mercover, "length of the positive phase" is strongly influenced in this region by the rise of the fireball, which attenuates pressures shortly after shock arrival, and should reduce the

SNL 🖀

718

n values
it with
whit with
sime mails
i
meant
observed
Mirst
siderably
mior
stok,
2 1
dy
yield

4E.0

ocity

1 1.

Fo wa 1 and .in saure m; prossure m; chaser 1, which as * the 1719

· with a

"length of the positive phase." within the first for miles the hermal effect will lead to a marked attenuation of peak pressures and the usual slow rise in pressure, instead of the ideal curve shown here. At slightly greater distances, the termal effect will result in a "partial shock" rether than a completely slow rise. Still further, the shock front will be sharp as shown here. At far distances the magative phase increases and eventually the positive and magative impulse under the blast wave become equal.

In trunclating these curves to different yields, both the distance and time must be incred by y 1/2, helding pressures constant. In many cases, the eritories for structural demage is not simply peak pressure, but the product of the air density and the square of the anterial velocity \(\frac{1}{2} \) with this blast wind results in a dynamic pressure on structures; the time variation of this dynamic pressure may be taken as approximately similar to the pressure-time curves shown here.

2.2.h Tim of Arrival

Pigure 1 gives the time of arrival of the stock wave as a function of distance. These survey are based on calculations from peak pressures observed on tower shots, but are in good agreement with the time-of-arrival surve as predicted from the ISM run using this yield. Unlike peak pressures, the observed time of arrival should be independent of the type of surface.

2.2.5 Positive Deretion

Figure 8 shows the duration of the positive phase of the blast wave as a function of distance from the bonk. The upward swing of this curve at abort distance is associated with the lank of a megative phase at this point. Where accurate estimates of the pressure decay is required at alcos-in distance, the pressure-time curves may be fitted by a power law or comi-lagarithmic plot. For example, the curve steam for 1,000 pei can be fitted initally by

2.2.6 Positive Depulse ve Distance

Figure 9 shows the positive impulse, or pit so a function of distance. If further information is desired, such as the negative impulse, these values can be derived upon request.

2.3 Protoction from Blast

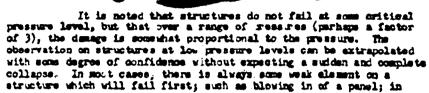
2.3.1 Compred Andre

As pointed out earlier, every reasonable presention must be taken against the blast effects and every method which ingenuity suggest should be used, but no prohibitive problems are presented by blast. It is impossible to point out here the criterian for all types of structures, but the following discussion shows the general character of the elemelusions which may be expected. It is suggested that test personnel consider their individual structures on the basis of the field variables given in Figs. 1 thru 10.

SNL

2.3.2 Previous Experience

Som estimates for the damage on structures at different pressure levels are given in "Affects of Atomia Meapone"; a more complete table is available in Par. 16 and Table 9 of "Capabilities of Atomic Meapone", Department of the Army, Tech Hannal Di-23-200, Department of the Harry, OPHAY-P-36-00100, Department of the Air Porce, AFOAT 365.2, July 1951.


It should be noted that structures fail from two causes; from peak pressure and from the wimis following the blast wave. Prom the standpoint of pressures, the Hibe shot presents no pressures much beyond present experience. According to Fig. 1, pressures on Parry and animately will be about 0.75 pai; pressures.

Where observed on Parry and Kniretok from Dog and George shots during [E]) Operation Greenhouse. A pressure produce structures were involved, which should furnish particulated data. The reason for this small increase in peak pressure is because the increase in yield (P-- N -) is offset by the greater distance. (Elugalab is approximately 22 miles from Parry, compared with 9 miles on Runit.) With respect to wind loading, the situation is more serious because the positive durations scale like N - 3, and are not offset by an increase in distance. The positive durations for 5 NT are 10 times longer than for 5 NT at the same distance.

2.3.3 Structures

Some general conclusions may be drawn with regard to structures. All ordinary window or plates glasses, especially in signs over 12 in. are mostly bound to break, on farry and animatok. Where possible, wells facing the blast wave should be removed as well as wells directly behind it, in order to allow pressures to build up more rapidly within the structure, and to relieve the force from normal reflection of the blast. If this is not fessible all windows and doors should be left open. We deswas can be used unless it is strongly secured with at least grownst-type fastening; plonty of clack should be allowed, without text surfaces; so large unsupported separations of course should be draped over from work. All texts should be struck, (although texts were observed to surve at Hernala Post Site at approximately this pressure level, but much shorter duration). The use of borns or sandbagging to protect structures is of doubtful value; the wavefurn is so long that the pack pressure can build up behind the born before any depreciably decay has occured; of course, some protection is afforded from the dynamic wind.

Small plywood structures have been observed to withstead? poi during some previous tests and although they failed at elightly higher pressures, they did so through multiple reflections from corners. Door frames and hinges fail readily if exposed to the blast much above 1 pai. Holms and Harver reports no durings on the hanger at injusted from 0.3 pai on previous above. At the 0.8 pai level they report that structures based on a large until facing the blast.

stress.

2.3.4 Vehicles

There is of no apparent requirement to evacuate vehicles from Parry to Enimetok nor any appreciable advantage in doing so. All canvas tops should be removed from the vehicles. Windshields should be lowered flat or removed entirely. The vehicle should face directly away or toward the blast although it is felt that better protection for the radiator and headlights is afforded if the vehicle is facing away from the blast.

2.3.5 Aircraft

All aircraft should be evacuated wherever possible. For small aircraft (including belicopters) which cannot be evacuated, the main wings should be removed, and if left in the open, the aircraft should face toward the blast.

2.3.6 Boats

No damage is expected to hulls or any part of water craft which is usually subjected to wave action. The .7 pei level is equivalent to a head of a 1/2 foot of water which such boats habitually withstand. The superstructures of these craft are more susceptible to blast damage but we recall that the unbalanced peak pressure is of very short duration, small objects being rapidly engulfed by the pressure wave; for example, a mast of 3 in. in diameter will feel the peak pressure for approximately 1/k of a millisecond. Following the peak pressure the blast winds will be of the order of 10 to 50 miles per hour at Perry or kniwstok but these eraft habitually withstand these winds.

2.3.7 Storage Tenks

Storage tamks for fluids should be laft full, both to add sass as well as to prevent the plates from bunkling in.

Chipted 3

TEL-MUL AFTECTS

3.1 General

Like blast, an estimate of thermal effects required answers to certain uncertainties which will be settled by some of the experiments on the Operation itself. Fortunately, again, the estimates for thermal radiation are sufficiently low that no prohibitive problems are introduced.

SNL

There is an uncertainty in scaling radiation which involves whether the thermal yield is proportional to radiotherical yield or proportional to some lower power such as W * 7. In this paper, the theoretical upper limit is assumed and this in itself may give values 2 to 7 times higher than actually obtained. There is also an uncertainty regarding the transmission of air, because the fireball rises rapidly to great heights. Wear the surface of the water, transmission is quite low, but several hundred feet above the water the transmission increases markedly. The transmission assumed here is for very clear air and considered reasonably safe. Although Elugelab is several hundred feet below the horizon at Kniwetck, no protection is afforded from thermal radiation because the fireball rapidly gives to a diameter many time this value.

A distinctive feature of the thermal radiation on this employion will be the long time scales involved, nearly 10 times that from a 5 KT bomb. It may be possible to see the light minimum and the subsequent increase to maximum radiation, around 2 seconds. The thermal radiation will parsist for some 30 seconds instead of the 3 seconds for conventional size weapons. Personnel should be warned that it is mosessary to keep on the dark goggles for much longer periods of time than for conventional size weapons.

3-2 Total Thermal Radiation vs Distance

Figure 10 shows the total thermal radiation in calorise/cm² as a function of distance from the bomb. These surves have been derived using the assumption that the total thermal radiation will represent 1/3 of the total yield. The dotted lines represent the values of total thermal radiation which would be received if one completely neglected absorption of thermal radiation by air. The full lines are based on a transmission of 60 per cent per mile, and corresponds to a very clear atmosphere. The full lines are considered reasonable estimates for structures mear the ground. The dotted lines are an exaggerated upper limit, more a propriate to high flying aircraft.

3.3 Temperatures of Surfaces apposed to Thermal Radiation

Both the "affect of Atomic Weapone" and "Capabilities of Atomic Weapone" contain tables which give the critical energies in calorine/cm² for a number of common materials such as wood, cloth, rubber, and plastics. The long duration of thermal radiation of this weapon has the effect of increasing these critical energies by a factor of) above the critical energy required on a conventional size weapon. The total thermal radiation occurs over longer periods of time, this permits correspondingly longer periods for heat to be conducted many from the surface and into the interior of their radiated object. For substances which are not shown in such tables the average surface temperature may be estimated roughly from the following equation:

7. 2 40t V 1/6 V 1/00 000 0

SNL

There

a * absorptivity of the surface.

Ts - surface temperature, degrees centigrade

W - radiochemical yield, kilctons

h - specific heat, cal/gm deg

/ - density, gm/cm3

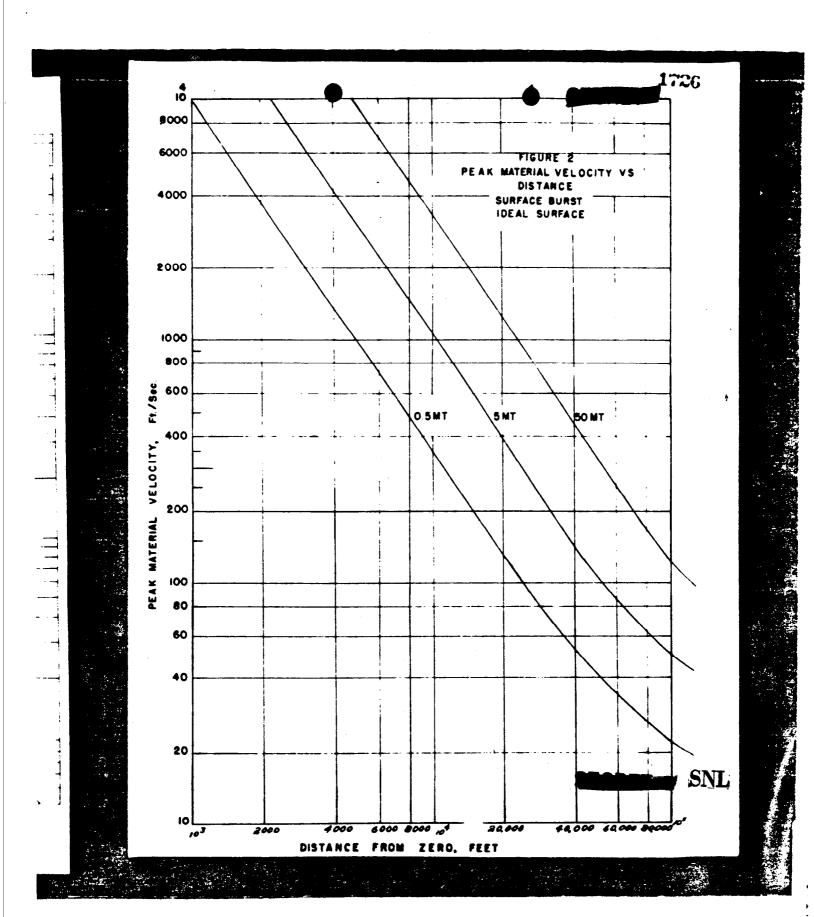
To themal conductivity, cal/cm, deg, sec

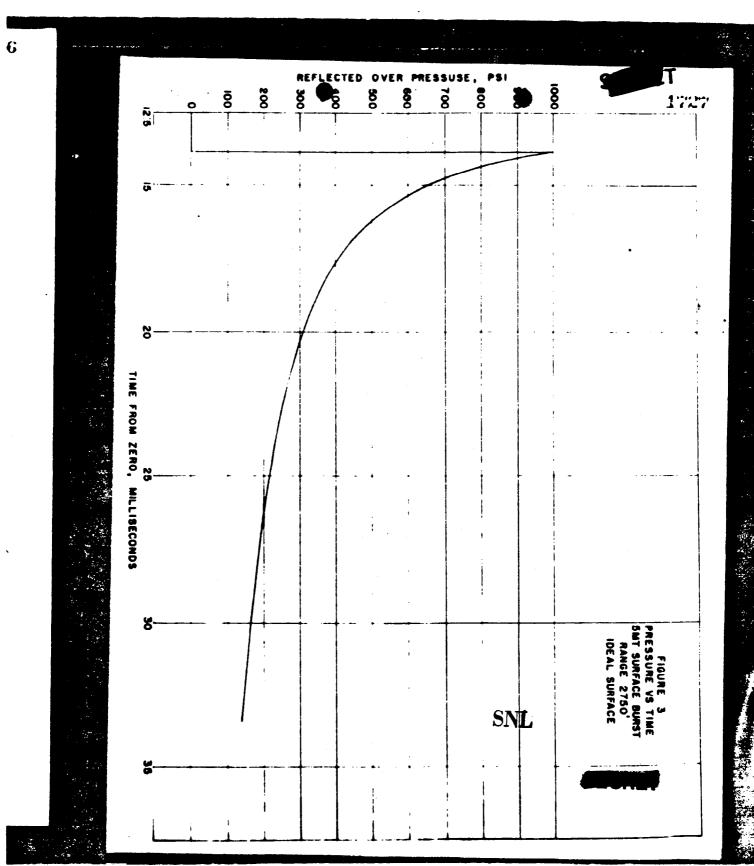
 θ = anyle of incidence of thermal radiation of the surface. Based on this equation and a yield in the order of 5 MT, Table 1 shows the relationship between the surface temperature and the total thermal radiation, for surface directly exposed to the radiation, where T_{θ} is the rise in surface temperature in $^{0}C_{r}$ and Q_{T} IS THE TOTAL incident thermal radiation in cal/cm², as given in figure 10.

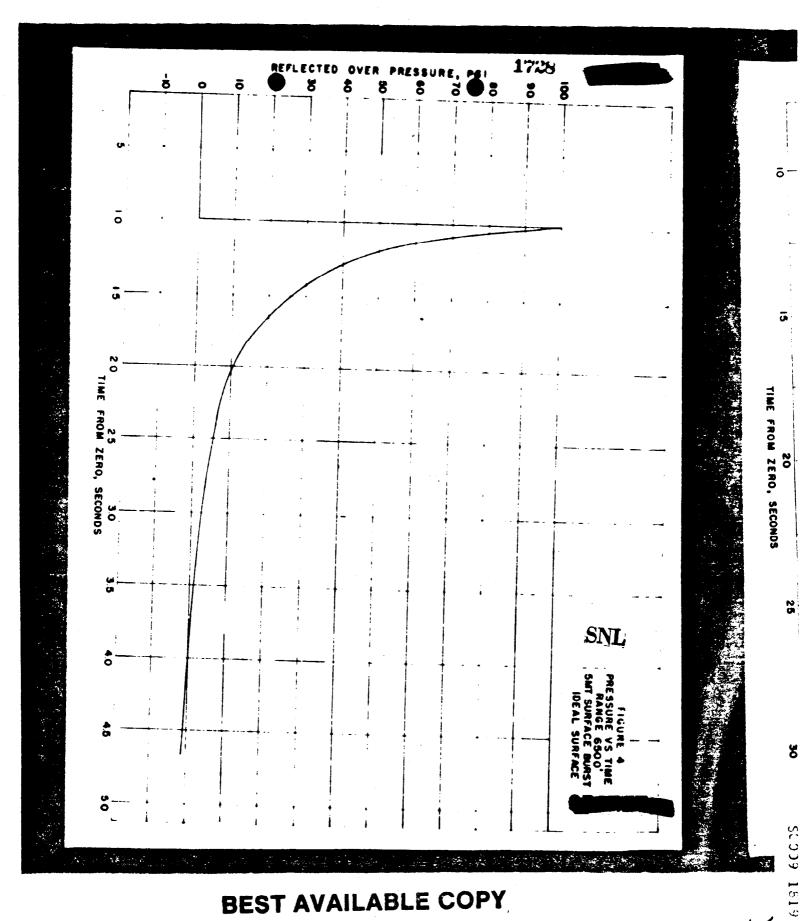
TABLE 1

Copper	T ₈ = 0.1 Q _T
Aluminum	0.1
Steel	0.4
Coment	5
Asbestos	10
Rubber	18
Rood	18

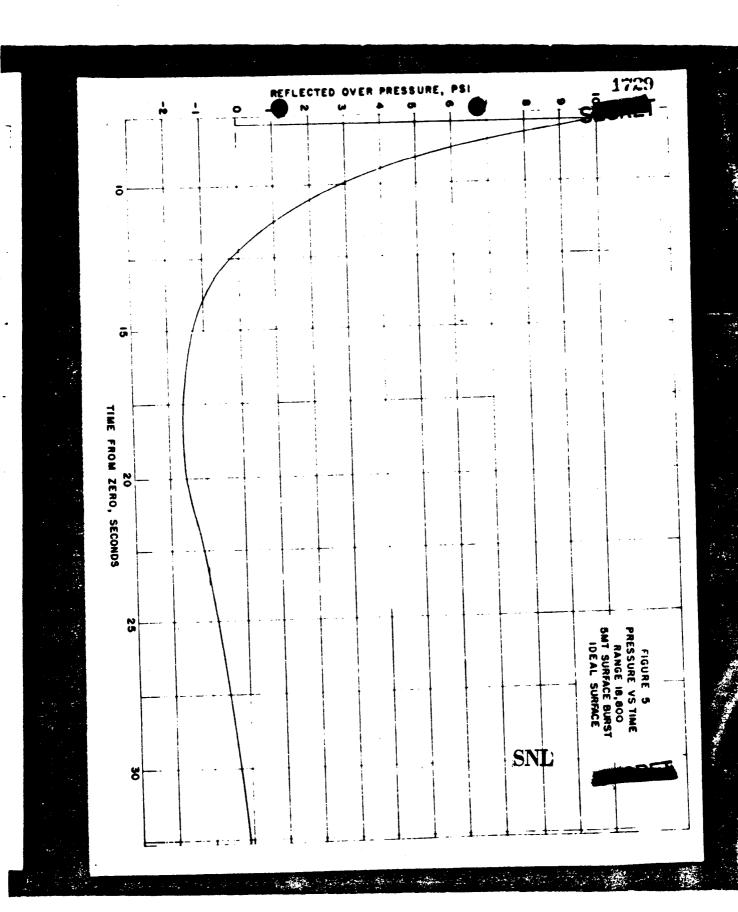
BEST AVAILABLE COPY

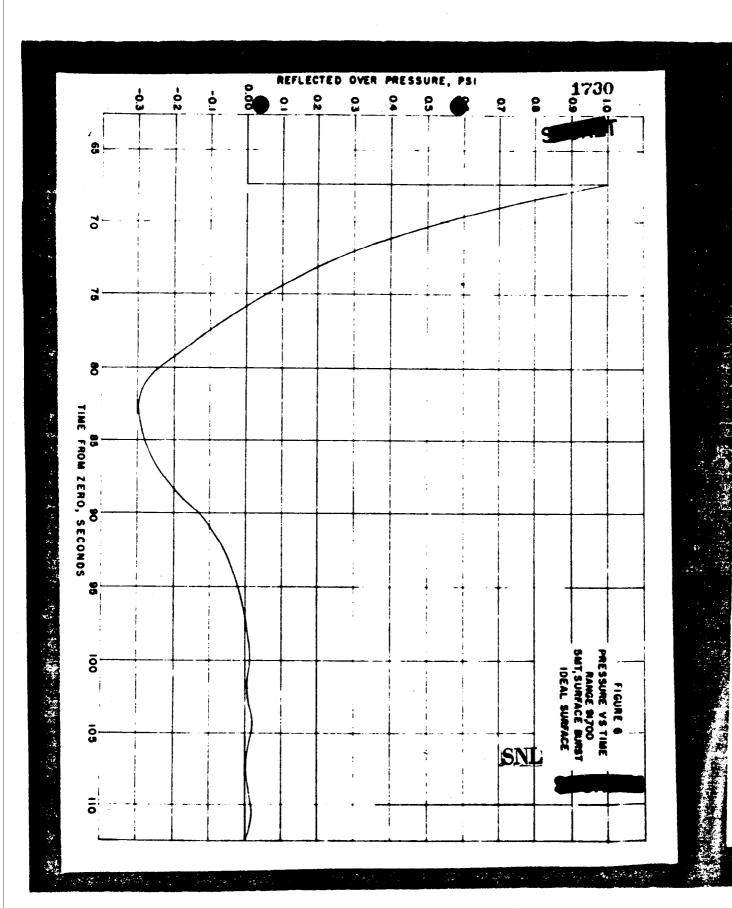

SNL


The equation above is not strictly correct because it assumes that the thermal radiation rate is proportional to $1/t^2$. This is reasonable approximation after 2 seconds but prior to this time, the radiation rate varies in such a way that the surface temperatures may momentarily go to a value perhaps 3 times those estimated from the above equation.


Table 1 shows that the most critical materials are rubber and wood. For 5 MT yield, however, the temperature rise will be neglible for such materials on Parry and Enimetok.

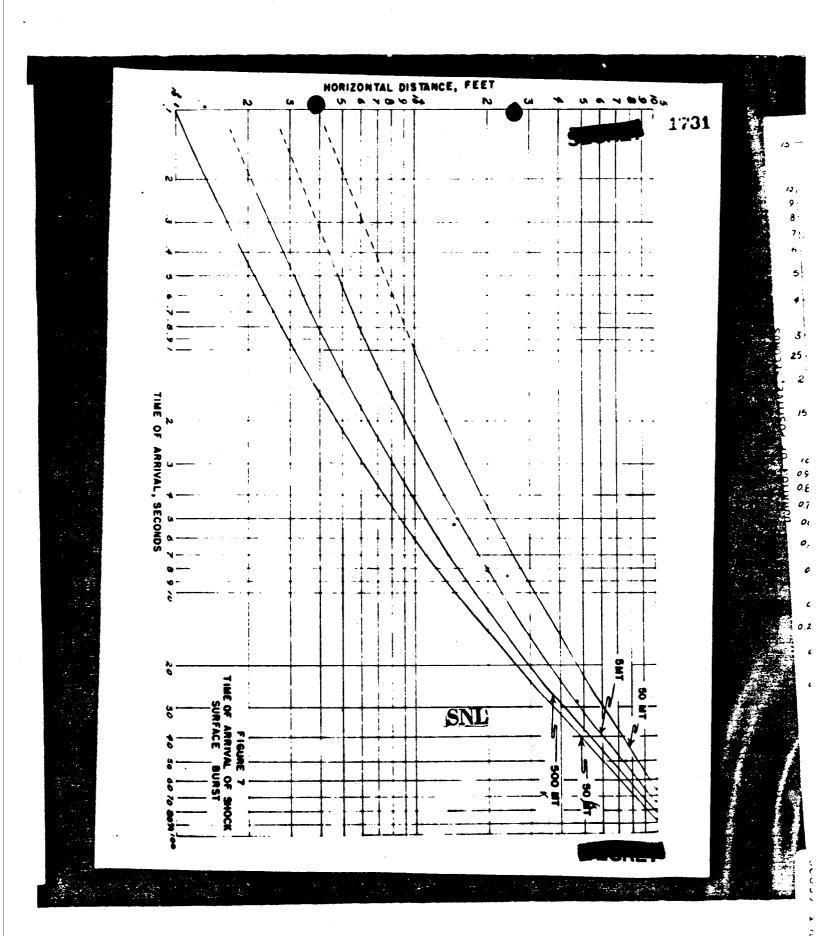
BEST AVAILABLE COPY


SNL

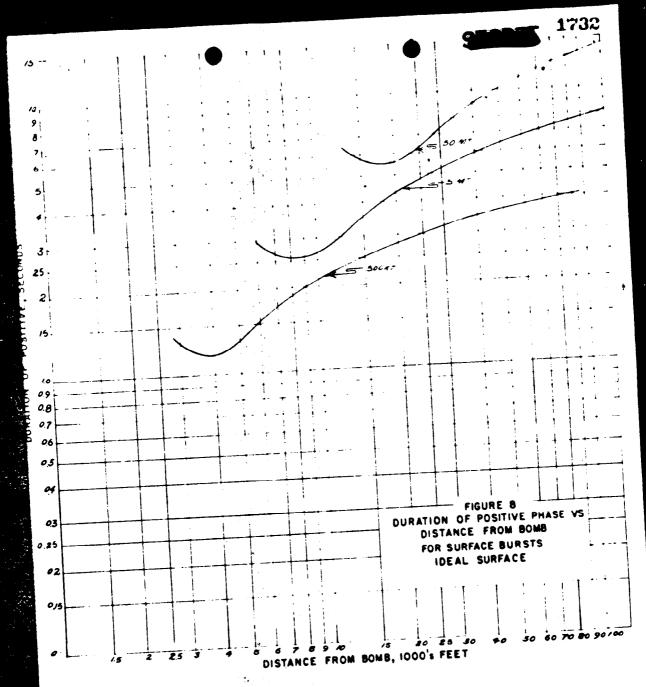


BEST AVAILABLE COPY

BEST AVAILABLE COPY

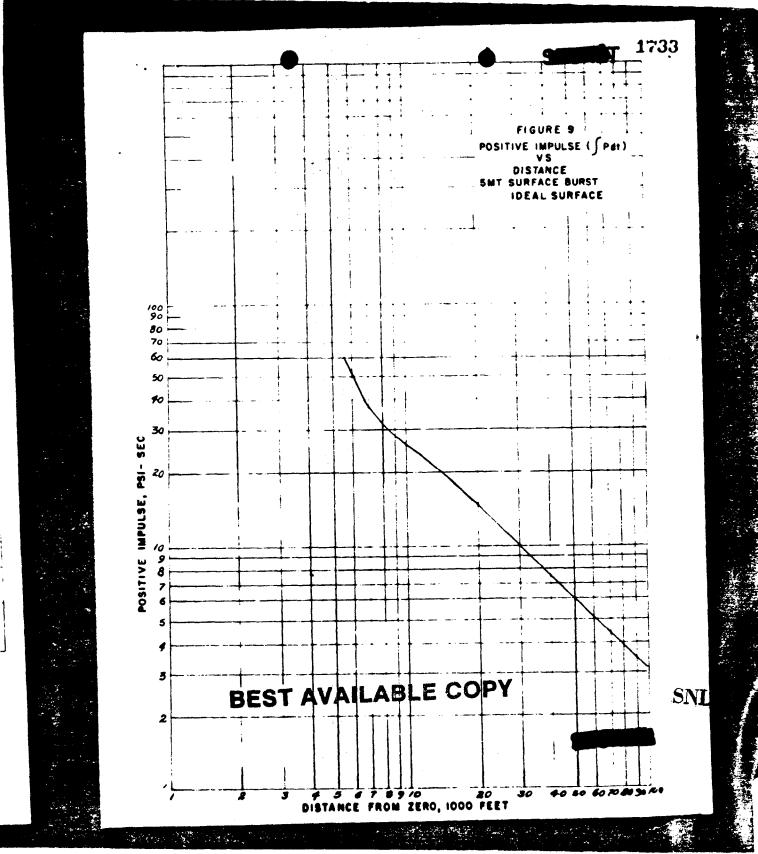


BEST AVAILABLE COPY


2 3 F S 6 7 8 9 10 TIME OF ARRIVAL, SECONDS

20

30



C28T 6CC

7.7

DISTANCE FROM BOMB, FEET

FIGURE 10
TOTAL INCIDENT THERMAL
RADIATION VERSUS
DISTANCE FROM BOMB

ENIWETOK VALUES BASED ON TRANSMISSION OF 80% PER MILE

TOTAL

20

10

SNL