UNCLASSIFIED

GLASSIFICATION CANCELLED For the Atomic Energy Commission by the Declassification Officer

Jarlow JS per hur

VERIFIED UNCLASSIFIED

Afril 6/12/79

September 25, 1946

CIC-14 REPORT COLLECTION REPRODUCTION ют то ве СОР 1. NO. 1935

REPRODUÇ

COPY

CIC-14 REPORT

This document contains 27 pages

SCATTERING OF PROTONS BY DEUTRONS

LANS - Liely

Report Written By:

C. Bailey J. M. Blair H. R. Kratz R. Shorr R. F. Taschok

PUBLICLY RELEASABLE LANL Classification Group

ECTION

This docume stains to states within the mean time of the Earth of the states within the mean to nst sission on revelant of its contants in fact manned anauthorised persons prohibited by law. APPROVED FOR PUBLEC RELEASE

UNULASSIFIED

ABSTRACT

Utilizing a scattering chamber based upon the successful design used by Herb, Kerst, Farkinson and Plain (HKPP) in the measurement of protonproton scattering, experimental data on the scattering of protons by deutrons have been obtained. The incident protons were accelerated by the 3.5-New "Risconsin generator ("long tank") which was used by the Manhattan Project at Los Alamos, New Mexico. The geometry, and current, and preasure measurements ____ were checked by the comparison of measurements of proton-proton scattering at 2.1 Mey with the work of HKPP. Results on proton-deutron scattering at 0.825. 1.51, 2.08, 2.53, 3.00, and 3.49 Mev were obtained. The absolute cross-sections per unit solid angle show the presence at all energies studied of higher-order moves than the spherically sympetrical Sowave. A minimum in the scattering is observed near 90° at the low energies: the minimum shifts to larger angles with increasing energy. The cross-sections at all angles decrease with ingreasing energy but the ratio of the cross-section at 150° to the minimum increases gradually from 2.3 At 1.51 Mey to 3.0 at 3.49 Mey. The present results at 825 Kev do not show the large anomaly found by Tuve, Heydenburg and Hafstad at 830 Kev.

UNCLASSIFIED

introduction

The general theoretical interest in the soattering of light particles has led us to perform a series of measurements on the scattering of protons by doutrons. The earlier experimental work by Tuve, Heydenburg and Hafstad⁽¹ chowed a large anomaly at 830 Kev. Subsequent theoretical papers have tried to explain this anomaly with little success (2,3). Measurements were made by Taschek⁽⁴ at very low energies, but it was decided to perform the present experiments at the high energies available to us in the operation of the 3.5-Mev Wisconsin generator ("long tank") designed by Herb, et al⁵. This generator was used by the Manhattan Project at Los Alamos, and was scheduled to be returned to Wisconsin within several months after the present work was begun. It was, therefore, considered advisable to follow as closely as possible the successful experiments of Herb, Kerst, Parkinson and Plain⁶ (hereafter referred to as HKPP) on the scattering of protons by protons. Several changes were made in the design of the scattering chamber and detecting equipment. For the sake of completeness we shall describe our apparatus in detail.

Mechanical Details of Southering Chamber

The scattering chamber (Figs. 1 # 2) was turned from a single piece of aluminum 17-1/2 inches in diameter. The inside hollow was 14 inches in diameter and 4 inches deep. Around the wall were several accurately placed holes. The brass tube which held the collimating diaphragms for defining the incoming beam of ions, was inserted into one of these holes. In a diametrically opposite hole was pressed the tube which held the current collecting cup. A port at 90° connected the chamber to the liquid-air trap

(1 Tuve, Heydenburg and Hafstad, Phys. Rev. 50, 806 (1936)
(2 H. Primakoff, Phys. Rev. 52, 1000 (1937)
(3 Ochiai, Phys. Rev. 52, 1221 (1937)
(4 R.F. Taschek, Phys. Rev. 61, 13 (1942)
(5 Herb, Turner, Hudson, and Warren, Phys. Rev. 58, 579 (1940) UNCLASSIFIED
(6 Herb, Kerst, Parkinson and Plain, Phys.Rev. 55, 998 (1939) UNCLASSIFIED

UNCLASSIFIED

- 4 -

and 345°, and vacuum pumps. There were four other holes, at 15°, 135°, 225°, into which the defining slit systems of proportional counters used for monitoring could be placed.

The movable proportional counter and its slit system were mounted on a 10-inch-diameter disk which was sorewod onto a tapored plug fitting into a hole through the bottom of the chamber. The axis of this tapered hole intersected, and was perpendicular to, the line joining the holes mentioned above which held the collimating diaphragn system and currentcollection system. The gas and electrical leads to the movable proportional counter were brought out of the scattering chamber through holes bored through this tapered plug. Outside of the chamber a 3-inch-dimmeter gear was clamped to the plug. This gear was driven by a smaller gear to rotate the disk and counter inside the scattering chamber. The larger diameter of the plug was on the inside of the chamber to allow the plug to be inserted in its hole after the disk had been screwed on. Four springs pressing against the gear on the bottom of the plug prevented the plug from being gushed in by atmospheric pressure when the chamber was evacuated. The springs fitted into four recesses in the bottom of the chamber.

The periphery of the disk inside the chamber was graduated in degrees. These graduations were read against a vernior marked to tenths of a degree. The graduations were numbered so that the reading was zero when the movable proportional counter was on the side of the chamber opposite the beam collimating diaphragms.

The lid of the scattering chamber was made of dural, one inch thick. It had a gasket groove which contained a gasket of silicone material. A tongue projecting from the upper edge of the wall of the scattering chamber fitted into this groove. The lid had a glass window in it which allowed the graduations on the disk and vernier to be read. UNCLASSIFIED

Collimator

The brass tube which held the collimating diaphragm assembly was pressed (into the hole in the wall of the onamber and was sealed in vacuumtight with a glystal. A section of sylphon tubing connected the brass tube to the target tube of the electrostatic generator.

UNCLASSIFIE

The defining diaphragms were fastened into another brass tube which was a tight fit into the above mentioned tube. The first diaphragm which the beam encountered had a hole, 0,085 inch in diameter on the front side and tapered slightly to a larger diameter on the back, so that the beam was defined by a sharp edge to reduce scattering. An aluminum foil on the back side of this diaphragm served to separate the chamber from the target tube. This foil was 0.0001 inch thick (70-Kev stopping power for 2-Mev protons) and was cemented in place with glyptal. To facilitate replacement of this foil the diaphragm was removable, being held in place by a neoprene gasket and a clamp ring.

The second defining diaphragm was ten inches further along the tube. It also had a hole 0.085 inch in diameter, tapered like the first one. These two holes defined the beam of incoming ions so that its total which was limited to 0.215 inches at the center of the scattering chamber, and to 0.355 inches at the foil in front of the current collector cup. The meximum angle away from the axis of these holes, which an ion path could make, was 0.6 degree.

To prevent the entrance into the chamber of ions which were scattered by the edge of the second diaphragm, a third diaphragm with a 0.175-inch hole was placed at the end of the collimating tube. Tests made with the chamber evacuated indicated that this system effectively eliminated slit edge scattering for all angular settings of the counter (15° and higher). UNCLASSIFIED

UNCLASSIFIE

The table which held these diaphragms was sealed into its supporting tube by a gasket of 1/16-inch-square neoprene strip and a clamp ring which were just inside the chamber wall.

Current Collector

Into the hole on the opposite side of the chunber was pressed a lucite insulating tube of 1/8-inch wall thickness. A brass tube which supported the current-collector-cup insulator slipped into the lucite tube. With this arrangement the brass tube could be used as a guard ring. for testing the efficiency of collection of the beam current. To facilitate the assembly of the current collection system this tube was made in two parts, scaled together with a neoprene strip gasket.

The insulator which supported the current collector cup was a piece of glass tubing one inch outside diameter sealed to the brass with hard wax. The collector cup itself was a piece of brass tubing 3/4-inch inside diameter which extended out through the glass tube insulator and had its rear end covered with a piece of vicor glass. To eliminate charging of this glass plate, it was covered on the inside with a fine-mesh nickel screen. This window on the back of the collector cup was used in order that the chamber as a whole could be more easily lined up with respect to the ion beam of the generator by observing the fluorescent spot on the glass.

To prevent erroneous results in the current collection because of ionization current around the collector, the collector cup assembly was separated from the rost of the chamber by a thin aluminum foil (0.0015 inch thick). A separate lead to the fore was and high was manifolds was prowided for evacuating the collector cup chamber. UNCLASSIFIED

Detectors

The movable proportional counter was bored out of a brass block. Its inside diameter was one inch, and its central wire was 0,010 inch in diameter. The wire was supported at one end by a porcelain insulator, and at the other end passed out of the counter into a connection box just above through a kovar-glass seal. To keep the active region of the counter from being too large and yst not distort the field near the center to any extent the central wire was enlarged for about three-eighths of an inch at each end by placing over it sections of stainless-steel tubing 0,025-inch outside diameter. These sections reduced the field on the ends to too low a value to cause appreciable multiplication of ions. The section of hare wire in the center was one inch long.

The scattered particles entered the proportional counter through a defining system consisting of two slits and a hole $\stackrel{\star}{\circ}$. The first slit and the hole defined the space from which scattered particles could enter the counter, while the intermediate slit cut off particles scattered from the ralls of the slit system.

To make sure that the slit system of the counter was pointed directly at the center of the chamber, it was lined up by using a pointed mandril which was a tight fit into the holder for the slit system and another pointed rod which was pressed into a hole exactly in the center of the tapered plug. The alignment was checked by setting the counter at zero degrees and sighting into the chamber and counter through the holes which define the original beam of ions entering the chamber. During this process it was found that the axis of the tapered plug was 0.007 inch off of the axis of the beam collimating system, but seemed to be perpendicular to it pevertheless.

			a a a .							
Ť	HEPP	Fig.	3,	p1000。	See also	detail	in	Fig.	1.	
								-		

ം ല് ര

"he center of the counter slit system seemed to be a little below the axis of the beam collimating holes so the proportional counter assembly was shimned up into position. After the position of the counter had been "hecked for height, orientation and position, with respect to the saro of the eask graduations it was pinned in place with two tapered pins so that it could os removed and yet replaced exactly as it was. The oritical dimensions of the slit system required for conversion of the observed yield to absolute encess. rections are, in the notation of HKPP, the width, 20, of the first detector slit, (slit A, Fig. 1), the area A of the last detector hole (hole C, Fig. 1), the separation h between these apertures, and the distance R_0 from the hole C to the center of the beam. Careful measurements were made of each of these equalities, with the following results: 2b = 0.2057 on; $A = 2.094 \times 10^{-2}$ em²; n = 6.988 on; and $R_{i} = 12.893$ cm. The slit and hole wave somewhat irregular in shape so that the values of 2b and A represent the averages of a number of wiath measurements along the slit and diameter measurements at eight different angles across the hole. These values for the geometrical constants give a value of $4_0.796 \times 10^{-5}$ on for the quantity G & A/R₀ h (See HKPP). The accuracy of this constant is estimated to be 0.5 %, where the greatest uncertainty is contributed by the irregularity of the hole.

After passing through the last detector hole, the scattered particles passed through a thin window of aluminum 0.00006 centimeter thick into the pounter. The aluminum was coated with a 5% solution of collection in order to cover the pin holes in the foil. This combination aluminum-and-collection windew is thinner than one made of pure aluminum which is without pin holes, and is more reliable than a window made of collection alone. Such a window easily withstood the 5-on Hg pressure of the gas inside the counter. The scattered Darticles passed through the counter in a plaze perpendicular

APPROVED FOR PUBLIC RELEASE

to the counter wire and 1/8 inch away from the wire. Tests of this arrangement with a polonium source gave very satisfactory results. With a gas filling of 5 cm of butane and a multiplication of about 150_r the asparticle pulses gave a distribution with a half-width of 5 to $7\%_c$

The outside of the proportional counter was at ground potential and the central wire was maintained at high voltage. Since the wire also collects one signal which is to be amplified, it is essential to prevent correct trouble and spark-over to the high voltage lead going to the central wire. The highoutage lead was brought up through the tapered plug and over to the connection bex on top of the counter through a tube which was maintained at atmospheric pressure. The connection box at the top of the counter, also at atmospheric pressure, was covered with a breas plate and isolated from the vacuum by a nconeene strip gasket. The lead wire was insulated with a continuous plastic tube from a coaxial cable.

Outside the chamber, the electrical lead passed through a flexible joint to another connection box where the signal was separated from the high workage by a decoupling resistance of 10 Meg in the high-woltage supply line. A coupline capitance of 100 µµf fed the signals to the preamplifier. From there the signal passed on to the amplifiers and discriminator. The gas lead to the counter work through the tapered plug directly to a hole in the counter wall. A piece of rubber tubing connected this lead to the gas filling system external in the ohamber.

The monitor counter which fitted into a hole in the wall of the southering chamber which fitted into a hole in the wall of the southering chamber which respect to the proton beam, was essentially the same as the movable counter inside the chamber. Since it was somewhat further many from the center of the chamber, the slit system was a little larger to prevent reduction of its counting rate.

The two counters were enough alike that they could be filled simultaneously . and could use the same high-voltage supply.

Monsurement of Proton Energy

To calibrate the electrostatic analyzer (7 of the generator, the 13^7 (p,n) Be⁷ reaction was used. The threshold was assumed to be 1.860 Mev⁸. A small crystal of LiF was placed on a magnetically operated shutter already installed in the target tube of the generator. When the crystal was raised into the proton beam the neutrons produced could be detected by a BF₃ neutron counter placed beyond the scattering chamber.

To know accurately the energy of the ions inside the scattering chamber a correction must be made for the stopping power of the aluminum foil over the first defining diaphragm. To obtain the stopping power of this foil another LiF crystal was placed in a special holder at the entrance to the current collector guard ring. When the Li (p, n) threshold is checked first with the orystal in the target tube and then with the one inside the chamber. the difference gives the stopping power of the foil. Measurements at the beginning and at the end of this experiment gave values of 70 and 90 Kev. respectively, for the stopping power of the foil at 1.86 Mev. The increase was undoubtedly due to carbon deposited during the course of operation. Measurements on the threshold, before and after, the present experiments, indicated no noticeable change in the calibration of the analyzer.

Current Measuremont

In order to check the efficiency of the current collector, a series of tests, similar to those described by HKPP (page 1004) were made. A brass tube was inserted in the lucitc sleeve, described above, and was in contact with the brass guard ring. The inserted tube extended to, but did not touch. the exit slit of the collimator. The guard ring system and the cup were (7 A. O. Hanson, R.S.I. 15, 57, 1944 (8 Haxby, Shoupp, Stephens and Wells, Phys. Rev. 58, 1035 (1940) Hanson and Benedict, Phys. Rev. 65, 33, 1944

The former group obtained 1.856 MeV for the threshold while the latter investigators found 1.883 MeV. The value 1.860 MeV has been generally used in this laboratory.

-11--

separately connected to sensitive galvanometers and tests on secondary electrons, leakage, foil scattering, and neutralization were carried out. These tests showed that with a vacuum of 4×10^{-6} mm Hg around the cup, a magnetic field at the entrance to the cup of 300 gauss and a voltage of 45 volts between gup and guard ring (sup negative), that the error in measuring the current, introduced by the factors mentioned above, was less than 0.1 o

Two methods of measuring the beam current were employed. The generator ourrent integrator⁹ was used in the preliminary measurements. It was calibrated by feeding current from a + 400-volt supply through a high resistance onto the input condenser of the integrator. The collector cup and connecting lead had an appreciable capacitance so that they were left connected to the integratog during the calibration. The high-resistance box also was left permanently in places The current was determined by measuring the voltage across a 3-meg resistor with a type K potentiometer. The 3-meg resistor had been previously valibrated against precision resistances and was inserted between the high-voltage supply and the high resistance. This system eliminated the introduction of unwanted capacitances in parallel with the input condensor of the integrator. The integrator was biased so that it operated between .45 volts and groundo Calibration to a fraction of a percent was possible, but was found to be unnecessarily refined, since it was discovered during preliminary scattering measurements that the calibration varied irregularly over the course of time by as much as 5% . Since the method of calibration outlined above, was too sumbersome for frequent use, it was decided to use a monitor chamber and, in addition, to calibrate the monitor counter with a standard condensor and ballistic galvanometer. For the greater part of each run (angular distributions at a fixed energy), the current integrator was used. Then for several angular sett-19 JoHo Blair R.S. I. 14, 64 1943

-12-

ings of the rotating counter, the Leeds and Northrup 1-microforad standard condenser was connected to the collector cup, and the charge, corresponding to a given number of monitor counts (6400), was measured. Preceding each such measurement, the ballistic galvanometer was calibrated by charging the standard condensor to an accurately measured voltage and subsequently discharging it through the galvanometer.

Monitor counts were taken at each position of the rotating counter and current integrator readings were taken except during the calibrations. It was, sherefore, possible to compare the number of monitor counts (per microcoulomb per mm of pressure) obtained with the current integrator with the number of monitor counts (per microcoulomb per mm of pressure) obtained with the condenserballistic galvanometer, By averaging the former values a number was obtained which agreed within several per cent with the latter values but were consistent is lower. For the final calculation of the number of scattered particles per microcoulomb per mm of pressure, the current integrator and the condenserballistic galvanometer results were averaged. This procedure was adopted since time did not permit a therough investigation of either method. It is felt that the problem of current measurement is the greatest single source of error in the determination of the absolute cross sections. A reasonable estimate of the probable error in the current measurement is 2% .

The number of scattered particles per microcoulomb per mm of pressure was determined by multiplying the ratio of detector counts to monitor counts by the value of monitor counts per microcoulomb per mm of pressure, obtained as outlined in the preceding paragrapho. Since the monitor was located at 15°, its counting rate was very high and the accuracy in the ratio of detector to monitor counts was limited by the counting rate of the detector. As mentioued above, the runs were made at constant energy. The relative cross sections at a particular energy are more accurate than 3

-13-

the absolute values, since errors in the determination of the "microcoulombs" and the "mm of pressure" are eliminated.

Gas System

The scattering chamber was filled with the scattering gas to a pressure of approximately 1 om Hg through a palladium spiral which was directly heated. The pressure in the chamber was measured with a manometer of 2-cm-diameter glass tubing, attached directly to the chamber. The Apiczon B cil used in the manometer was outgassed by torching during evacuation. A microscope with a micrometer sorew was mounted on a swinging vertical bar so that, with the aid of fiducial marks, the levels of the cil in both arms of the manometer could be read to an accuracy of 0.1 mm. As the difference in cil levels was usually 150 mm, the pressure could be read to an accuracy of 0.15 %. A thermometer was placed on top of the scattering chamber to give the chamber temperature.

A stainless-steel liquidwair trap, attached to the chamber, was copstantly in use. Because of rapid conduction by the hydrogen scattering gas, the level of the liquid air changed rapidly and had to be refilled every hour. The pressure in the chamber varied by several millimeters as the liquidwair level changed. Consequently, pressure readings were taken immediately preceding and following each measurement at a particular angle and energy, and the pressure (corrected for temperature to 0° C) was taken to correspond to the mid-time of each measurement. The estimated accuracy in the pressure values is 0.5%. This figure includes possible errors introduced by assuming that the oil density was 0.864, whereas the actual density was found to vary from 0.853 at 25° C to 0.864at 15° .

Tests were made to determine the effect of impurities. Since the chamber was isolated for five or six hours during each run, measurements of scattering of the proton beam were made with the chamber evacuated and isolated, ...

ملله

with the liquid air trap in operation. These measurements showed that impurities built up by gassing of the chamber contributed a negligible amount to the gas-filled yield. The palladium tube was tested for a possible contribution during a simulated filling, with negative results. Before changing from hydrogen to deuterium gas, and vice vorsa, the palladium tube and chamber were flushed several times with the new gas before measurements were begun. The effectiveness of this procedure was adequately checked by the absence of recoil deuterons when hydrogen was substituted for deuterium.

Recording Apparatus

The present experiments were begun shortly after the completion of a new 10-channel amplitude recorder designed by M. Sands of the Electronics group. This instrument was available and proved to be a thoroughly reliable and extremely useful recording device for our measurements. The details of this multichanneled disoriminator will be described in detail in a future publication¹⁰, but in essence it consists of 10 discriminator and scaling units. The disoriminators are successively biased by equal increments. Each channel is connected with its neighbors by anti-coincidence circuits and an incoming pulse is registered in that channel which is in anti-coincidence with the following channel (except for the tenth channel which records all pulses higher than its bias setting.) One, therefore, obtains a "differential bias curve" for the incoming pulses. The width of the channels could be selected to be 2, 5, or 10 volts, and the minimum bias on the set of channels could be varied. With these two adjustments it was possible, in a simple manner, to adjust the resolution of the instrument to our particular requirements.

The time-saving features of the 10-channel discriminator are immediately obvious for the p-d scattering measurements, since both scattered protoes and 10 Los Alamos Technical Series, Vol 1, Part 1, Sec 405

-15-

recoil deuterons enter the detector at angles below 90° . The relative and absolute pulse amplitudes of the two groups varies from angle to angle as will be shown below (Fig. 3). The proper settings of the amplifier gain and channel position and width could be determined in a matter of minutes before actual measurements were made. Since the two groups could be adequately resolved at most angles a higher accuracy is achieved by this method of recording over a single discriminator for the same total number of counts. Another simplification was introduced by obtaining the background for each group. At low accelerating voltages, this background was more or less randomly distributed. At higher energies (about 3 Mev), an appreciable background, generated by protons striking the collimator slits, was observed which had a distribution which was high in the lower channels and rapidly decreased. Backgrounds were measured after each run with the scattering chamber evacuated at the same angular, amplifier, and discriminator settings which were used in the scattering measurements.

The linear amplifiers¹¹ used with the movable detector and the monitor counter had a rise time of 0.5 microseconds and were stabilized by inverse feedback. The low-frequency response was limited to allow quick recovery (within several microseconds). Since the monitor counter detected the two groups of particles at constant amplitudes for a given energy setting, its pulses were recorded with two "integral bias" disoriminators. Bias curves were taken at each energy and the two groups were found to have excellent plateaus. The two disoriminators were then set on the deuteron plateaus, one at the middle and the other at a lower bias asia check for drift of the plateaus.

Proton-Proton Soattering

In the notation of HKPP, the yield of detected particles is given by

11 Los Alamos Technical Series, Vol 1, Part 1, Sec 3.6

-16-

$$Y = N n \sigma G/sin\Theta$$

(1)

where N is the number of incident particles, n is the number of scattering particles per cm³, and o is the scattering cross section (in laboratory coordinates) per unit solid angle at the angle 8. The factor @/sin9 defines the target volume and detector efficiency. In view of the short time available for the present experiment, it was considered advisable to check our experimental arrangement and procedures by measuring proton-proton scattering for comparison with the careful experiment of HKPP By these measurements it was felt that systematic errors would be discovered quickly. One series of such measurements were made before the proton-deuteron tests, and a second set of data was taken after completion of the latter measurements. These results are summarized in Table Io The incident-proton energy was 2008 Mevo Measurements made at different pressures gave identical results for the yield per mmo Measurements were also made with angular settings on both sides of the incident beam, but no systematic difference was observed. The first set of data was taken using the current integrator, The second set was taken using the condenser ballistic galvanometer. monitor counter method of current measurement, in addition to the current integrator; the final results were evaluated as described in the section on "current measurements." For a direct comparison, with the data of HKPP, our yields wore divided by 1.630, which is the ratio of our value of G to the value of G given by HKPPo

-17-

TABLE I. (a)

Angle	15	20	25	30	35	40	45
Yield/µC/mm	5.09	2.38	1.81		1.23		0.887
Corrected yield	3₀03	1.42	1,08		0.732		0.528
HKPF yåeld	2.91	1.405	1.039		0.743		0.525
Percentage difference	+491	+101	11 309	· .	-lolj	-	r005
			(b)				
Angle	15	20	29	30	• 35	40	45
Yield/µC/mm	4.90	2.32	1.76	1.46	1.22	1.009	0.880
Corrected yiold	2.92	1.38	1 005	0.966	00725	0.600	0.524
HKPP yield	2.91	1.405	1.039	0.855	0.743	0.604	0.525
Percentage difference	+0.3	-1.8	+100	+103	-204	=0o7	- 0 °2

Comparison of proton-proton scattering yields at 2.08 Mev with the yields obtained by HKPP. The upper set (&) was measured before the proton-deuteron experiments, the lower set (b) after the completion of the latter measurements.

In Table I. the first row gives the angular setting (laboratory coordinates); the second row is the yield per microcoulomb per mm of pressure at 0°C. Now three shows the yields corrected by the factor 1.650, while the fourth row gives the data obtained by HKPP. The last row indicates the percentage differences. The improvement in our measurements on using the monitor counter and ballistic gal... vanometer method of current calibration is apparent from the second set of costs.

-18-

Table I. From the estimates given above for the accuracy in the determination of N_0 n, and G, one obtains a probable error of $2_02\%$ in the determination of MnG. The number of counts taken at each setting in the second experiment was in the neight borhood of 8000 leading to a total probable error in the yield of $2_05\%$. The agreement between these two independent measurements of the proton-proton scatter ing is very satisfactory.

Data was taken at angles beyond 45° (up to 70°) and was found to agree well with the measurements below 45° , indicating that our instrumentation would be satisfactory for the larger angular range covered in the proton-deuteron scattering.

Proton-Deuteron Scattering

In the measurement of proton-deuteron scattering, scattered protons and recoil deuterons enter the detecting counter. It is necessary to separate the two groups in order to determine the angular eross sections. As mentioned above, this separation was accomplished by means of a 10-channel amplitude recorder. Typical results obtained with this device are shown in Fig. 3. The bracketed numbers represent the amplifier gain, higher numbers referring to higher gain settings. Bearing these numbers in mind, we can see the general trend of the amplitudes of the two groups. The counter depth is small compared with the particle range at low angles so that at 15°, the deuteron pulse is roughly twice as large as the proton pulse. The deuteron energy falls off relatively more rapidly with angle than the proton energy, so that both groups increase in amplitude, the deuteron group increasing more rapidly. A maximum separation in the groups occurs at about 55 . Beyond this point the proton pulses continue to increase, but the deuteron pulses begin to decrease as the residual deuteron range (beyond the counter window) becomes smaller than the counter depth. At about 70° the proton and devector ... groups overlap, with the latter disappearing rapidly beyond this angle

(5)

-19-

proton pulses continue to increase in amplitude to 113° beyond which they decreased An additional point of interest is the counts observed in channel 6 at 550° These correspond to protons scattered from hydrogen contamination in the deuterium gas, (The apparent narrowness of the deuterium group at 55° is fictitious, since channel 10 actually records all amplitudes greater than those which would fall in channel 9.) Mass-spectrographic analysis * of the deuterium gas gave a composition of 99.1% deuterium and 0.9% hydrogen.

If β is the angle of scattering of the proton in center of mass coordinates, and s and e are the corresponding angles in the laboratory system of the scattered proton and recoil deuteron, one obtains the following relationships:

$$\mathbf{\varepsilon} = \pi/2 - \mathbf{\beta}/2 \tag{2}$$

and

$$\sin (\beta - \beta) = (1/2) \sin \beta$$
 (3)

To convert the laboratory angular cross sections obtained from the yields by equation (1), to angular cross sections in the center of mass system, one has

$$\sigma(\beta) \sin\beta d\beta = \sigma(\beta) \sin\beta d\beta$$

Combining this equation with equation (3) one finds
 $\sigma(\beta) = \sigma(\beta) \cos(\beta - \beta) [(\sin\beta) / (\sin\beta)]^2$
Since $\sigma(\beta)$ is given by equation (1), one obtains

$$\sigma(\beta) = (1/\text{NnG}) Y (\phi) F (\phi)$$
(4)

where

$$\mathbb{P}(\phi) = \left[(\sin^3 \phi) / (\sin^2 \beta) \right] \quad \cos(\beta \phi)$$

Similarly, from the deuteron yields,

(1/NnG) Y(ε) F(ε) $\sigma(B) =$

"Analysis was made at the Metallurgical Laboratory in Chicago.

The conversion factors $F(\emptyset)$ and $F(\varepsilon)$ were evaluated from these equations and are listed in Table II. These results were used to convert the measured yields to cross sections per unit solid angle in the center of mass system. The value of (NnG)⁻¹ for 1 microcoulomb and 1 mm of oil pressure is 0.742×10^{-214} cm².

TABLE II

ø	15	20	27.5	38	45	55	62.5	85	95
β	22.5	2909	20.39	5509	65.7	79.2	83.8	114.9	12409
F(Ø)	0.1180	0.1592	0.2240	0.3235	0.393	0.520	0.626	1.041	1.273
ý	113	126	150						
ß	140-4	14909	16405						
F(Ø)	10704	1₀918	1.69 1						
£	15	20	27.5	38	45	55	62.5		
β	150	140	125	104	90	70	55		•
F(B)	0.0670	0.0910	0.1302	0.1953	0.2500	0.3570	0.480	5.	•

Conversion factors for determining of absolute cross per unit solid angle in the center of mass system from the observed yields of protons and deuterons. The angles \emptyset and ε are the laboratory angles for the protons and deuterons, the values of β are the corresponding center of mass angles.

Results

A series of runs were made to scan the energy interval 0.8 to 3.5 Mev to see if any pronounced dependence on energy was to be observed. The dependence of

-21-

energy appears to be gradual, so that final results were obtained at intervals of approximately 500Kv. These results are summarized in Table III. The yields have been corrected for background and for hydrogen contamination. The latter correction mas made for all deuteron angles and for proton angles greater than 55°. At lower sugges, the protons scattered by hydrogen and deutorium were indistinguishables No correction was made at these angles, but since the southering by the two nuclei is of the same order of magnitude, the neglection introduces trivial error. No geometrical corrections have been applied to the cross sections; such corrections would increase the value at 15° (for the protons) a few per cent, but would be negligible at higher angles. The energy values are believed to be correct to ± 30 Kev relative to the value of 1.860 Mev for the threshold of the Li(p,n) reaction which was used to calibrate the energy scale. The entrance foil was taken to be 80 Kev equivalent at 2.1 Mev, since the rate of deposition of carbon on this foil was unknown. The estimated accuracy of ±30 Kev also includes the uncertainty in the linearity of the electrostatic analyzes. Counts of 2500 or more were taken at each setting so that the statistical weight of the yields is 2% or better, leading to 9 probable error of the order of 3% when the uncertainty in the determination of NnG is included. The last run at 3.49 Mev is considerably less accurate as a result of generator difficulties and the failure to take a background run at this energy. The background was fairly high and an estimate of it was made for this set of data. However, it is felt that the accuracy of this run is probably not greater than 10%. The data taken at 1.51, 2.08, 2.53, 3.00, and 3.49 Mev are shown in Fig. 4, where $o(\beta)$ is plotted against β . The excellent agreement between the cross sections obtained independently from the deuteron and proton yields may be noted.

The presence of nuclear scattering is quite apparent from these curves. At angles beyond 45° it represents the major fraction of the scattering areas section. The increase of cross section at large angles and the shifting of the minimum slow. That higher order waves than the spherically symmetrical S-wave must be effective. APPROVED FOR PUBLIC RELEASE

Proton Angle 9	15	20	27.5		38	45		55	62.5			85	95			113	126		150	Energy (Mev)
Deuteron Angle E				62.5			55			45	38	1		27.5	20		,	15		
Henter of Heass angle	22 . 5	29.9	40.9	55	55.9	65.7	70	79.2	88.8	90	104	114.9	124.9	125	140	140.4	149.9	150	164.5	
Ο ¶ield Ε-(β)	34.0 2.98	9.24 1.09	2.64 0.439									. i		2.18 0.210	3.69 0.247			5.26 0.261		0.825
dield ∀(β)	11.18 0.980	3.73 0.441	1.55 0.258		0.765 0.184	0.576 0.170	0.584	0.387 0.149		0.784 0.145	1.10 0.159	0 .228 0.176	0.226	2.32 0.224	4.37 0.294	0.227 0.286	0.225 0.320	6.72 0.334	0.331 0.417	1.51
Φ ield Φ-(β)	6.08 0.533	2.67 0.315	1.29 0.214	0 .487 0 .17 4	0.738 0.177	0.527 0.156	0.548 0.145	0.340 0.131	0.258 0.120	0,632 0.117	0.830 0.120	0.180 0.139	0.179 0.169	1.76 0.170	3.69 0.247	0.194 0.245	0.204 0.290	5.94 0.295	0.292 0 / 367	2.06
Ω Iield Σσ(β)	4.97 0.436	2.28 0.270	1.30 0.216	0.503 0.179	0.736 0.177	0.534 0.158	0.537 0.142	0.330 0.127	0.242 0.113	0.588 0.109	0.724 0.105	0.149 0.116	0.150 0.142	1.52 0.147	3.15 0.213	0.171 0.217	0.191 0.271	5.69 0.282	0.272 0.342	2.53
$\frac{P_{1}eld}{P_{2}}$	3.92 0.344	2.05 0.242	1.24 0.207	0.474	0.688	0.492 0.145	0.517 0.137	0.316 0.122	0.230 0.107	0.540 0.100	0.603 0.0878	0.125 0.0968	0.125 0.118	1.26 0.122	2.73	0.148 0.187	0.175 0.251	5.06 0.251	0.271 0.343	3.00
$\frac{\mathbf{Yield}}{\sigma(\beta)}$	3.48 0.304	1.95 0.229	1.20 0.198	0.404 0.144	0,679 0.163	0.480 0.141	0.474 0.125	0.272 0.104	0.173 0.0802	0.499 0.0922	0.528 0.0764	0 .128 0 .0975	0.117 0.110	1.03 0.0986	2.44	0.126	0.151 0.215	4.58 0.227		3.49
		1			Table I	II. Su ex sc mi ge co 10	mmary c perimer attered croampe ter of m unit wrdinat wrdinat	of proto its. The protocological pro- solid pro- solid pro- solid tes $\sigma(\beta^2)$.	n-deute s yield s or re incident ssure. ingle i) is g:	ron sca is the coil de ; proter The cr iven in	ttering number suterons se per m oss sec of mag units o	of per tilli- tion s		÷	1. 1. 1.	: • • • • •		∎ 1 1		6

TABLE III

۲ ۱ 3

; ¢

۰ د د د t t

... ٩. : 4 . .

- 23 - 1

UNCLASSICIA

The ratios of the observed cross sections to Rutherford cross sections are given in Table IV for several angles. A detailed theoretical examination of the results of the

TABLE IV SCATTERING ANGLE B

AO		45	60	90	120	150	
	1.51	3.68	8.65	28.3	87.0	224	
អ	2.08	6.44	15.2	43.8	128	377	
ħ	2.53	9.76	22.9	60.1	158	524	
52	3.00	13.1	30.5	1903	186	670	
д	3.49	16.6	37.8	89.6	215	798	

Ratio of observed scattering cross sections to Rutherford cross sections for various energies and angles.

present experiment have been made by Dr. C. L. Critchfield; his analysis will be published in a separate paper.

As was mentioned in the introduction to this paper, Tuve, Heydenburg, and Hafstad obtained very anomalous results in the proton-deutron scattering at 830 kv which subsequent theoretical work by Primakoff⁽²⁾ and Ocohai⁽³⁾ attempted to explain. ^The present data do not agree with these previous results. In Table V our measurements expressed as "ratio to Rutherford" may be compared with the earlier work. The theoretical values of R calculated by Primakoff are in fair agreement with the present measurements at the larger angles, but give too high values at low angles.

In conclusion we take pleasure in acknowledging the helpful suggestions and interest of Drs. A. O. Hanson, J. L. 4cKibben, C. M. Turner and J.H. Williams. This experiment could not have been completed within the short time available without the generous assistance of Dr. A. Hemmindinger and Messrs. E. Klema, R. Perry and L.W. Scagondollar in taking data and operating the electrostatic generator. We are indebted to Mr. E. W. Dexter of the Electronics group for his assistance in periodically checking the operation of the 10-channel discriminat APPROVED FOR PUBLIC RELEASE

VIICLAJJIFIED

UNCLASSIFIED

-24-

TABLE V

Ĕ	22°5°	29.9°	40.9 ⁰	1250	140°	150
σ(<i>β</i>)	2.98	1.09	0.439	0.210	0.247	0.26 1
R	0.997	1.12	1.52	30.4	45.6	53° 1

(a) Results of present experiment at 825 Kev

ß	30 ⁰	45°	59 °	110 ⁰	120 ⁰	150 °
R	2	5	8	70	124	2275
R theory	2	4	7	35	40	61

(b) Results obtained by Tuve et al (tabulated by Primakoff) at 830 Key.

Proton-deuteron scattering results at 825 Kev. The ratio of observed cross section to Rutherford cross section is given in rows labelled R.

APPROVED FOR FUBLIC RED

3

τ

ANGLE OF SCATTERING IN CENTER OF MASS COORDINATES

UNCLASSIFIED

DOCUMENT ROOM

REC. FROM 9/20/46 REC.____ NO. REC.____

2

UNCLASSIFIED

