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AN ANALYTIC METHOD FOR CALCULATING THE TIME-TEMPERATURE HISTORY

OF METAL FOILS UNDER PULSED IRRADIATION AND A GAUSSIAN BEAM PROFILE

by

L. N. Knetyk and W. F. Sommer

ABSTRACT

Utilization of a pulsed radiation source such as the Clinton
P. Anderson Meson Physics Facility (IAMPF) for materials science
studies requires knowledge of the time-temperature history of a
subject metal foil. We derive an analytic solution to a two-
dimensional heat flow equation, incorporating the LAMPF time
structure and the LAMPF Gaussian beam spot profile. This calcula-
tional method is useful in designing experimental systems for
materials science studies and can be done on a Hewlett-Packard
model 97 desk-top calculator. We compare the results with an
equivalent numerical solution of the same two-dimensional heat
flow problem done on a digital computer.

I
I. INTRODUCTION

We utilize the 800-MeV proton beam at UMPF as a source for radiation dam-

age, materials science studies. Materials phenomenon are strongly temperature

dependent. The calculation described here is used in the design of experimen-

tal systems to give a theoretical prediction of the temperature history of a

subject foil. Since large temperature excursions during a pulse are not usable

conditions for an experiment, we consider constant physical properties, near the

design point in temperature, for the materials under study. Although our cal-

culations reflect the LAMPF time structure (0.5 ms “on time” at 120 Hz), any

time structure may be analyzed by insertion of the proper values of T, the time

between pulses, and Tl, the pulse length. We also incorporate a Gaussian beam

profile; typical of the LAMPF beam. We approximate elliptical beam spots by an

equivalent circular area. We assume that a coolant such as flowing water will

maintain a constant temperature (coolant temperature plus film temperature



gradient) at the surface of an emersed foil and at a radius of 30; a is one

s~andard deviation. The calculation can be done for any material for which the

physical properties and particle energy

II.. EQUATIONS

The two-dimensional time-dependent

coordinates is

dissipation characteristics are known.

.

heat conduction equation in cylindrical

+

(1)

The region of interest is a finite cylinder of height !2and radius a, whose sur-

face is held at a fixed temperature T = T(t=O) (Figure 1). Treating the right-
0

hand side of equation (1) as a source term allows us to write the formal solution

in terms of the Green’s function for the homogeneous equation asl

T(r,z,t) = ;[[~
G(r,r”;z,z”;t,t”)Q(r”,z”,t’) 2nr”dr”dz”dt”. (2)
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Fig. 1.

Foil geometry.



To find the necessary Green’s function we use the method of separation of vari-

ables on the modified heat conduction equation

Assuming G(r”,z”,t”) = R(r-)Z(z-)(3(t”)gives

which breaks up into the three ordinary differential equations

~= - (C:+ c:)m(t”)

(3)

(4)

(5)

&!a= - c: Z(z”) (6)
dz”2

ld
Fz

(r-~) . - c: R(r”) . (7)

Equation

*2
r

*

(7) is the standard equation obeyed by Bessel functions of order
zero

2
&+r*~+(r *2 -(n=O)2) R = O ,
dr*2

where r--= err”. The boundary condition on this radial equation is

(8)

T (a,z,t) = O (or a constant) ,
(9)

giving immediately r“ = a - r* = CXn,where an iS the nth zero of Jo(r*), so

that



a
C=$”
r

(The zeroeth order

(lo)

Bessel function of the second kind is eliminated since it

cannot satisfy boundedness at r = O.) The solution to the radial equation is

then

R(r”) =
I

An Jo(an ~),

a
n

where the coefficient An is determined from the conditions

R(r” = r) = d(r”-r) = f(r”)

( 11)

( 12)

to be

f(r’) = I L+
An Jo (a

a
n

J
a a

2mr”dr” Jo (am~0)6(r”-r) =
J

21rr”dr”
I

An Jo (an:) Jo (am+),
o 0 an

2

Jo (am:) = ~a2 Am [ 1J; (am) ~

giving finally

1R(r,r”) = ~
I

ma
an

Jo(an~) Jo(a %

IJ: ‘an)]2 ‘a “

(13)

(14)
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Equation (6) is even simpler in that the solutions are trigonometric rather

than Bessel Functions. Using the boundary condition

2(2” = o) = Z(Z- = ~, = o

gives the solution

Z(z”) = 7~Bm Sin (~) ‘

m

where the cosines disappear because of the z = O condition, and the

z = k condition gives

The coefficients Bm are evaluated using

Z(z”=z) = 6(2-2”) = f(z-)

to give

(15)

(16)

(17)

(18)

(19)

giving finally



Z(z, z”) = ; I sin (+) sin (~).
In

Utilizing the results of equations (10) and (17) allows equation (5)

to be written as

whose solution is

D[l
an2

(t,t-) = exp-K— +d

a2 !L2
1 I(t-t*)“

nti

(20)

(21)

(22)

Thus the Green’s function for this problem is

G(r,r4;z,z-;t,tO) = ~[
L ,q_K?$ =)(t-t-)] sin (~) sin (mjz
ma2L m= “

x ~.xp [- . ~ (t-t”)] ‘o(~ ‘) ‘j(>%) -
n a J:(an)

(23)

III. APPLICATION

The LAMl?F 800-MeV pulsed proton beam has an elliptically shaped target area

approximated here by a circular area of radius a. Irradiation and heating of a

thin rectangular foil whose edges and surface are held constant at the initial

temperature can be approximated by considering heat conduction and generation in

a finite cylinder large enough that the radial edges see little radiation. The

proton flux for the LAMPF beam is Gaussian in profile and hence can be described

as

I(r,z,t) = I(t) exp (-~),
r
o

(24)

.

.
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where r
o

profile)

function

is a constant ( = fiwhere a is the standard deviation of the Gaussian

giving the average size of the beam spot and I(t) is a pulsed time

equal to

[“
0 fort<o

I(t) = 10 for m~ S t < m~+~l

O formT+T1<t<(til)T ~

where m = O, 1, 2, .,., ‘1 = 0.5 ms and ‘r= ~2~ Hz. For a net current of 1 mA,

10 is given by

n /At
10 =

n lAt
L, (26)

I

a 2 = #
27rrexp (-~z )dr o

0 r
o

where n is the total number of protons in a pulse of duration At, given by
P

-3
= lmAx::cJ

18 P 1

‘P
X 6.28 10 ‘X

c 120 pulse/see

= 5.233 1013*

(25)

(27)

for a net current of 1 mA. If each 800-MeV proton loses an amount of energy

S* per unit distance traversed in the target, and if all this energy is

assumed to produce heat by direct excitation of the lattice, the heat generation

rate per unit volume is

[1
*rip/Ateq_~

Q=S2
‘fir r2o 0

(28)
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whenever the beam is on, and zero otherwise. To insure that

is accounted for we set a = 30 = 2.12132ro (by which time we

the current).

The temperature is given by equations (2) and (23) as

most of the beam

are using 99% of

T(r,z,t)-To =
:’& J ; #p’.P [-.(y+$ (t-t.,] f(,-),,-

n
(29)

a

()

=.2 JO(an$)JO(an~-)
k

J J

.
x 27rr”exp - —

=2
dr” -) dz”,sin (*) sin ( ~

o d
o [J: (an)12

where f(t”) is a pulsed time function

normalized to unity.

The integration in z“ is readily

o

such as

carried

given by equation (25) but

out to give

(30)

and the summation over odd m

r“ can only be approximated,

can be rewritten as m + 2m+l. The integration in

using the definite integral

mrv+l e-a2r2J
b’[1b“ em __

JV(br)dr = —
(2a)W1 4a2

o

(31)

to give

~)Jo (an ~) [1
Jo (an ~) a’

J

a Jo(an a r
2nr”

[

exp -—
r“: ‘r” Z ‘m [1~’em.—

12 J12 (an)
1:

0 J: (an) o

z Jo (an ~) a2
~ mr exp

0 J; (an) ()
-i% ‘

(32)



a’
where we have used the relations Jo“(an) = J1 (an) and 202 = ro2 =C5.

Due to the rapidly decaying nature of the Gaussian the approximation a ~ m in

the integration limit is quite reasonable.

The integration in t“ is done by defining the integral

t

Iam = @m
J

exp (f3amt”) f(t”)dt”,
o

where

Since f(t-) only exists for kT S t S kT + T1 the integral Im reduces to

T*l ,
:1

I
am = 4U1

exp (~mt”)dt” + I f3mexp (t3~t”)dt+ ... +
T

J
t or k’c+?l

+ t3m exp ((lmt”)dt”.
kT

(33)

(34)

(35)

The lower limits give the sum

-p [(k+l)~am~]-l

-1- exp (6amT) - exp (2f3amT) - ... -exp (k~m~) = ~ _ _ (e =, ‘
am

(36)

while the upper limits give

exp (Bum~l)
[
l+exp (~amr) [

+ exp (Bam’-r) + . . . + exp (k–l)6am~) H
9



I

[

exp (BmT)
+

exp [f3m (ltC+T1) ]

exp (lcpm?) -1

1

exp (sat)

exp (flmT)-l +
exp [Bm(krl’tl) ] .

(37)

,

(38)

Combining these results yields

where the two final terms refer respectively to times inside and between pulses.

Putting together equations (29), (30), (32) and (3S) gives as the entire

solution

[(~ a2L2

)[

l-exp[(ki-l)~am~ ]+exp[6am(lcT+K~) ]-exp(~nm~l)
x exp (-fiamt)

K 222 exp (6amT)-1
a~E2+(2nttl)m a

+ exp(Bmt)

11

(39a) ‘

.
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.

+ exp [E!m(kT*l) ]II (39b)

Rearranging the constants and returning to the Im notation gives

*~ @!pE
I a2?() Jo(an~)

T(r,z,t)= To+~&-
K9~ ~ (2m+l) exp - A ‘exp(-8mt)Im. (39c)

18 J~(an) ‘am

IN. RESULTS

We have used this calculational method for evaluating various irradiation

locations and experimental systems at LAMPF. Figure 2 is a schematic of a

typical result. This plot represents the temperature-time history at the mid-

plane of a metal foil, at the center of the Gaussian beam spot. This result

generalizes and may be extended to an entire family of (r,z) positions which

gives the total temperature profile of the foil at a given time.

The calculation had been done previously by numerical methods on a digital

computer. A comparison of the results from the two methods is shown in Table I.

Run time on a HP-97 calculator for a given time and position (r,z) is approxi-

mately 4 min.
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TIME EN; OF
I ANNEALING
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I?EGINNING

L BEGINNING OF PULSE
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.l?igure 2. Schematic of the temperature - time profile of a metal foil under
pulsed irradiation at the foil mid-plane and at the center of a
Gaussian beam spot.

TABLE I

COMPARISON OF THE ANALYTIC AND NUMERICAL TEMPERATURE CALCULATION

Material

r o
10

r

To

Time

5 x 10-4

1X1O
-3

2.8 X 10-3

8.3 X 10-3

Aluminum

1 x 10-3m

1.94 x 10-3m

8.87 x 1021pm-2s-1

o
400 K

Temperature

Numerical Calculator

535.304 535.338

494.003 491.702

418.764 416.742

400.154 400.095

t

i-
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