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THEORETICAL EQUATIONS OF STATE

FOR THE RARE GASES

by

G. I. Kerley and P. M. Henry

ABSTRACT

Theoretical equations of state and related calculations
are reported for the rare gases neon, argon, krypton, and
xenon. The liquid and vapor phases were computed using a
model which is based upon thermodynamic perturbation theory.
The fluid model requires an expression for the potential
energy of a molecule in the force field of its neighbors;
this function is derived from the zero-temperature isotherm
of the solid. The solid isotherm was determined from static-
compression data and statistical atom theory. The solid data
were the only experimental information used to construct the
liquid model. Comparisons are made with measured isothermal-
compression data, sound speeds, vaporization curves, Hugoniots,
structure factors, viscosities, and melting curves. Agreement
with experiment is good.

I. INTRODUCTION

Argon and the other noble gases frequently are studied as test cases for

theories of equations of state (EOS) and related material properties.1’2 Many

models assume that the intermolecular forces in these materials are pairwise

additive; calculations have been made using pair potentials constructed from

experimental data.2 However, recent work has shown that intermolecular forces

are not pairwise additive in rare gas solids and liquids.2’3 The existence of

three-body and higher order forces complicates the theory of these substances.

In this work, we apply the CRIS model to calculations for the rare gases.

This model is an extension of previous work4 on the theory of argon and hydrogen.

The thermodynamic properties are computed from an expansion about a hard-sphere
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fluid reference system, in which the hard sphere diameter is chosen by a varia-

tional principle. The theory differs from that of other investigators in the

treatment of intermolecular forces and in the calculation of second- and higher-

order terms in the expansion. The CRIS model uses the zero-temperature isotherm

of the solid to define an expression for the energy of a molecule in the field

of its neighbors. This approach avoids complications that arise when the inter-

molecular forces are explicitly separated into two-body, three-body, and other

many-body potentials. In our previous work,4 we carried the perturbation expan-

sion to first order. In this report, we include contributions from higher-order

terms in the expansion , using approximations derived from macroscopic fluctuation

theory. Tests of the theory for the 6-12 and inverse power potentials showed

that it agrees well with Monte Carlo and molecular dynamics calculations.s

The only information required to apply the liquid model is the zero-tempera-

ture isotherm of the solid. For this study, we constructed cold curves for the

noble gases by fitting analytic expressions to static-compression data for the

solid phases and used a formula related to statistical atom theory to extrapolate

the data to higher densities. Sensitivity studies indicate that the cold curves

for the noble gases are sufficiently accurate for this study, although new exper-

imental and theoretical results to check our statistical atom predictions would

be helpful.

The fluid model is describd ixiSec. 11, a~d the solid mudei and cold curve

calculations are described in Sec. III and Appendix A. In this study we applied

the model to neon, argon, krypton, and xenon. We did not study helium because

quantum effects, known to be important in that case, are not included in the

model. In Sec. IV we compare our calculations with measured isothermal-compres-

sion data, sound speeds, vaporization data, Hugoniots, structure factors, vis-

cosities, and melting curves. Agreement with experiment is very good. We also

make theoretical predictions of the Hugoniots for liquid neon and krypton, which

have not been measured.

In the Hugoniot calculations, we included contributions from thermal elec-

tronic excitation to the EOS. These terms were computed from statistical atom

theory, as explained in Appendix B.

.
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II. THE FLUID MODEL

In this section we describe the main features of the CRIS fluid model used

in our calculations. A more detailed description of the theory will be pub-

lished elsewhere.s Throughout this discussion , we assume that the molecules are

in the ground electronic state. At high temperatures, these results must be

corrected for electronic excitation of the atoms; these corrections are consider-

ed in Appendix B.

A. The Variational Method

Because the structure of liquids and dense gases is determined primarily by

repulsive forces2’6 (effects of excluded volume), it is useful to express the

Helmholtz free energy as a perturbation expansion about a hard-sphere fluid.

A=AO+<U>O+AA, (1)

where Ao is the free energy of the hard sphere system and U is the potential

energy of the real system (a general function of the coordinates of the liquid

molecules). The term < U > denotes an average of U taken in the hard-sphere
o

system.

By definition, AA contains all remaining contributions to A; these correc-

tions are due to differences between the structure of the real liquid and that

of the hard-sphere system. This term can be made quite small by an appropriate

choice of the hard-sphere diameter, o The first two terms in Eq. (1) give an
o“

upper bound to the free energy, 2

~=Ao+<U> O>A (2)

Our procedure is to minimize ~ with respect to ao; in this way, we find the hard-

sphere system whose structure is closest to that of the real fluid. Then

the correction AA is small, and it is feasible to consider approximations to it

(see Sec. C, below).

B. First-Order Theory

The function $(~i) is the potential energy of the i-th molecule in the

field of its neighbors. Here ~i are the coordinates of the neighbors relative

to molecule i. In principle, ~ can be expanded as a sum over pair, triplet, and

higher-order interactions.
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$(~i) = (1/21)~j u2(ij) + (1/3! )2jk u3(ijk) + ● ** . (3)

For a particular configuration of the system, the total potential energy is a

sum over all molecules.

(4)

Each molecule has a different energy that depends upon the local arrangement of

its neighbors. However, the average value of $ over all

system is the same for each molecule. Therefore, we can

<U>. =N<$>o

and

Here

; of

configurations

write

of the

(5)

(6)

no(~) is the average number density of molecules having a local arrangement

its neighbors.

The function @ depends upon the short-rauge sLructure of the liquid, espe-

cially the number and positions of molecules in the first shell of neighbors.

The CRIS model assumes that the nearest neighbors lie on a spherical shell. The

nearest-neighbor distance R and the coordination number v vary from molecule to

molecule, but the volume per molecule is fixed at the mean macroscopic value V/N.

Therefore, the coordination number is proportional to the volume of the first

coordination sphere. By requiring a molecule to have 12 nearest neighbors in a

close-packed configuration, we find that

v = 645 NR3/V . (7)

In this approximation only one variable, R, is required to specify the local

arrangement of neighbors about a particular molecule. Equation (6) reduces to

<$>.= ~~ 41(R,v)no(R) @R2dR , (8)

.



where no(R) is the number density of molecules having neighbors on a shell of

radius R.

The distribution function no(R) can be obtained from the radial distribu-

tion function (RDF) for hard spheres, go(R). We find that

(N/V) go(R) = (v/N) no(R) .

Here, and in subsequent equations, go(R) refers to the first

the contribution that corresponds to the nearest neighbors.

we introduce a cutoff in R, as follows.

ture

& no(R) 4nR2dR = N .
0

(9)

P@! in the ~F,

To normalize no(R)

(lo)

The potential-energy function $(R,v) can be estimated from the zero-tempera-

isotherm of the solid in the following way. Let EC(V) be the electronic

contribution to the energy per ❑olecule for the close-packed solid at volume V

and zero temperature. (Here, and in subsequent equations, contributions from

zero-point motion of the nuclei are not included in the definition of E~.) The

volume V is related to the nearest-neighbor distance by

(11)

In the liquid phase, a molecule has the same potential energy as it would in the

solid phase at the same nearest-neighbor distance , except that the number of

neighbors has been reduced from 12 to V. Hence,

@(R,v) = (v/12) Ec(NR3/~~) . (i2)

Using the above expressions we find
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%
<()>o=~CJ/ : EC(NR3/~~) go(R) R2dR . (13)

We use Eq. (13) and the free-energy and RDF formulas for the hard-sphere refer-
.

ence systems to define our first-order estimate of the Helmholtz free energy, A.

We minimize ~ to obtain the hard-sphere diameter as a function of density and

temperature. The first-order approximations to the internal energy and pressure

are computed from standard thermodynamic relationships. It is found that4

E=; NkT+N<$>o

and

.%
NkT

F=y+ ~~ pC(NR3/&) go(R) R2dR ,
0

(14)

(15)

where PC(V) is the pressure on the zero-temperature isotherm of the solid.

c. Corrections to First-Order Theory

When the first-order theory is used in actual computation, the higher-order

terms in the expansion are small but not negligible. For the inverse-12 poten-

tial, AA accounts for 5-10% of the free energy. The new approximations derived

for these corrections yielded excellent results when the theory was compared with

machine-calculated test cases.s

The potential energy for a perturbed fluid is

UC(A) = UO+AU , (16)

where U. is the hard-sphere potential energy. Using standard A-expansion techni-

ques, we find the free energy of this perturbed system to be

(17)

.

.
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where nA(~) is the distribution function for the perturbed system and the other

quantities are defined above. Note that AC + ~ as nA + no.

The perturbation redistributes the number of particles in configuration

space from no(~) to nA(~). For a particular configuration ~, the change in the

number of molecules is related to a fluctuation

in the system. We can write an exact relation

where p is a perturbed chemical potential. The

ciated with p is N(p), where

P N(P) = AO(V,T,I.J)+ V PO(V,T,P) .

in the total number of molecules

(18)

total number of particles asso-

(19)

Our approximation is based upon the following expression for the perturbed

chemical potential.

H(h) %J - A [0(;) - < $ >.l ,0
(20)

where p is the chemical potential for the hard-sphere system at the macroscopic
o

density. Hence> P is related to the instantaneous fluctuation in the potential

energy of a molecule about its mean value. The details of our argument are given

in Ref. 5.

We apply this result to

the following result for the

gA(R)=1
N2

V(P) no(R;p)

the liquid structure model described above to obtain

RDF of the perturbed system.

where N : N(po). Hence the RDF of the perturbed system is related to that of

the hard-sphere system undergoing a ~ensity fluctuation. Equation (21) gives

good results when applied to test cases, in support of the approximation.

We can also apply the arguments given for the first-order theory to Eq. (17)

to obtain

7



(22)

The quantity AC(l) is the free energy of the real system plus a hard core;

the integral over R in Eq. (22) makes no contribution for R > ao. To complete

the derivation of AA, we add a second term to Eq. (22). A second perturbed

potential energy is defined by

U#)=U+AWo , (23)

w =2
o

i>J ‘O(lii-ij l),
(24)

and

I
E R>(TO

WO(R) =
o R<oo ‘

where & is a constant having dimensions of energy. In the limit s + m, W. + Uo.

Denote the free energy of this system by %(A). The A-expansion can be used to

give

%(A +

where gw is

Andersen et

CT

m) = AC(l)
{

=A+N2–s J0R2dR~g(R,A)dA ,

0
0 w

the RDF of the perturbed system. The blip function theory of

al.’ suggests the following approximation for gW.

gw(R , N : exp[-~Awo(R)]g(R) .

Using this result we obtain

(Y

AC(l) ~A+NkT 2n#J0 g(R)R2dR .
0

(25)

(26)

(27)

.



For g(R), we use Eq. (21) and extrapolate go(R) inside the hard core.

Finally, we eliminate

AA=A-~:-NkT2n:

Further examination of the

this result should be most

the quantity AC(l) from Eqs. (22) and (27), giving

a

Jo g(R)R2dR
o

(28)

[1NQ)2
N go(R;kO dp .

approximations used to derive Eq. (28) indicates that

accurate when On is chosen by the variational princi-
- -

ple. Therefore, we use the first-order theory to compute O., A, E, and P as

functions of density and temperature. Equation (28) is used to compute ’the

higher-order corrections to A. Energy and pressure corrections are calculated

by numerical differentiation of Eq. (28), using the standard thermodynamic ex-

pressions.

111. THE SOLID MODEL

For this study, we constructed the zero-temperature isotherms required for

the CRIS model by fitting the Debye model to low-temperature compression data for

the solids. We used a formula based on statistical atom theory to extend the

results to higher densities , where no experimental data exist. Trickey and

Greeng have obtained good results by applying band-theoretical methods to the

rare gases. Similar calculations, to check our cold curve at high densities,

are being made at this laboratory.

A. Low-Density Formula

cold

and

For pressures less than about 10 GPa , we used the following formulas for the

curve.

EC(P) = al exp(-a2/pl’3) - a3p2 (29)

PC(P) = (1/3)a1a2p
2/3

exp(-a2/pl/3) -2a3p3 . (30)
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One relation among al, a2, and a3 was obtained from the binding energy of the

solid; Eq. (30) was fit to the compression data subject to this constraint, with

zero-point and thermal corrections computed as described below. Fit parameters

for the four gases are given in Table I. Units are chosen so that Ec is in

MJ/kg, P= is in GPa, and p is in Mg/m3.

Equations (29) and (30) are closely related to the Buckingham (exp-6)

potential, which is frequently used for the noble gases.g’lo

(31)

The cold curve can be computed in the usual way by summing Eq. (31) over all

pairs of molecules. If only nearest neighbors are considered in the exponential

term, the result agrees with Eq. (29). Equation (31) is not used explicitly in

any of our fluid calculations, and we do not propose this form as the best poten-

tial for the rare gases. However, the coefficients of our fit are in reasonable

agreement with the potential parameters S, et,and o that have been proposed

by others.g’~o

B. High-Density Formula

The exp-6 formula can be used for all of our liquid calculations except the

Hugoniots. Because the shock-wave data go to much higher densities than were

studied in the solid experiments, we had to use a different expression for the

cold curve in this region. Our high-density equation, discussed in Appendix A,

is an interpolation formula joined continuously and smoothly to the low-density

expression. It reduces to the Thomas-Fermi-Dirac (TFD) theory at high densities.

The two expressions were matched at about 10 GPa (the upper limit of the xenon

data) in all four cases. The TFD-match density (pM) for each of the four gases

is given in Table I.

In the absence of other data, our method for defining the cold curve at

high densities seems to be reasonable. The TFD and exp-6 formulas agree up to

about 40 GPa, well beyond the point at which they are joined. The Hugoniot cal-

culations are the only results affected by the high-density portion of the curve.

For solid argon, changing the TFD-match density by Y20% causes a *2% change in

the shock velocity at the highest pressure studied; the value chosen gives the

best agreement with experiment. Hence, the uncertainty in our shock-wave predic-

tions is small, if not negligible.

10



c. Debye Model

For comparison with experimental solid data , contributions from zero-point

and thermal lattice vibrations must be afidedto Eqs. (29) and (30). We used the

Debye model, which assumes the following expressions.11

A(p,T) = EC(P) + ~NkEl + NkT[31n(l - e‘e/T) - D(O/T) :

E(p,T) = EC(P) + ;Nk~ + 3NkT D(O/Tj ,

P(p,T) = pC(P) + ~p [;NkO+ 3NkT D(O/T)] ,

and

3T3 e/T 3
D(C1/T) = —

~
e3 :

ey-1 ‘

P (32)

(33)

(34)

(35)

where Elis the Debye temperature and y is the Griineisen function, defined by

y= d(lnO)/d(ln p) . (36)

Both 0 and y are taken to be independent of temperature. The density dependen-

cies were assumed to have the forms

Y = Yo(Po/P) + (2/3)(1 - Po/P)

and

[ 1‘j’@dx ,e=eoexpf
P. x

(37)

(38)

where po, O., and y. were taken from experiment12 and are given in Table I. The

Gri.ineisenfunction y varies by about 1,0-25%over the density range of the experi-

mental data, and the lattice vibration corrections are relatively small at the

11



TABLE I

COLD CURVE AND SOLID MODEL PARAMETERS

Parameter Neon

al
2.7314 X 105

a2
17.815

a3
0.074860

PM 3.0
1.4666

8;(K)a 67.

Y. 2.68

E&?9

3.2215 X 105
17.888
0.10646
2.9
1.6509
95.
2.61

Krypton

1.1589 X 105
20.34
0.025142
5.0
3.0786
64.5
2.05

Xenon

5.0308 X 104
20.45
0.015670
6.0
3.7461
49.
2.91

aFrom Ref. 12.

high densities. Consequently, Eqs. (37) and (38) are sufficiently accurate for

our purposes.

Figure 1 shows the Helmholtz free energy versus temperatures for the rare

gas solids. Agreement between the Debye model and the experimental data13 is not

satisfactory at high temperatures. The results are particularly poor for argon,

which has large enharmonic effects.14 At low temperatures, the theory is ade-

quate for computing the small lattice corrections to the cold curve. However,

the solid model is too poor to give meaningful results in the study of melting.

Figure 1 shows that the Debye model gives best results for krypton; our calcula-

tion of the melting curve for krypton is given in Sec. IV. Better theories of

the rare-gas solids existl, but were not considered in this work.

LOW temperature isotherms for the rare gas solids are displayed in Figs.

2-5. The EOS of solid neon, argon, and krypton have been measured to 2 GPa15’16

at 4.2 K. For argon,

all’ Xenon has been

with the experimental

sures.

Iv. CALCULATIONS AND

two high-pressure points have been

measured to 11 GPa at 85 K.ls Our

data at low pressures and with the

RESULTS

reported by Homan et

calculated curves agree

TFD data at high pres-

Comparisons of the fluid model with isothermal compression data, sound

speeds, vaporization curves, Hugoniots, structure

ing curves show good agreement. All computations

a multipurpose EOS program.

12

factors, viscosities, and melt-

were done using the PANDA code,



A. Isothermal Compression Data

EOS for the four rare-gas liquids are shown in Figs. 6-9. Isotherms for

the solid phases are included for comparison. Experimental data were taken from

Refs. 15-26.

The most extensive PVT data are available for argon, which is typical of

the results obtained in all four cases. Figure 7 shows that the CRIS model ac-

curately predicts the expansion that occurs at melting and upon heating of the

liquid. The density dependence of the pressure along a given isotherm is in

good agreement for all of the rare gases.

In Fig. 10 we compare our calculated sound speeds as a function of pressure

with experimental data from Ref. 20. The pressure dependence and the trends

among the four rare gases are in good agreement with the measurements.

As stated above, the calculated liquid properties depend only on the exp-6

formulas for the cold curve , which we obtained by fitting the solid data. The

results are not affected by changes to the high-density (TFD) portions of the

cold curves.

B. Vaporization Data

At low temperatures , isotherms calculated using the CRIS model display Van

der Waals loops, indicating the existence of a vapor-liquid coexistence region

and a critical point. The EOS surface for argon in the critical point region is

shown in Fig. 11. Above 160 K, only one phase is stable. At temperatures below

the critical point , vaporization occurs at the pressure where the two phases have

equal Gibbs free energies. In Figs. 12-18, we compare our calculated vaporiza-

tion properties with experimental data from Ref. 27.

Vapor-pressure curves for the rare-gas liquids (Fig. 12) show that there

is good agreement between the calculations and the experimental data. The model

accurately predicts the temperature dependence of the pressure and the trends

among the elements.

Densities of the saturated vapor and saturated liquid are shown for the

rare gases in Figs. 13-16. Agreement is good , especially for argon and krypton.

Calculated and experimental critical parameters for the rare gases are com-

pared in Table II. Figures 13-16 and Table II show show that our calculated

critical temperatures are too high by 6-10%. This discrepancy indicates that the

long-range fluctuations known to be important near the critical point are not

adequately described by our approximation to the high-order terms in the pertur-

bation expansion. Our results for argon agree with the calculations of Barker

et al. ,3 who included 3-body interactions. 13



Entropy on the coexistence curve is shown for neon in Fig. 17 and for argon

in Fig. 18. Theoretical densities for the saturated liquid and vapor were used

in the calculations (shown by a solid line). Agreement with the data is fairly

good, but there are some discrepancies. Most of the disagreement arises from

use of the theoretical densities. The dashed curve shows calculations using the

experimental liquid and vapor densities; in this case, agreement with the exper-

imental entropy data is very good.

Our calculated vaporization properties are in poorest agreement with exper-

imental data for neon. Part of the discrepancy is due to quantum effects that

are not taken into account in our model. Singh and Sinha28 have computed quantum

corrections to the hard-sphere fluid as a power series in A/oo, where A is the

thermal wavelength,

A = (h2/2nWkT)% , (39)

and o is the hard-sphere diameter. For liquid neon at 25 K, A = 0.777 X. The
o

CRIS model predicts c = 2.82 ~ and Ncso3/V = 0.826. The quantum corection to
o

the pressure is about 6.5 MPa , which corresponds to a 2% shift in the liquid

density. Hence, the effect is small, but not negligible. A complete theory for

calculating quantum corrections does not exist at this time.

TABLE II

CRITICAL PARAMETERS FOR

Parameter Neon Argon

talc 47.2 159.
TC(K)

a
exp 44.4 151.

talc 3.18 5.94
PC(MPa)

a
exp 2.65 5.00

talc 0.431 0.503

pc(Mg/m3) a
exp 0.483 0.536

THE RARE GASES

Krypton Xenon

225. 318.

209. 290.

6.90 7.66

5.49 5.83

0.795 0.968

0.911 1.11

.

aFrom Ref. 27.
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c. Shock Hugoniot Data

Shock-wave measurements provide a good test for our liquid model at high

densities. We have calculated Hugoniots for all four rare gases using the stand-

ard relation

-1 -1
‘H - ‘O

= % (PH + E’o) (P. ‘pH) , (40)

where E
H’ ‘H’ and ‘H

are the Hugoniot energy, pressure, and density, respective-

ly, and Eo, Po, and p are the initial conditions.
o

The particle velocity Up and

shock velocity US are related to the pressure and density by

up = (PH - Po)(po-l - pH-l)

and

us = up/(l - po/pH) .

The Hugoniot experiments considered here
4

enough (> 10 K) to cause significant amounts

(41)

(42)

reach temperatures that are high

of electronic excitation in atoms.

For this study we used the temperature dependent-TFD theory to compute contribu-

tions to the EOS from thermal electronic excitation.29 The calculations are

discussed in Appendix B.

Several shock-wave experiments have been performed on argon. Figure 19

shows the Hugoniot30 for an initial temperature of 75 K. Although initially in

the solid state, argon melts when shocked to sufficiently high pressures, and

most of the data lie in the liquid region. The solid line is our calculation for

the liquid , which includes corrections for electronic excitation. Agreement with

the high-pressure data is good. The dashed curve is a calculation which does

not include the electronic terms; the effect is small, but significant. The

dashed-dotted line is a calculation for the shocked solid; agreement with the

low-pressure data is fairly good.

Hugoniots for liquid argon at two different initial temperatures31 are

shown in Fig. 20. Agreement is very good when the electronic terms are included

in the calculation. These corrections are particularly important for the 148 K

initial state.

75



The Hugoniot 32 for argon shocked from an initial temperature of 300 K is

displayed in Fig. 21. In these experiments the initial density is low

(.0013 Mg/m3), and there is enough thermal energy to cause large amounts of elec-

tronic excitation. Figure 21 shows that agreement with the data is very poor

unless the electronic terms are included in the calculation. This drastic case

shows that our TFD model used to compute the electronic corrections gives reason-

able results.

Results33 for doubly shocked argon are shown in Fig. 22. These experiments

are especially interesting because the second (reflected) shock state reaches a

high density without as much thermal heating as in the other experiments. Hence,

the measurements provide a good test of the cold curve and the liquid model at

high densities. Agreement between our calculations and the data is very good.

The Hugoniot 34 for xenon is shown in Fig. 23. Xenon has attracted interest.

because the two high-pressure experiments gave considerably lower shock veloci-

ties than would be expected from simple extrapolations of the low-pressure

data;35 there may be a transition to a metallic state.36 Our calculations for

xenon are better than those for the other rare gases because the solid data used

to construct the cold curve go to much higher pressures. Figure 23 shows that

our results are in fairly good agreement with the data. The effects of electron-

ic excitation are significant because they account for a large part of the

“softness” at high pressures. Additional shock-wave and static data for xenon

would be welcome.

We also predicted the Hugoniots for neon and krypton, which have not been

measured. The triple points were chosen as the initial states in both cases.

The calculated Hugoniots are given in Figs. 24 and 25. Experiments on these two

materials would provide a test of the predictive power of our theory.

D. Radial Distribution Function and Structure Factor

The CRIS model can be used to calculate the first peak in the RDF, as

described in Sec. II, Eq. (21). The structure factor is defined by

S(K)
t

= 1 +$~ [g(R) - l]ei~” d~ .

It is convenient to write S(K) as the sum

.

(43)

.

of two terms.
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S(K) = SO(K) + AS(K) (44)

and

AS(K) = # -f [g(R) - go(R) ]ei~”tidfi . (45)

We computed SO(K), the hard-sphere structure factor, from the equations of Verlet

and Weis37 and our hard-sphere diameter as predicted by the CRIS model. The

terms g(R) and go(R) differ primarily in the nearest-neighbor peak, where go(R)

has a sharp cutoff at the hard-sphere diameter. The quantity AS(K) is found to

be fairly small because it is spread out over all values of K. In this report

we calculate AS(K) from our expression for g(R), including only the first peak.

In Fig. 26 we compare our calculated structure factor for neon with measure-

ments obtained by neutron diffraction. 38 The hard-sphere result, SO(K), is

shown by a dashed line;

Differences between the

ment with experiment is

The calculated and

the solid line includes the soft-core correction, AS(K).

two calculations are small, as explained above. Agree-

good .

39 for argon atmeasured radial distribution functions

85 K are compared in Fig. 27. Only the first peak is calculated by the theory.

Agreement is good, although the calculated peak lies slightly to the left of the

measured peak. Comparisons between the theoretical and experimental peak heights

and peak positions 3=’40 for three cases are given in Table III.

TABLE III

CALCULATED AND EXPERIMENTAL PEAK HEIGHTS AND POSITIONS

FOR RADIAL DISTRIBUTION FUNCTIONS OF LIQUID ARGON

Density Temperature Peak Height Peak Position (~)
(Mg/m3) (K) Calc Lxp Calc Exp

1.409 85. 3.13 3.05 3.56 3.68

1.116 127. 2.17 2.11 3.65 3.83

.91 143. 2.08 2.02 3,72 3.82

aFrom Refs. 39 & 40.
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E. viscosity

Dymond and Alder41 proposed a hard-sphere model for calculating transport

coefficients in simple liquids. They asserted that repulsive forces play the

dominant role in transport phenomena. To a rough approximation, the molecules

are in free flight between collisions when they are in the attractive regions of

the potential. Deviations from this simple picture can be calculated by pertur-

bation theory,42 but the corrections are presumed to be small.

We found that the hard-sphere approximation gives good results for the

viscosities of the noble gases. We used the CRIS model to define the hard-sphere

diameter as a function of density and temperature. The shear viscosity is calcu-

lated from Dymond’s fit43 to the molecular dynamics results.44

5 %

(-)

WkT 6.1525 n
“s=1602 n 1 - 1.869 q ‘

o

(46)

3
where rl= nNuo /6V is the packing fraction. The bulk viscosity is not as well

known, but the molecular-dynamics calculations suggest that the Enskog result

should be a fairly good approximation for this quantity.44 Hence, we compute the

bulk viscosity from the equation

16

–( )

WkT%2
%=no2 _F- fl go(~o) ,

0

(47)

where go(ao) is the hard-sphere RDF at contact.

In Fig. 28 we compare our computations with measured shear viscosities for

liquid argon, krypton, and xenon.45 The solid lines show calculations that used

the theoretical liquid densities on the coexistence curve. The dashed lines show

calculations which used the experimental liquid densities. The hard-sphere model

successfully predicts the magnitude, temperature dependence, and trend among the

three elements. Agreement with the data is better than 25%. These results are

encouraging; better agreement should be obtained if corrections to the simple

model are computed.

Additional comparisons of the calculated and experimental bulk and shear

viscosities are shown in Table IV. The model does not do as well for bulk vis-

cosity as it does for shear — the magnitude is roughly correct, but the tempera-

ture dependence is wrong. Part of the discrepancy may be due to our use of the

18



TABLK IV

SHEAR AND BULK VISOCITIES FOR LIQUID ARGON, KRYPTON, AND XENON

Density
(Mg/m3)

1.40
Argon 1.32

1.24

2.44
Krypton 2.38

2.33

2.93
2.46
1.96

Xenon

Temperature
(K)

85.68
97.92
109.60

117.12
125.26
131.13

168.63
229.12
270.54

Shear Viscosity
(lo 3P)

Calc Expa

2.05 2.67
1.55 1.82
1.24 1.31

3.33 4.32
2.89 3.65
2.61 3.30

3.62 4.77
1.92 2.04
1.15 1.21

Bulk Vi$cosity
(lo 3P)

Calc Expa

1.85 1.20
1.49 1.80
1.20 2.30

2.94 2.05
2.68 2.62
2.47 3.00

3.34 1.7
1.83 1.7
0.91 3.5

aFrom Ref. 45.

Enskog formula, Eq. (47). Molecular-dynamics calculations show that deviations

from Eq. (47) may be as large as 40% and that they depend upon the packing frac-

tion.44 However, existing numerical results are not accurate enough to justify

use of a corrected formula for the bulk viscosity.

F. Meltin~ Curve

In principle , melting curves for the rare gases can be computed from our

theoretical models of the solid and liquid phases. The melting line is the

pressure-temperature locus at which the two phases have equal Gibbs free

energies. Because the melting curve depends upon free energy differences, it is

very sensitive to small errors and provides an important test of the solid and

liquid models.

In this study we found that the Debye model constructed for the solids was

not good enough for use in computing melting curves. As shown in Fig. 1, it

applies best to krypton. Our calculated melting curve for krypton (Fig. 29)

shows fair agreement with the experimental data.46 This result preliminary; we

need a better solid model for the study of melting.

Although we do not show the

showed discrepancies that may be

results, the calculated melting curve for neon

caused by neglecting quantum effects in the

19



liquid model, as discussed above. We plan to study the problem of quantum cor-

rections in future work on melting curves for neon.

v. CONCLUSIONS

The CRIS fluid model gives a very good description of the properties of

rare-gas liquids. To apply the theory, we must compute the zero-temperature

isotherm of the solid, which describes the potential energy of a molecule in the

field of its neighbors. In this study, we obtained the solid isotherm by fitting

an analytic formula to experimental compression data, corrected for zero-point

and thermal lattice contributions. The liquid model accurately predicts the EOS,

sound speeds, vapor pressures and coexistence properties, and distribution func-

tions for the rare-gas liquids. A hard-sphere model gave good results for the

shear viscosity.

To calculate the shock-wave properties, we extended the cold curves to

higher densities using a formula based upon statistical atom theory. Corrections

for thermal electronic excitation were computed from statistical atom theory.

The theory gave good agreement with measured shock data for argon and xenon, and

predictions were made fourthe Hugoniots of neon and krypton.

There are several problems that deserve further study. Band-theoretical

calculations and static-compression measurements would be useful to check our

predictions for the cold curve at high densities. Quantum corrections to the

properties of neon should be investigated. A better model of the rare gas solids

must be developed for use in studying melting properties. Finally, further

studies of transport properties, especially the bulk viscosity, would be helpful.
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Fig. 19.
Hugoniot for solid argon at an initial

density of 1.65 Mg/m3 and an initial
temperature of 75 K. Circles are ex-
perimental data from Ref. 30. The
solid line is our calculation for the
liquid, including corrections for
electronic excitation. The dashed line
is a calculation in which the electron-
ic terms are omitted. The dashed-
dotted line is a calculation for the
shocked solid.
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Shear viscosities for liquid argon, krypton, and xenon.
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Fig. 29.
Melting curve for krypton. Circles
are experimental data from Ref. 46.
The solid line was calculated using
the CRIS model for the liquid phase
and the Debye model for the solid
phase.

360 I I i I I I I I I

340 -

320 –

300 –

280 –

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

PRE88URE(GPa)

33



ACKNOWLEDGMENT

We thank J. D. Johnson for providing the TFD tables used in the Hugoniot

calculations.

APPENDIX A

TFD THEORY AND THE COLD CURVE AT HIGH DENSITIES

The TFD statistical model of the atom is used often as an interpolation

formula in calculations of EOS at high densities.47’48 The TFD theory is found

to agree fairly well with band-theoretical calculations at pressures of about 1

TPa (10 Mbar) and above.4g However) good results can be obtained at much lower

pressures by making simple empirical corrections to the TFD results.

Here we describe a high-density interpolation formula, based upon TFD theo-

ry, that has given good results when applied to many materials. This formula is

joined smoothly at an arbitrary density to the cold curve at lower pressures.

In this report, we matched the TFD expression to the exp-6 formula, which was

fitted to experimental data at low densities. Except for the Hugoniots, our cal-

culated results are insensitive to the density used in the TFD match.

We use the following expressions for the internal energy EC and pressure PC

on the cold curve at high densities.

EC(P) = [ET(P) - ‘T]y(p) + ‘C (A-1)

and

PC(P) = pT(P)Y(P) + P2[ET(P) - ~T]dY/dP , (A-2)

where

Y(P) = 1 + bl/p + b2/p4’3 + b3/p5’3 (A-3)

o

and ET(p) and PT(p) are the internal energy and pressure predicted by TFD

theory. To join this expression to the cold curve at some density PM,

we require that
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,

‘T = ET(pM) (A-4)

and

‘c = EC(PM) . (A-5)

We calculated the coefficients bl, b2, and b3 by requiring that the pressure and

its first two derivatives be continuous at p
M“

The TFD results are approximated by the following analytic expressions.

1505.2125 Z e-F(X)
ET(p) = ‘—

WX5
9

‘T(P) =
1003.475

X5

x= (w/zp)l/3 ,

(A-6)

(A-7”)

(A-8)

and

F(X) = CIX + C2X2 + C3 X2 in X . (A-9)

Here Z is the atomic number and W is the atomic weight. The quantities Cl, C2,

and C3 are given by

Cl = 0.703473 + 1.130622 22’3 (A-1O)

C2 = 0.3 - 0.00245 25’2/(1 + 0.002822) , (A-n)

and

C3 = 0.6 + 0.0386 Z4’3 . (A-12)

These formulas, which we obtained by fitting Cowan’sso numerical TFD results,

are better than 2% accurate at pressures above 100 GPa; at lower pressures, they
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give results that are sufficiently accurate for the interpolation procedure

described above.

The parameters used in our high-density formula for the rare gases are

given in Table A-I.

Parameter

z

w

bl

b2

b3

‘T

‘c

c1

C2

C3

TABLE A-I

PARAMETERS IN THE STATISTICAL ATOM FORMULA

FOR THE COLD CURVE AT HIGH DENSITIES

Neon Argon Krypton

10. 18. 36.

20.179 39.948 83.8

-12.0592 36.3218 41.5063

19.7611 -99.4454 -140.004

-8.52989 66.2120 112.820

7.72287 1.43103 0.969247

6.32801 0.466884 0.302734

5.95131 8.46886 13.0303

-0.305280 -1.46584 -3.81580

1.43161 2.42089 5.18836

Xenon

54.

131.3

87.8497

-283.796

227.856

0.342025

0.211483

16.8562

-5.42832

8.47854

APPENDIX B

TFD THEORY AND THERMAL ELECTRONIC CONTRIBUTIONS
TO THE THERMODYNAMIC PROPERTIES

For most of the calculations described in this report, we can assume that

the atoms are in the ground electronic state. In the shock-wave experiments

however, there is sufficient thermal energy to cause significant excitation, so

corrections must be added to the thermodynamic properties. In this work, the

corrections are computed from the temperature-dependent TFD theory.29
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We use two computer codes used for TFD calculations at the Los Alamos

Scientific Laboratory. One code, written by R. D. Cowan, uses the nonlocal ex-

change formulation of Cowan and Ashkin.29’50 The other code, CANDIDE, written

by D. A. Liberman,sl uses a local exchange approximation. For the purposes of

this report, both codes give essentially the same results. CANDIDE was used for

xenon, and Cowan’s code was used for neon, argon, and krypton.

TFD theory computes the electronic contributions to the thermodynamic

functions of an atom; the atoms are assumed to be stationary, and there is no

contribution from zero-point and thermal motion of the nuclei. Because of the

semiclassical nature of the statistical theory, the discrete atomic energy levels

are smeared out. At zero temperature the theory gives poor results, except at

high densities. It does not predict solid binding, or give any dependence of

the thermodynamic properties on the configuration of the nuclei. However, the

thermal contributions predicted by TFD theory are fairly realistic, particularly

for temperatures in excess of 104 K.sl At lower temperatures the thermal elec-

tronic terms are small relative to the nuclear contributions, so errors in the

TFD theory are not too serious.

In this work, the TFD terms were computed from tables prepared by

J. D. Johnson. The zero-temperature isotherms were subtracted, leaving only the

finite temperature contributions. Next, the tables were scaled by dividing by

the results for a noninteracting electron gas. The reduced tables were input to

the PANDA code, which computes the TFD terms by interpolation and adds them to

the results of the liquid model.

The low density Hugoniot for argon shown in Fig. 21 provides a significant

test of the TFD theory because of the high degree of electronic excitation. The

fact that the model agrees quite well with the data shows that TFD theory is a

reasonable model for calculating the effects of electronic excitation.
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