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A STATISTICAL MODEL INVESTIGATION OF NUCLEAR FISSION

by

Richard Edwin Pepping

ABSTRACT

To assist in the improvement of fission product yield data
libraries, the statistical theory of fission has been investigated.
Calculation of the theory employs a recent nuclear mass formula
and nuclear density of states expression. Yields computed with
a simple statement of the theory do not give satisfactory results.
A slowly varying empirical parameter is introduced to improve
agreement between measured and calculated yields. The parameter
is interpreted as the spacing between the tips of the fragments
at the instant of scission or as the length of a neck in the
fissioning nucleus immediately prior to scission. With this spac-
ing parameter semi-quantitative agreement is obtained between
calculated and measured mass chain yields for six cases invest-

5 239

igated, 233U(nth’f)’ 23 U(n,,,f),

238 252

235
th® Pu(nth,f), U(n+l4,f),

U(nt+l4,f), and Cf(sf). An indication of the source of mass
asymmetry in fission is presented.

The model developed predicts a mass and energy dependence
of some of the parameters of models currently in use in data
generation. A procedure for the estimation of the fission pro-

duct yields for an arbitrary fissioning system is proposed.




INTRODUCTION

Reliable nuclear data is required for both civilian and mil~
itary applications of nuclear energy. In reactor operation, fis~
sion product buildup affects reactlvity and fuel burnup through
neutron absorption, The fission products themselves are sources
of decay heat which must be taken into account in the design of
safety systems, After leaving the reactor, shielding and cooling
requirements of the spent fuel again demand that the composition
be known in order to insure safe handling, In some cases of im-
portance accurate measurements have been made to determine these
sources, For less frequent fission events and for less well meas~
ured fissioning systems, modeling has been employed to estimate
the yields of the various fission products, Tt is the object of
this work to improve upon the method of yileld estimation through
the use of a reasonable physical model.

In selecting a model for use here, there are basically two
schools of thought. By computing from first principles the dynamic
behavior of a heavy nucleus as it proceeds from its original state
to two fission fragments one may expect to understand the entire
fission process in addition to understanding the probability of
the formation of a given palr of fission fragments, the fission
fragment yield, Such a calculation is possible, in principle, but
is tedious and prohibitively expensive in practice, Alternatively,
one may make a simplifying assumption that renders the exact de~

tails of the fission process of 1little importance and concentrates




upon the fission yields, Such a simplifying assumption would be

to assume that the entire process 1ls statistical, completely deter~
mined by the propertles of the final state. This assumption ap-
pears to have been first made by Fong,1

That the fission process may indeed be statistical 1s indica-
ted by examining the available data on fission ylelds. The dis~
tributions of product mass wvary slowly between fissioning systems,
differences which appear being understood through simple conserva-
tion laws, The mass ylelds also vary slowly with particle energy
in particle~induced fission, Again, the final state appears to be
the important factor in determining yilelds,

The application of statistical models to the fission process
is not a new 1dea. Fong1 presented the idea over 20 years aéo and
has written prolifically on the subject since then. More recently,
calculations have been presented by other authors.z’3 Most re-~
cently, Wilkins, et al.4 gave an extensive treatment of the topic
giving qualitative agreement with observations of many fissioning ~
systems, It shall be the object of this work to investigate the
statistical model to determine its validity in a quantitative sense
for possible use in lmproving fission product data libraries,

As an aid to the reader, the following 1s a brief guide to
the organization of the presentation that follows, The fission
process 1s brilefly reviewed in ordex to qualitatively describe the
pracesa and establish some of the language to be used to describe

it,, The theory is then cast quantitatively to demonstrate the




nature of the assumptions necessary to make the theory calculable,
It should be kept in mind that a large number of things must be
assumed, any one of which, 1f in error, i1s of sufficient conse-
quence to change any conclusions dramatically, Given a set of
assumptions, a number of things may be computed, in addition to
the yields, as diagnostics and are discﬁssed in the section "The
Yield and Its Moments," Following this section, three sets of as-
sumptions to be used in calculations are described and motivation
given for their selection., After specifying some expressions nec-
essary to the evaluation in the section titled '"The Densities," the
calculation may proceed,

The first yleld calculation is performed for several reasons,
It employs the dgnsity expression most similar to the other statis~
tical model evaluations mentioned and gives historical continuity
to this work, It also allows some experimentation with the masses
and single~particle energy treatments, Most importantly, it is
used to demonstrate the equivalence of two of the sets of assump~
tions, thereby simplifying the calculation, This particular cal-
culation 1s performed with extreme computational care in order to
insure that none of the conclusions made are the results of numer~-
ical artifacts,

Having become somewhat more at ease with the calculation and
the various input quantities, a new density expression is intro-

duced, a feature which, along with the mass formula, sets this




work apart from previous calculations, With this expression and
the mass formula the model is completely free of adhoc parameters
other than those explicitly appearing. After establishing the
computational technique to be used with the new density, a set of
sample yilelds is computed and discussed,

To obtain quantitative agreement, some parameterization is
necessary in order to achieve ovérall agreement between measured
and computed values of the chain-yields, prompt neutron number,
total gamma energiles, and total kinetic energy. In describing
independent yields, the model employed when data is poorly known
requires the use of some empirically determined parameters, Work-
ing backward, one may extract the wvalues of these parameters from
both the published yields and calculated yields., Comparing these
values reveals some small differences. Possible reasons for these
discrepancies are discussed.

Finally, observations of potential practical use by way of
silmple models and scaling relations are discussed. The various
physical models necessary for the calculation are briefly dis-
cussed in several appendices, Any one of these subjects is, by
itself, deserving of a thorough treatment, The appendices, how-
ever, describe only the features necessary for this calculation
and their methods of implementation,

FISSION REVIEW

If one examines the familiar plot of binding energy per nucleon

5
for stable nuclei,” it may be seen that nuclei near mass number 60




are most tightly bound with about 8.5 MeV of binding energy per nu~
cleon., With increasing mass number the binding energy per nucleon
decreases, For a sufficiently heavy nucleus it may then be ener~
getically favorable for the nucleus to split into two lighter nu-
clei. To do this the heavy nucleus must deform and elongate to
such a degree that the repulsive Coulomb force is sufficient to
overcome the attractive nuclear force, At this point, the nucleus
may split, or fission, rather than return to 1ts ground state shape.

In order to describe the nucleus as it elongates, one must be
able to describe its behavior as it proceeds along some trajectory
in a multi-dimensional space of shape coordinates, Shapes that
have been useful in describing the behavior specify such general
quantities as elongation, mass asymmetry, axlal asymmetry, and
neck formation of the deformed nucleus, Initlally, the heavy nu-
cleus may resist deformation such that an elongation of its shape
is accompanied by the Increase in the potential energy of the
system, At larger deformations the potential energy may actually
begin to decrease, a manifestation of shell effects in the deformed
nucleus, These shell effects depend strongly upon the shape of
the nucleus. In the multidimensional shape space the potential
energy surface may have many local maxima and minima, The minima
are assoclated with so called shape~isomerism in heavy nuclei,
metastable states of the deformed nucleus, At some point the
Coulomb repulsion becomes syfficilently strong that it ayercomes
the nuclear attraction, The nuclear potential energy then de~

creases with further elongation., In general, any of the local




maxima define saddle-points in the potential energy. In the dis~
cussion that follows, the term "saddle~point" shall be used to re-
fer to that shape at which the Coulomb repulsion and nuclear at-
traction exactly cancel.

As the nucleus proceeds beyond the saddle~point deformation,
the shape may begin to resemble that of a dumbell with two lobes,
‘the nascent fragments, connected by a neck. The Coulomb force may
drive the elongation further until the nuclear restoring force is
no longer able to hold the system together. The neck snaps and
'fission occurs, At this instant, called the scission-point, the
system consists of two separate nuclei,

During the descent from saddle to scission the fragments may
accelerate in the Coulomb field such that ;t the scission-point
the fragments possess some translational kinetic enefgy assoclated
with the motion of their centers of mass., Depending upon the ex-~
act nature of the descent and snap, they may also be rotating and
theilr shapes wvibrating., Beyond the scission-point the fragments
may further accelerate in the Coulomb field., The energy associated
with translational kinetic energy at the scission-point and the
energy obtained from the Coulomb repulsion may be measured in the
lab as the fragment total kinetic energy, The energy associated
with rotation, shape vibration and deformation, and any internal
excltation gained during the descent provides energy for prompt
neutron and gamma ray emission, The distinction shall be made be-

tween fission fragments and fission products, the fragments being




the two nuclei immediately following scission and the products re-=
sulting after prompt neutron emlssion from the fragments,
THE THEORY

During the descent from saddle to scission, the nuclear shape
is driven to further elongation, the nascent fragments acquiring
translational kinetic energy, under the influence of Coulomb re-
pulsion. Depending upon the nature of the nuclear Hamiltonian,
the collective degrees of freedom may be coupled to internal de~-
grees of freedom such that the collective motion is damped, some
of the energy gained during the descent being converted into inter-
nal heat. At the scission-point an amount of energy, G, is re-

leased,

G = M* -m-m, - c
Here, M* is the mass of the fissioning nucleus, mi is the mass of
the ith fragment, and C is the Coulomb interaction energy. As a
result of the strong Coulomb repulsion, the fragments may be de-
formed such that thelr masses are increased by the amount D re-

lative to the ground-states values, m Denoting collectively by

1o’
> .
O any parameters assumed to describe the fragments' geometry at

scission, G may be written,

c@y = o - mg = Wy, = D@ -0, @ -c@ .

This energy may appear as fragment excitation energy or rotational,




vibrational, and translational kinetic energy. Energies associ-
ated with rotation and wvibration are neglected, justification of
which 1s offered in Appendix C, The energy at the scission-point
1s assumed to be partitioned between intrinsic degrees of freedom,
or heat, and collective translational kinetic energy degrees of
freedom,

Formally, the decay width is given by the Ferml Golden Rule,6
+ 2
ra,z,0) = [<flug, |1>]%ce)

Here, A and Z specify the mass and charge of the light fragment,
the mass and charge of the heavy fragment given by conservation
laws, Hfiss is the perturbing Hamiltonian causing the decay, |i>
denotes the initial state, the fissioning nucleus, and |f> denotes
the final state, two fragments of specified mass, charge, and any
other parameters, g, assumed to describe the scission configura-
tion, Herein lies the problem.

Specification of the mass and charge division alone does not
adequately describe the scission-point. Until the a-parameters
are given, the calculation can not begin. These parameters are

given by H s Mmaking it an extremely important quantity, This

fiss
may be illustrated with regard to the nuclear shapes by assuming
the phase-space density to be given by a constant temperature

Boltzman expression,

p(G) = exp(G/T) ,




and Hfiss to be a constant for all possible final states, The
most probable scission configuration 1s that for which G is a max~
imum, Wilets7 has determined this configuration, in the limit of
the liquid-drop behavior, to be two infinitely long nuclear needles
of vanishing diameter, In a real nucleus, this limit is not at-
tainable, The conclusion is similar, however, that the overriding
factor is the Coulomb energy driving the shape to one of extreme
elongation, a shape that may be attained with sufficiently many
degrees of freedom,

For more modest deformations of the fragments another problem
arises, The energy, G, to be partitioned must be positive, It
has been suggestedl that at the scission-point the fragments are
tangent, Even for the largest deformations which the mass formula
allows (Appendix A), positive values of G can not be obtained with-
out introducing a spacing parameter, §, to be interpreted as the
distance between the tips of the fragments. Introduction of this
parameter allows the Coulomb energy to be reduced sufficiently to
allow positive values of G, As the parameter increases, G in-
creases such that the most probable scission configuration corre-
sponds to fragments at Infinite separation with C =D, =D, =0,

1 2

It would then appear that the nature of H o is quite ilmporx-

fis
tant since it is the only factor remaining which can prohibit these
configurations so strongly favored through the phase~space term,

Proceeding from first principles, one must then compute the be~

havior of the fissloning system as it descends from the saddle-~
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point to the scission-point, the end of the fission process, keep-
ing track eof all energles, coordinates, and quantum numbers,
Having determined the scission-point shapes, separations, matrix
elements, and energy partition, an important quantity to be
discussed later, for all possible final states, the phase-space
term may be computed for each and the yield of a given mass and
charge given by integrating over the uninteresting variables,

The descent has only been calculated for a few nuclei, and
then only in the context of a simplified model. Rather than at-
tempt to solve this problem here, the Golden Rule shall be used
with existing fission product yileld data8 to view the fission pro~

cess in hope that the nature of H may be extracted. Clouding

fiss
this view will be other assumptions and model limitations necessary
to make the calculation possible.

THE YIELD AND ITS MOMENTS

It shall be assumed that, apart from determining the scission~
point energy partitions and shapes, the matrix element is a con~
stant. The shapes are presumed to be given by some distribution,
f(&). The yield of a given fragment charge and mass is then pro-

>
portional to the sum over 0, of the decay widths,

ya,n = Y @ rw,z® =y p [e@I-e@

o4 o

wlth the definition,




> >
Iy(A,Z)= _S_ plG(a)]: £(a)
>
o
The yield is given by normalizing,

I_(A,2)
y(A,2) =

> I,@4,2)

A,Z

>
To evaluate p[G(a)], thermal equilibrium shall be assumed be-
tween the intrinsic degrees of freedom and the collective trans-

>
lational kinetic energy degrees of freedom. Supressing the o

argument,
G G-k

p(G) =fp(k/-pl(El)pz(E;G-k-El)dEldk R

(o] (o]

where p(k) is the density of states of translational kinetic en-
ergy, k, and pi(Ei) is the density of states of the Tt fragment at

excltation energy Ei.

In addition to the yield integral, two moments of interest
shall be computed,

G G-k
-
IE(A,Z) =Zf(a)/’ p (k) / E1"1(E1)"2(G'k'E1)dE1dk s

(o] (o]
o

(A Z) —Zf(a)'[kp(k)-/pl(El)pz(G -k~E )dE dk .

11
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->
With respect to the c-parameters, weighted averages may be
computed for any quantity, Q,
> > >

I,8.2) D@ £@-ple@]

->

(¢}
Then the average value of any quantity 1s given by

I (A,2)

<Q> .If:([T,—Z)_ .

Of particular interest are the quantities <D>, <C>, <k>, <E1>, and
> = <G> - <k> - <E_> .
<E2 G k E1
These moments may be used as checks on the various para-
meters and assumptions. For example, after normalization, the

moments, <k>, <C>, <E,”, and <D,> may be compared to experimental

i
values of the total fragment kinetic energy, <TKE>, and the decay
energy for prompt neutron and gamma ray emission, Xi’
<C> + <k> = <TKE> ,
<Di> + <Ei> = <Xi>
With a table of neutron separation energies, an upper bound on
the number of prompt neutrons may be determined from Xi'
In making comparisons between measured and computed yields,
some of the terminology that shall be used is as follows:
1) Independent yield: the A and Z dependent yield, y(A,Z).
2) Mass—~chain yield, mass yield, or chain-yield: the yield

of a given mass, independent of charge,




ya) =) y(a,z) .
z

3) Charge yield: the yield of a given charge, independent of

mass,

y(2) =) y(a,2) .
A

Energies and diagnostic terms weighted by the independent yields
and summed are referred to as integral values.
Within a fixed mass chain, the independent yields may be de-

vided by the chain yield to form the fractional independent yield,

fiy(A,27),

fy(a,2) = L2

THE SCISSION CONFIGURATION

Before the calculation can begin, the parameters, 3, describ-
ing the scission configuration must be specified.‘ Since the frag-
ments are neutron-rich, unstable, and highly deformed, experimental
knowledge of thelr masses is not available. A mass formula must
then be used to estimate the mass and its shape dependence. Seeger
and Howard9 give such a formula, described in Appendix A, with two
parameters specifying the shape. These are the Nilsson parameters,
€ and 84, used to describe the single-particle potential well of

the nucleus, They describe axially symmetric shapes, only, Some

13
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of the shapes considered are shown in Figure 1. Approximate values
of the coefficients of a collective radial expansion in Legendre
Polynomials corresponding to these shapes appear in Table 1. The
charge is assumed to be uniformly distributed throughout the nu-
clear mass. Only multipoles of even order appear in a multipole
expansion of the Coulomb interaction energy since only even order
multipoles appear in nuclear potential. The scission configura-
tion is then specified by four shape parameters and the spacing
parameter, 6, which shall initially be held constant for all
masses, charges, and shapes.

The distribution of shape parameters, f(&), is given by Hfiss'
As an example of such a distribution, it has been proposed that the
fissioning nucleus is extremely dissipative and that the descent
from saddle to scission is so slow as to be quasi-static. If this
is the case, it is argued,l the nucleus may follow a minimum potential
energy trajectory on its way to scission. The energy release, G,
is equivalent to the negative of the potential energy. Then a con-
sistent method exists to define a scission-point configuration,
which shall be called the GMAX configuration,

f(z) =1, Gd;) = maximum

f(&) = 0. all other ;.
More detailed investigations of the behavior of viscous liquid-
drops reveal that the presence of high viscosity causes the tra-
Jectory to deviate considerably from that of minimum potential en~
ergy for the case of symmetric mass splits., It may then be antici-

pated that the view of the scission-point may be somewhat obscured




by computing yields at the GMAX shapes. Two other shape distri-
butions, f(Z), shall also be considered. Within the space of al-
lowed shape combinations in the fragments, the yield integrals may
be evaluated at all points and a yield surface determined for a
given A and Z. Assuming f(&) = 1, for all 3, the yield is given by
summing over all 3, defining the SUM method., Having the yield sur-
face, the shape combination at which it takes on maximum value de-

fines the YMAX confilguration and the YMAX shape distribution,

|
]

1. pIG(@)]

-
0. all other o

>
f(a) maximum

£(a)

The interest in these three configurations may be seen in the
following. Assume for the time being a constant temperature form
for the phase-space term,

p(G) = exp(G/T) ,

The yield surface peaks at the GMAX configuration and may be ap-
proximated as a Gaussian about this point. The SUM method is then
approximately the integration of a Gaussian, the result of which is
the product of the peak value, the GMAX value, and a width para-
meter. To the extent that the yield surface is approximately Gaus-
sian and the width parameter smoothly varying with mass and charge,
the GMAX and SUM yields are identical, the width parameter entering
as an overall constant which drops out of the yield expression up-
on normalization. Comparison of the two yields should indicate the

validity of these assumptions.

15
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In fact, the phase-space term is not of a constant tempera-
ture form. In addition to the G-dependence single-particle terms
in the fragments affect the yield. It is for this reason that the
YMAX yield is greater than that of the GMAX yield. Again, the SUM
yield may be compared with the YMAX yield to test the validity of
the assumption of Gaussian behavior about the YMAX configuration
and the smoothness of the width parameter.

A practical problem arises with the YMAX and SUM yields,
namely that the yield integrals must be evaluated at all combina-
tions of the shape parameters. When possible, this is done, In
the larger shape space ultimately to be considered, this 1s too
tedious and a restricted area in the vicinity of GMAX is explored
to find the YMAX configuration. The SUM method is too expensive to
be applied in this case.

THE DENSITIES

A. The Kinetic Energy Density
The density of linear momentum states for a two-particle sys-

tem of reduced mass, U, in a volume, V, is given by,

o) = SN,

where k is the translational kinetic energy and N(k) is the total
number of translational states of kinetic energy less than or

equal to k,

P
ax
N -0
(o]




"3y " max
4y 3/2
= —3 (2uk) /
3h
Hence,
4mv 3
p(k) = =3 [2n7k
h
The reduced méss of the two particles of approximate mass A1 and
A2 is
A_A
H = —12 mass units
+
A1 A2

As only proportionalities are important, the expression used for

p(k) is taken as.

_ 3
pk) = (AlAZ) k

In later cases, the A1 and A2 terms are dropped, these being slowly

varying quantities.
B, The Nuclear State Density

The density of states for a nucleus of N neutrons and Z pro-~
tons at excitation energy E is formally defined as the inverse

Laplace transform of the partition function, Q(aN,a ,E), for the

Z

system,

- 1 - -
p(N,Z,E) = (2“1)3 /f/ exp[Q(ocN,ocz,B) aNN OLZZ + BE] docNdaZdB .

17
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The partition function is computed separately for the neutron and
proton systems,

Q(aNsazss) = QN(aN’B) + QZ(OLZ,B) .

The contour integral may be well approximated at reasonable excita-

tion energies by the saddle-point method,

S
e

b
3/2D1/2

(2m)

where S is the entropy,

S=Q -aqa NN -a zZ + BE ’
and D is the 3x3 determinant of the matrix of second derivatives

of Q with respect to Qs Oy and 8. Through the saddle-point ap-
proximation, the quantities @ and B take on the identities of the
chemical potential and reciprocal temperature of the system. All

quantities are to be evaluated at the saddle-point, defined by the

location of the peak of the -integrand,

o a0 RN
N = m— 7 = — E = - =2
BqN aaz o8B

The partition function has been determined for a system of Fermions
with a residual pairing interaction by Sano and Yamasaki.l1 Den-

sities computed with this partition function have been investigated
by Moretto12 and Huizenga, et al.,l3_15 and are the basis for

yields computed later. The formalism and its implementation are

described in Appendix D.




By assuming the single-particle states to be ﬁniformly spaced
an analytical density expression may be obtained. The expression
was first proposed by Bethe16 and was later modified by several
others”m21 in order to improve agreement between predicted and

measured neutron resonance spacings. The form of the density in

the constant spacing limit is given by
_ V7 exp(2/aUu )
p(E) =1 174 3T6

where U is the excitation energy and a is the '"density parameter",
It is upon the density parameter that effort has been concentrated
since it allows the introduction of empiricism to account for the
shortcomings of the constant single-particle spacing assumption.
This expression is described in Appendix E.

The analytical expression is significant since it was thé only
expression available before fast electronic computers allowed the
implementation of the more realistic method proposed by Moretto and
Huizenga. It is still in use22 and has been used by Fong to com-
pute fission product yields.1 Yields based on both methods will
be presented in this work,

A SAMPLE YIELD CALCULATION BASED ON AN ANALYTICAL DENSITY FORMULA

As an example of the method of evaluation, ylelds are computed
for 235U(nth’f) assuming the nuclear density of states expression
to be given by the analytical expression of Gilbert and Cameron.17
This formula is discussed at length in Appendix E. The expression

is written in two pileces and describes the density of states at

19
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excltation energy, E,

= VT exp(2 Yal )
w® =TT ansE B

1 E—Eo
DL(E)=fexp< 7 ) E < E_
The subscripts, L and H, refer to the value of E relative to a
transition energy, Ex’ L (low) for energies less than Ex and H
(high) for energies above Ex' The two formulas are required to
join smoothly at Ex’ a condition which defines the two parameters

appearing, T, the temperature, and Eo’

E = Ex ~ T log [T pH(Ex)] .

The excitation energy in the high excitation energy form is writ-
ten as U and is related to the excitation energy argument, E, by
E=U+P .
P is the pairing energy of the nucleus. This particular statement
accounts for the fact that there is a residual interaction, pair-
ing, in the ground state of the nucleus., Its effect is to cause
an overall shift of the energy axis, The transition energy, Ex’ is
actually given in terms of Ux’
Ux = Ex - P

where




Ux = 2,5 + 150/A
This result was determined empirically by Gilbert and Cameron.17
The fit expression reproduces the data to approximately * 200 keV,
As shown in Appendices E and F, use of this formula also requires
a single-particle shell energy, S, which enters through a, the den-
sity parameter. The density parameter is usually the object to be
modeled when using this formula, as discussed in Appendix F.
Depending upon the value of E relafive to the cross-over
energy, Ex’ three types of integrals are encountered in the yield

calculation,
i n/zf £ () oy o () o
Il fk P (E)pL (G-k~E) dE dk

= fkn/ 2 [ &2, éi) (E)péj)(G—k—E)dE dk

I, = ﬁ(n/Zf £ }(Ii) (E)p éj)(G-k—E)dE k>

where, for the yield, n =1, m = 0, for the mement, <I;>, n = 1,

m = 1, and for the moment <Ik>’ n =3, m= 0, The subscripts refer

to the form of the Gilbert and Cameron density, low excitation (L)

or high excitation (H), and the superscripts index the single-

particle parameters approprlate to that fission fragment, Il may

be evaluated analytically, The order of integration in I, may be

2

reversed and one integration performed analytically, the second
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integration performed numerically. Both integrations in 13 must
be performed numerically.

For this first example, it is desired that the integrals be
evaluated sufficiently accurately that numerical errors may con-
fidently be ignored. Any choice of computational method must sat-
i1sfy this requirement, To determine the method of numerical eval-
uation of the integrals, fragment data were scanned to determine
extreme and median values of the energies, S, P, Ex’ and T, Test
cases were then chosen and the integrals evaluated by a standard
adaptive Newton-Cotes Quadrature R.ule23 with a rélative computa-
tional error of 10—9. These same test integrals were then evalu-
ated using Gauss-Legendre and Gauss-Laguerre Quadrature Rules23
and compared to the Newton-Cotes values. Ultimately, combinations
of 1l2-point Gauss~Legendre and Gauss-Laguerre Rules were chosen
giving values that deviated by less than 7 parts in 104 from those
of the Newton-Cotes. The Gauss Quadrature Rules are generally
faster than the Newton-Cotes Rule making them more desirable.

Modeling of the density parameter, a, is discussed in Appendix
F. TFor this example, simple model forms shall be used, The model
itself accompanies a set of single-particle shell and pairing
energles, S and P, and is of the form,

afA=p, - P, S
where A 1s the mass number and Py and p2 are constants, An older
set of single-particle energies is that of Cook et al.18 Values

of p1 and P, they give are



Py = 0.120

p, = 0.00917
In order to compute the mass formula of Appendix A, S, and P values
are again calculated, the results differing from those of Cook,

Determining a model for the density parameter based upon these

values gives,

p, = 0.1624

P, = 0.0131 .
As mentioned in the Appendix A, the standard deviation of the
computed and measured masses using the mass formula is about 700
keV. This is a rather large error on a.term which appears in an
exponential. The Garvey-Kelson recursion relations24 give stand-
ard deviations between computed and measured masses of only 157
keV, but the relations do not give the deformation dependence of
the mass. One may envision a mass formula which gives a ground-
state mass according to Garvey-Kelson and a shape dependence
according to the mass formula of Appendix A. While the two mass
expressions differ by less than 2 MeV, on the average, it shall be
shown that the effect upon the yields computed is quite pronounced.
of the possible combinations of single-particle energies and masses,
three combinations have been selected,

1) S and P values and ground-state masses taken from the

mass formula of Appendix A,
2) Cook S and P wvalues and Garvey-Kelson ground-state masses,
3) Garvey-Kelson ground-state masses and § and P values taken

from the mass formula of Appendix A.
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As with the Garvey-Kelson masses, the mass formula of Appendix A
is used to determine the deformation dependence of the Cook shell
and pairing energies. For all of these cases, a constant value of
the spacing parameter, §, was chosen with § = 3 fm, Also in this
example, fragment shape degrees of freedom were restricted some-

what by not allowing €, to vary freely. The shapes allowed were

4

those of Figure 1 with €, assuming the value for a given € cor-

4
responding to the midline of the grid, i.e., €, usually equal to
zero,

The integrals must be evaluated at every combination of the
shape parameters in.each fragment. The YMAX configuration is that
combination of shapes at which the yleld integral is maximum and
the GMAX configuration is that combination which maximizes G,
which may be determined prior to actual evaluation of the integrals,
At each point in the space of shape parameters, the energles essen-
tial to G, the Coulomb energy, the masses, the shell and pairing
energies, must be computed. These may be recorded as diagnostics.
Other quantities recorded for later reference are such things as
the scilssion-point elongation of the frégments, the deformation
energies, the parameters of the density of states expression, T,

Ex’ and Eo’ or any combination of any of these quantities deemed
of interest, The computed yields provide the weighting function
for computing averages of these quantities., Of particular interest

are two quantities averaged over all charges and masses, the total

kinetic energy (TKE) of the fragments and the energy appearing in




prompt de-excitation, <D> + <E>. Assuming a simple neutron emis-
sion model, described in Appendix J, an estimate is made of the
number of prompt neutrons, vp, and prompt gamma energy, EY. Ex~

perimental values of these quantities are25

TKE = 169.6 MeV .

The yields obtained for each of the three cases for the GMAX, YMAX,
and SUM methods are shown in Figures 2-10. For reference, the
chain yields from ENDF/B8 for this reaction are shown in Figure 11,
The total kinetic energies, prompt neutron numbers, and total gamma
energy appear in Table 2., Overall agreement is reasonable, the
prompt neutron number being a little too high. This may be a re-
sult of the fact that the computed chain yileld, the weight func~
tion for computing these averages, is displaced somewhat from the
measured mass-chain yield.

Regarding the mass yield plots, the location of the fragment
mass peaks seems least sensitive to the choice of masses and single-
particle energies. The peaks are determined by the quantity,

G-Pl--’i?:2

since, in the saddle-point approximation, the yield integral is

proportional to

exp[Z\/(al + az)(G—Pl-Pz)]

where a, and a, are constants, The plot in Figures 12 shows
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this quantity for the case of S and P values and masses as given by
Seeger. The source of the peak is the shell correction term to the
binding energy, shown in Figure 13.

Experimentally8 the mass distfibution rises smoothly to mass
90, is fairly flat from mass 90-100, peaking at 95, and drops into
a valley about symetric mass splits, The ratio of the yields at
mass 95 and 118 is about 600. The computed mass peaks are then 5
to 6 units too close to symmetry as compared to data. Still, the
results are encouraging in light of the simplicity of the model.

The valley is well defined for yields computed assuming that
the ground-state masses are given by the Garvey-Kelson formula,
However, the Seeger mass formula, of Appendix A, gives a much more
shallow valley in the YMAX and SUM cases and a third peak in the
GMAX case. This serves as an illustration of the sensitivity of
the calculation to the input quantities. As a general rule, it is
not advisable to correct one mass formula with another. Since
only the Seeger formula allows direct evaluation of the mass of
nuclel in shapes other than that of the ground-state and has been
tested for agreement with neutron-rich mass measurements in a few
cases, as discussed in Appendix A, it is more desirable. It
should not be surprising, however, if mass asymmetric yields are
not easily achieved.

As mentioned in previous discussion, the hope here is to dem-
onstrate the equivalence of either the YMAX or GMAX methods with

the SUM method. The chain yield plots are qualitatively similar,




especially the results of the SUM and YMAX methods. The SUM method
is dominated by the YMAX term, by definition. The variables over
which the sum is performed are the shape variables describing the
fragments at the scission~point so that the yield may be seen as a
surface in the shape variables. If this surface is sharply peaked -
at the YMAX configuration, the SUM method may be seen as an inte-
gration over a sharply peaked surface. To the extent that this
surface is Gaussian, the result is the YMAX value multiplied by
some term typical of the width of the Gaussian. To the extent that
the width vafiable is a constant or a slowly varying quantity be-
tween fragments, thils term drops out of the yield expression upon
normalization. The extent to which the YMAX and SUM yields are the
same 1s then a measure of the constancy of thils width parameter.
There 18 one complicating factor,

The space of allowed shapes is somewhat limited in that in
all of the three cases considered, the GMAX shape required th;t the
heavy fragment assume the shape of maximum prolateness. The YMAX
case had a prolatness corresponding to about 0.1 less than maximum
value of ¢, 1i.e., €= 0.6 for GMAX vs €= 0,5 for YMAX, With the
distribution peaked so close to the edge of the shape grid, there
may be some terms missing in the SUM method, all of the major con-
tributing terms not appearing within the space of allowed shapes
(Figure 1).

The problem may be cast somewhat more quantitatively in the
following. Denoting by 0 the fractlonal elongation of the symmetry

axis of the fragment relative to that of spherical fragment, the
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effect upon the G energy of an elongation is given by the relation-

ships,

r A3 ¢ = 1.2254 £m
[o] (o]

D<=a2 C «1/R R« RO R

o o

where R is the fragment center-to-center distance. About the GMAX
configuration, G is approximately parabolic in the o variables for

each fragment, 0. and Then

light 0Lheavy'

2
1/97¢ 2
G(a) = G x + E 2<5-0?> (ocJL °‘o,1)
i = light, i
heavy

2

)

]
- - D, ight +C Ro,light 2 @ -
= 2 R light = o,light

max o
o,light J

)2

-0
(aheavy 0, heavy

D R 2

heavy +C o,heavy

0‘2 R
o,heavy

From the averagé values of the yilelds computed, the necessary quan-

tities are C = 166 MeV, R = 19 fm, = 2 MeV, D = 15,5

Diight heavy
MeV, Alight = 102, and Aheavy = 134. These values are represent-—

ative of the three cases. Then,

G=e - 0‘light: - oLo,light: 2 _ 0!'heavy - ao,hquz 2
max 0.153 0.093

In terms of the O~coordinates, the space of allowed shapes is lim-

ited to values of o < 0.43. For the YMAX case, the average values

are 0 = 0.3 in both fragments. To the extent that the width of the




SUM distribution about the YMAX configuration is measured by the
values of the second derivatives of G about GMAX, the edge of the
grid is too close to assure inclusion of all of the dominant con-
tributing terms in the SUM method. Errors may be introduced into
the YMAX and SUM comparisons as a result of this also., Comparison
of the computed mass-chain yields between the YMAX and SUM results
shows values in error by a multiplicative factor of 1,57 on the
average with extreme values of 0.6 and 3.1 for the three cases con-
sidered., This type of error 1s compatible with those anticipated
based upon limitations of the shape grid. The YMAX yield may then
be assumed to be typical of the SUM yield, maximum error being a
multiplicative 3il.

YIELD CALCULATIONS BASED ON THE MORETTO DENSITY FORMULA

To evaluate the yield and interest moments, three integrals

must be evaluated,

¢ G-k
I = / / k125 (E.)p.(G-k-E.) dE.dk
y 1'510P Y ¥
0“0
G G-k
I =/ / E k% (E.)p, (Gk-E.) dE.dk
E 1° P00 1)
(o] [o]

G G-k

I, = 325 (E.)p. (G-k-E.) dE,dk

k 1P, P 4k
(o] o]

Integral Iy is the unnormalized yield, IE is the excitation energy

moment, and Ik is the translational kinetic energy moment. The
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quantities in the integrands are pi(Ei)’ the density of states of

t
the 1 h fragment at excltation energy E,, G, the energy released

1°
at the scission point, and k, the prescission translational kinetic
energy. In this case, P(E) is assumed to be given by the Moretto
density expression12 developed in Appendix D. By this method the
thermodynamic functions necessary to determine the density of states
are evaluated as sums over realistic single-particle states. 1In
Appendix D, spline fits are determined to the required functions

in terms of the temperature, T, of the excited nucleus., Recall the

definition,

1 dlnpi(Ei)

By = T T &k
I 1

Having these analytical expressions, the integrals may be evaluated
employing the numerical techniques used to evaluate the integrals
over the analytical density expressions. However, with little loss
of accuracy, these integrals may be evaluated by the saddle-point
technique. Very simply, this means that the integrand is approxi-
mated as a Gaussian completely described by a width and a peak
value, The integration limits are extended to * o with the fol~

lowing expression resulting,

I= fff(x,y)dx dy = 2'rrf(xo,yo) —}77 .
D

D is the determinant of an partial derivatives of n [f(x,y)]




evaluated at the saddle-point, xoyo. The saddle-point is defined

by the solutions to

3%nf _ o 3 4nf
9x oy

Applying these conditions to the yield integral, Iy’ the follow-
ing equations must be solved
Tl(Elo) = TZ(EZO)
=0.
ko STlo

G -~ ko - Elng) - Engz) =0 .

1/2
The second derivatives are, denoting fy = Znl[k / P1P,]

2 2
a°f - f ] 3
y l. . 362 3 v . 61 . 62
a2l %5 |o 3, OEy | O
o 1 o o
2
3°F, ) 98, |
akaEl BEZ
o]
a8, dsg, .
Since E, = E (B only), _1 _ _"i . Hence, in addition to the
i i 3B,  dE,
splines determined in Appendix ﬁi splines are also needed for
dg
Ei(Ti) and Efl' This derivative was computed exactly, but it was
1

found that the spline approximation to Ei(Ti) was so good that the
spline itself could be differentiated to give this quantity with

better than 1% agreement to the exact evaluation.
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For the integral, IE’ the saddle-point is given by
Ty = (BT )/(E, + T))

k° = 0.5T2

G -~ ko - El(Tl) - EZ(TZ) =0 .

Letting fE = Rn[Elkl/zplpz], the second derivatives are

2 2
il S +f£ °fp_ %
k2 212 SE 9Ej 0k 3E, ||
(o} 2 lo

2

P W%

7 2 3E 5E

2E: E] 1 2

For the integral Ik’ the saddle-point is given by
Tl = T2

ko = 1.5 T1

G-k - El(Tl) - E (1) =0 .

3/2

Letting fk = fnl[k plpz], the second derivatives are

2 2
-3
k2 2 9, se2 9 9E,
(o} o 1 (o} (o}
2
5 %
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Hence, the saddle-point approximation yields simple plug-in for-
mulas by which all integrals may be evaluated. The accuracy of
the approximation must be determined.

To test the validity of the saddle-point approximation, assume

the density of the states to be given by

p(E) = exp (2 VaE ) .
For this experiment, the a-parameter shall be assumed to be given

by
-1
a=A/9.5 MeV

where A is the mass number, and empirically observed resu1t26. To

span the range of values anticipated, values of A1 assumed were Al

2 1° The integrals were
23

evaluated using a standard 7-point Newton-Cotes Quadrature Rule

= 75, 95, and 118 with A, given by 236 - A

and the results compared to the saddle-point approximation for
values of G ranging from 1 to 65 MeV. The Newton-Cotes evaluation
was carried out to a relative computational error of 164} The
approximation for Iy'reproduced the Newton-Cotes value to within 25%
at 1 MeV, the error dropping to 2% at 5 MeV and increasing
monotonically to 10% at G = 65 MeV. This monotonic error indicates
a small systematic error in the saddle-point approximation, but its
smallness make the expression acceptable. In the case of the inte-
gral, IE, the saddle-point expression reproduced the Newton-Cotes
values very well with an error of 5% at 1 MeV and a monotonically
decreasing error with increasing G. The k-moment integral, Ik’
was consistently low by about 10% relative to the Newton-Cotes value,
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The small value of k predicted by this theory, k = 1 MeV, makes
this error of little consequence,

A SAMPLE YIELD BASED ON THE MORETTO DENSITY FORMULA

Consider the prediction of ylelds for the reaction 235U(n £)

th’
using the spline fit expressions for the thermodynamic functions
required to evaluate the density of states expression according to
the Moretto prescription12 (Appendix D), As an example, assume the
spacing parameter, §, to be a coﬁstant for all mass and charge
splits, § = 3 fm, and allow both shapes of freedom, € and €4 in
each fragment. Two cases are considered, described previously,
the GMAX and YMAX cases. The YMAX method is modified somewhat by
requiring the YMAX configuration to lie in the vicinity of the GMAX
configuration, This 1s done by exploring the shape combinations
about GMAX until the local maximum is found. This is necessary
due to the size of the space of possible shape combinations. With
39 shapes possible in each fragment, there are 39 x 39 combinations
for which the yield integral would have to be evaluated. This is
simply too expensive. Recall fhat the interest in the YMAX con-
figuration comes from the possibility that single-particle effects
may displace the centroid of the shape distribution from that ex-
pected by assuming a minimum potential energy configuration. Mas~
ses are taken from the Seeger and Howard9 mass formula. There are
no explicit single-particle energies, S or P,

In Figure 14, the GMAX and YMAX yields are shown, Both yields

rise rapidly to about mass 90 and then more slowly toward symmetry.




The GMAX shows a local minimum at mass 102, Both yields favor
even mass numbers. The energy to be partitioned is shown for both
cases in Figure 15. The behavior is similar to the yield with the
obvious pairing effect., The source of the GMAX dip in the yileld
at mass 102 is apparent in the GMAX G, The dip is suggested in
the YMAX G but 1s totally absent in the YMAX yield. To explain
this, the effect of single~-particle correctlons upon the denéity
of states must be Investigated. In the YMAX case, the single-
particle shell correction energies for the fragments sum to =-1,5
MeV in the vicinity of mass 102 whereas the same energies sum to
+0.5 MeV in the GMAX case, This may be understood in the context
of the analytical density formulation, namely, that the nuclei with
the smaller shell corrections have the larger level densities,
This calculation was repeated for 6 values of 8 such that the
yield and configuration parameters were scanned through values of
1 fm< 8§ <7 fm, Similar yields were obtained and, based on this
fact alone, it 1s concluded that the statistical model of fission
based on the assumption of fixed scission-point tip~to-tip separa-
tion is not very good. One point is noteworthy and has implica-
tions regarding the analytical density formulation. In Figure 16
are plotted the values of the spectrum averaged values of the
single-particle shell energies for the fragment (light)
and compliment'(heavy). These plots seem to support the observa-
tion of Gilbert and Cameron17 regarding the effect of the shell

correction energy upon the density.
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A caveat 18 in order here. In computing the YMAX and GMAX
ylelds, the shapes of the fragments at the scission-point was re-
corded. For the earlier yield calculation based on the analytical
density model, mention was made of the fact that the scission con-
figuration usually occurred at maximum values of the € shape par-
ameter, € = 0,6, In the case of yields based on the Moretto den-

sity with two shape degrees of freedom, € and €,, the problem with

4°

€ is diminished. However, the values of €, now assume the prolate

4
maximum (see Figure 1). It would be a tedious but straightforward

process to extend the space of allowed shapes in the €, degree of

A
freedom, To do so, however, would be to admit some rather unphys-
ical shapes, shown in Figure 17, with surface ripples and sharp

corners. Looking at the fragment elongations for the two cases in

this yield example, q and o R

light heavy
%111ght *>heavy

GMAX 0.504 0.494

YMAX 0.441 0.504

With both € and €, degrees of freedom available, the maximum elon-

[
gation is 0.613, In the case of € only varying, the maximum elon-
gation is 0.432 (Appendix H and Table 1). It may be seen that
while the maximum value of € was not attained, a greater elongation
was attained. This is a manifestation of the effect described in
the discussion of the scission configuration; as more shape degrees

of freedom are added to the collective shape description, the GMAX

configuration assumes shapes of greater elongation until, with




infinitely many degrees of freedom, the shape is that of an in~
finitely long needle.7 Of course, before that limit 1s attained,
the description of the nucleus via the mass formula breaks down
completely.

SEMIQUANTITATIVE AGREEMENT

[y

The ylelds computed for fixed values of § bear little resem-—
blance to experimental data. The yileld integrals are quite sen-
sitive to § through the energy release, G. Allowing § to become a
free wariable depending upon such things as mass, charge, and in-
cldent neutron energy, it may be possible to parameterize the yield
in terms of § in a way which varies smoothly between fissioning
systems, ’

In any comparison made between computed scission-point yields
and measured fission product yields, a treatment of prompt neutron
emission is necessary. The emission of prompt neutrons appears to
be post-scission phenomenon, the neutrons emitted from highly ex-
cited fission fragments, Models have been developed to treat the
general problem of the decay of highly excited nuclei. These are,
in general, too expensive considering the large number of nuclel
for which such calculations would be performed. Two simple treat-
ments are presented in Appendix J. These are proposed as methods
of estimation of the number of prompt neutrons which may be emitted
from the fragments,

To further minimize the effect of prompt neutrons, a parame~

terization 1s attempted in terms of the fragment charge, While
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the charge yleld is not affected by the emission of prompt neutrons,
it may be affected by any beta-decay contamination in the data,
That such contamination may be present is indicated by the fact
that the yleld for a given charge is not necessarily equal to that
of the complimentary charge in the accepted data set.8 In the
.

absence of better information, the yleld of a given fragment charge
1s assumed to be the average of the yields of that charge and [its
compliment,

Yields are computed, Yoo for all masses and charges for
seven values of §, 1 fm<§ < 7 fm, giving a set of yc(A,Z,G).

These values are then lumped according to charge to give the charge

yield, yc(Z,6),

yc(Z’G) =ZYC(A’Z,6) .
A

For a given Z, log[yc(Z,S)] is a smooth function of § allowing

cubic spline interpolation for intermediate values. Assuming some

60 and Zo’ the solution of

¥.(2,8) ¥ (2 ,8)
A " AN ’

for all Z, where Yq is the measured (data) yield of a given charge,
gives a family of G(Z;ZO,GO) which reproduces the charge yields.,
To make the final comparison, the logarithms of the computed yields,

yc(A,Z,G), are also interpolated using cubic splines in §. TFigure




18 shows the smooth behavior of both charge and independent yields

integrals.,

As an example, yilelds for 235U(n f) were computed for both

th’
the YMAX and GMAX cases for seven values of §., Assuming Zo = 46
and 50 = 2 fm, the family of §(Z) shown in Figure 19 results.

Using these §(Z), the yields were redetermined and are shown in
Figures 20 and 21, The two treatments of prompt neutrons described
in Appendix J give the final fission product yields shown in Fig-
ures 22 and 23, In general, the YMAX yields are smoother and more
satisfactory than the GMAX yields and the simple cascade treatment
of prompt neutrons is better than the 2T model, Small discrepan-
cies in the computed and measured charge yilelds, Figure 21, are
apparent, This is due to the fact that, in spite of the smooth
behavior predicted in Figure 18, the computed yield has some small
discontinuous variation as G, increasing with §, allows other

terms to "turn on" and contribute to the total charge yield,

Other integral quantities are of interest here, the total
number of prompt neutrons, vp, and the total energy available for
gamma-ray emission, Ey’ computed from the two neutron models, the
prescission kinetic energy, k, the Coulomb energy at the scission
point, C, and the average cooling energy, the total energy of de-

excitation taken away by emitting a neutron, Ecool’
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CASCADE 2T

GMAX  YMAX GMAX  YMAX
Yp 3.96 4,21 3.52 3.77
EY 5.43 5.01 7.66 7.41
E 7.32 7.45 7.70 7.72
cool
k 1.42 1.38 1.42 1.38
C 158. 157. 158. 157.

All energies are given in MeV, Energy accounting is very good
with vp X cooling + EY’ the energy in prompt de-excitation chan-
nels, agreeing to within 0.5 MeV for the two neutron treatments
for both the YMAX and GMAX cases. Again, the Simple Cascade Model
prompt neutron treatment fission product spectra (Figure 23) agrees
better with the experimental yields. The total number of prompt
neutrons for this case is high by about 1.5 while the total gamma
energy is only about 1 MeV low. It then appears that the total
fragment excitation energy is high by 10-12 MeV, rather than im-
properly distributed, on the average, between neutron and gamma
decay, Note also that the total fragment kinetic energy, k + C,
is low by about 10 MeV,

Up to this point it has been assumed that all of the energy,
G, 1s to be partitioned. From this example, however, it appears
that 10 MeV or so of the G energy should be constrained to remain
in the translational kinetic energy degree of freedom, i.e,, G =
k, + El + E2 + k, with ko ~ 10 MeV. Then G - ko is the energy to
be partitioned. Note that the postulated slow, quasi-static de~

scent from saddle-to—scission1 is incompatible with the apparent




requirement of a high prescission kinetic energy to achileve overall
agreement with experimental observation., A scission configuration
which nearly satisfies experimental observed values of the total
fragment excitation energy, translational kinetic energy, and
yleld distribution may be achieved by carefully choosing an amount
of energy to be shifted into a constant ko coupled with the 6(Z)
determination,

In the process of determining the 6(Z), the energies relevant
to determining any energy to be shifted into ko may also be deter-
mined as functions of Z and 6(Z) and interpolated with cubic
splines in §. The energies of interest are G, the energy released
at the scission-point, the scission-point Coulomb enexgy, C, and
the scission-point energy of deformation, D. All quantitles used
are the spectrum—averaged values, Assuming Zo = 46 and examining
these energies as functions of the value of 60, the following re-~

sults are obtained from the GMAX case:

50 <G> <Cc> <D>
2 21.9 158. 14,03
3 32.2 152, 9.57
4 41,6 145, 7.16
5 49.4 138. 6.40
6 56.9 133. 4,36
7 63.3 129, 3.06

All energies are in MeV, For the case of 60 = 2 fm, the GMAX

yield gives vp = 3,96 and an average neutron cooling energy of 7,32
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MeV/neutron, For this case, the value, <G> = 21,9 MeV, yielded
6 or 7 charges for each mass, similar to ENDF/B.8 This value may
be taken as a lower bound on <G> with lower values giving to few
charges, The prompt neutron yield is governed by the sum of the
excitation and deformation energles, <E> + <D>, For the purpose
of this exercise, it shall be assumed that <E>= <G> since <k> is
generally small, The value of vp is high by about 1.5 in the 60
= 2 fm case.8 At 7.32 MeV cooling energy, the indication is that
<G> + <D> is high by about 1.5 x 7.32 MeV=11.0 MeV. The amount
of energy necessary for the desired number of prompt neutrons is
then about (21.9 + 14,03) - 11.,0=~>25,0 MeV. By increasing the
value of 60, the energy, G, in excess of about 22.0 MeV may be
arbitrarily moved into the prescission kinetic energy degree of
freedom and, after adding the Coulomb energy, compared to the ex-
perimental value., At the same time, the sum of the deformation
energy and G may be compared to the value needed for the prompt
neutrons and gammas, 25.0 MeV, Defining the energy which may be
shifted, A, as

A = <G> - 21.9 MeV ,
the total kinetic energy is given by <k> + <C> + A, The energy for
prompt neutrons and gammas is <E> + <D> = <G> + <D> ~ <k> - A

=~ <G> + <D> - A . The following results are obtained:




60 A <C> + A <G> + <D> ~ A

10.3 162.3 31.47
4 19.7 164.7 29.06
5 27.5 165.5 28.03
6 35.0 168.0 26.26
7 41.4 170.4 24,96

Recalling the k is of the order of 1 MeV and that the gamma ray
energy was low by about 1 MeV, some 60 between 5 and 6 fm should
give acceptable results,

Assuming 60 = 5 fm and Zo = 46, the computed G-energy is
arbitrarily shifted by 27.5 MeV. The yield integrals are evaluated
at 5, 6, and 7 fm and quadratic splines used to interpolate inter-
mediate values of §., Fitting gives the family of §(Z) shown in
Figure 24, Using these values, the ylelds were recomputed, In
Figures 25 and 26 the fragment mass and charge distributions re-
sulting are shown. Assuming the simple cascade treatment (Appendix
J) of the prompt neutrons, the fission-product distribution shown
in Figure 27 results. Again, YMAX yields are somewhat better than
GMAX yields.

Energy accounting may be performed., The spectrum averaged

energies of interest are
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GMAX YMAX

v 1.223 1.067
rl

v 1.586 1.948
ph

EYl 2,338 2.230

EYh 2,412 2.890

cool1 7.401 7.427

coolh 7.073 7.162
C 141,3 139.4
k 28,33 28.28
Again, energies are in MeV, Where appropriate, the terms are
listed separately for the light(l) and heavy(h) fragment, Experi-
mental values are availables’25 for vp, EY, and total kinetic
energy, EEE, a bar over the quantity denoting an experimental

value,
V.= 2,40
P
E. = 6.96 MeV
Y
TKE = 169.6 Mev
The computed number of neutrons is high and the gamma energy low,

With the average cooling energy available for each emitted neu~-

tron, AEV may be defined,

ph P v, +V

V , X Cool. +v_ x Coo
v+ —vu[ pl 1__ph lh]=AE .

Here, AE\) is the estimate of the excess excitation energy in the

neutron decay channel, For the gamma decay channel, a similar



quantity may be defined,

+E "E =AE .
(Eyp * By = B = BB

Then the total excitation energy excess may be defined,

AEv + AEY = AE .
In making this definition, any excess energy in either channel may
be compensated by an energy deficit in the other, Recalling that
gamma competition has been ignored in this simple neutron treat~-
ment, it is likely that the avallable energy has been improperly
partitioned between these channels, The following table results:

+VvV, =V AE AE AE
(v p) v y

pl ph
GMAX 0.41 2,95 -2,21 0.74

The resulting AE values indicate a little excess excitation energy
in the fragments although the original estimate of 25 MeV was not
too bad.

The total kinetic energy in this model is given by the Coulomb

energy and the constrained and computed prescission kinetic energies,

TKE TKE~-TKE
GMAX 169.6 0.
YMAX 167.7 -1,9

Adding these errors to those in the excitation energy, the GMAX

results appear consistent, within the accuracy of the mass formula,
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with the 5 fm scission configuration. The YMAX case could perhaps
be improved by shortening the separation by a few tenths of a fm,

In Figure 24 1t should be noted that 8(Z) has not been de-
termined for Z<27. The experimental data extend to Z = 23, The
yilelds computed for these charges is zero because the value of G
is negative after the ko energy 1is removed, Even by reducing ko
to zero, §(Z) can not be determined for Z = 23 and 24 without ex~
tending the current allowed maximum value of the parameter, Gmax =
7 fm. This would then admit extremely large scission separationms.
While it may not be unreasonable to expect ko to vary with mass
and charge, introduction of such a variation without theoretical
guidance or experimental evidence for such behavior reduces to
further paramaterization. Considering that the computed and meas-
ured charge yields agree well over 5 orders of magnitude (Figure
26), concern over the behavior of these low probability events is
not warranted and shall not be addressed here.

Note that in the analysis of the various scission-point ener-
gles, only GMAX quantities were considered, The additional shape
degree of freedom in the YMAX configuration introduces a random
variation making it difficult to determine the configuration which
simultaneously satisfies all constraints. It was observed empir-
lcally that the YMAX quantities computed from a scission configu~
ration determined by GMAX energies generally gave acceptable agree-
ment. This same procedure was used in the determination of all

subsequent scission-point configurations,




It is not out of place at this time to compare the empirically
determined scission configuration to that given by calculation of
the dynamic behavior of viscous liquid-drops. These calculations
describe symmetric fission only and vary depending upon the nature

of the assumed potential energy and viscosity.lo’27—3o

Typically,
results indicate ko to be in the region of 20 to 30 MeV and values

for the spacing parameter, 60, and elongation (with €, = 0) par-

4
ameter may be inferred giving 60 =3,5~7.,5 fm and € = 0,35 -
0.55.31 The scission parameters determined empirically, 60 =5 fm
and ko = 27.5, are not out of line with these predictions.

The method described above has been applied to five other fis-
sioning systems with similar results, In each case, Zo 1s chosen
to correspond to the value of the charge for symmetric splits and
60 was chosen to be 5 fm. The minimum value of G is chosen each
time to correspond to that value given with ko = 0 and 60 = 2 fm,
that value always giving the desired 6-7 charges yielded for each
mass, ko is then determined by the value of G at 5 fm in excess
of the value of G at 2 fm, The systems considered, the experimen~
tal energies to be obtained, and the values of ko determined are

8,25

here tabulated. ’

v E TKE k

P Y 0
1. 2@, 2,49  7.60 167.4 28.0
2, 239Pu(nth,f) 2.87 7,78 176.0 28.0
3. 2Py(arismey, £) 4,37 6,96 169.6 25,0
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v, E TKE k

P Y o
4, 238U(n+ll+MeV,f) 4,43 6.26 170.0 25.2
5. 25ch(sf) 3.76 8.60 185.7 27.0

The §(Z) and the yields computed with them are shown in Figures
28-47, Comparing prompt neutrons, prompt gamma energy, and total

235

kinetic energy, as for the u( f) case, Table 3 is obtained.

Ten’
As expected, the predicted charge yields agree well with measured
values, The YMAX ylelds are, in general, smoother than the GMAX
yields. The comparisons 1in Table 3 show the energies agreeing
within a few MeV, the most noticeable error coming from the im-
proper partitioning of energy between neutron and gamma decay chan~
nels due to the simplistic neutron treatment, The six sets of §(2Z)
parameters are shown in Figures 48 and 49. Apart frém the even-
odd variation, all vary rather smoothly as the charge deviates

from the symmetric split value, Zsym’ The spontaneous and 14 MeV
neutron fission cases all tend to follow the same smooth trend.

The Uranium thermal fissioning systems follow a parallel, but dis-
placed, trend relative to these cases, Plutonium is somewhat pe-
culiar in that it behaves as the thermal Uranium cases near sym-
metrlc splits and is more similar to the spontaneous and 14 MeV
fission cases in the vicinity of the mass peaks and more asymmetric
regions, about five charge units from Zsym in this case. The rise
in 6(Z) wvalues moving away from symmetric splits seems to be re-
lated to the magnitude of the peak-to-valley ratio. The thermal

systems, having the largest values of this ratio, have §(2) rising




most rapidly, smooth behavior followed after reaching the yield
peaks, five to seven charge units away from zsym'

INDEPENDENT YIELDS

Having a model which qualitatively reproduces the measured
mass yields, the question of independent yields, the distribution
of charges yilelded for a given mass, may be addressed. For fixed
mass, the yield of a given charge has been observed to be given by

a Gaussian about some peak value, Zp,32

y_(A)
y(A,2) = —— exp[-(2-2.)/20"]
ovam

More recently, palring effects have been obser-ved,33'-35 superim~

posing an even—-odd fluctuation onto the Gaussian., The model, for
fixed mass, 1s then characterized by three parameters, Zp, o, and
Az, the pairing term. Empirically, Zp is known to differ by about
one charge unit from that value predicted by Unchanged Charge Dis-

tribution (UCD),

zp,UCD = (Zo/Ao) A ?

where Zo and Ao characterize the fissioning system, The value of
0 used to determine yields when data is poorly known is3s

o ~0.,56 £+ 0,06 |,
Pairing enhancements have been reported to cause fluctuations of

about 23% about Gaussian behavior for 235

U(nth’f)35 depending upon
whether or not the fragment charge is even or odd, A similar
effect i1s anticipated with regard to neutron pairing, however,

prompt neutron emission is expected to wash-out this effect, The
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value reported is about 4%.35 In any case, this is a small effect
to expect to see with a 10% calculation., Other errors resulting
from the 6(Z) parameterization are also expected to affect computed
quantities. All computed yields are nevertheless examined to ex-
tract model predictions of these quantities, The yleld expressions

are evaluated and fit, within a given mass chain, to a Gaussian in

z,

logly(2)] = a22 + bZ + ¢ + (—)ZAz .

Having determined these coefficients, the model parameters are

given by
Z = +-b/2a
> /
o= -1/2a

' even-Z enhancement = exp[(—)zAz] -1 ,

then, yp = exp(c - Z:/ZOZ). Instead of listing the value of Zp,
its value relative to UCD 1s noted. All quantities are then com-
puted for both the YMAX and GMAX configurations. The results for

235

U ( f) are typical and are shown in Figures 50 and 51, The

Deh?
averaged results are listed in Table 4.

Figures 50 and 51 show a great deal of noise, but some of the
gross features may bé understood. The value of zp 1s expected to
be greater in the light fragment than that value predicted by UCD,

This 1s a result of the behavior of the masses, For a given mass

number, the masses of the members of that isobaric famlly exhibit




an approximately quadratic behavior in the charge or neutron
number, Z or N, and make a small excess of charge in the light
fragment an energetically more favorable split. The maénitude of
the preferred excess is proportional to the difference between the
masses of the light and heavy fragments, This behavior in Figure
50 is not as apparent in Figure 52, where 8(Z) is held constant at
5 fm, The effects of §(Z) varying within a mass chailn may be un-
derstood since the §(Z) values are larger for lower Z members of
the mass chain. This enhances their ylelds somewhat, drawing the
peak of the distribution toward lower Z-values, closer to UCD,

For the case of 235U(n f) the §(Z) values used appear in Figure

th’
24, The variation of §(Z) 1s most rapid in the vicinity of sym-
metric splits and is more pronounced in the GMAX case than in the
YMAX case, Near symmetry the mass difference is small and the light
mass preference for excess charge weak. In this vicinity the ef-
fect of 0(Z) varying may be seen as causing the Zp value to be~
come less than the UCD prediction in Figure 50, Also apparent is
the smaller effect in the YMAX case than in the GMAX case.

The effect of prompt neutrons upon the deviation of Zp £rom
UCD may be understood by noting that the emission of neutrons re-
duces the mass while holding the charge constant. The resulting
product is then less neutron-rich than the fragment, having a
charge-to-mass ratio more than that of the fragment, The effect,
to lowest order, is to shift the curve of Figure 50 uniformly to
obtain that of Figure 51, In Table 4, comparison of the values of

Aucd shows that the magnitude of the shift ranges from Q.2 to 0,7
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for the six cases considered, the shift belng greater for the
systems emitting the greater number of prompt neutrons.

In order to compare to data, ENDF/B8 values were processed in
the same manner to extract values of Zp, 0, and the even-Z pairing
enhancement. The Zp values obtained are plotted In Figure 53 as

deviations from UCD for 235U(n f), a typical case. The difference

th’
in Zp values between the calculation and ENDF/B are plotted in Fig~
ure 54. The calculated value is generally less than the ENDF/B
value in the light mass region, the deviation being greatest about
mass 110, where zp is close to UCD (Figure 51).

The widths of the Gaussian, O, are shown for the fragments
and products, as computed, and the ENDF/B data in Figures 55-57
for 235U(nth,f). The value of O appears to vary with mass, how-
ever, the variation appears to be random, no models indicated by
the data., In each case considered, the behavior of ¢ is consistent
with a constant value of 0 for all product masses. Results appear
for all six cases in Table 4, The value of 0 extracted from the

235

ENDF/B data for U(n_, ,f) is 0.597, somewhat greater than the

th
values indicated in Table 4. Notg that in this regard, the prompt
neutron treatment does not significantly increase the value of ©

in the fission products over the value in the fission fragments,
That the value is low is of some consolation since measurement er-
ror and a proper treatment of prompt neutrons, including gamma com~

petitlion in the latter stages of decay, would tend to broaden the

distribution over that occurring in the figssion fragments,




The even-Z pairing enhancements are also computed and tabula-
ted in Table 4. Due to the simplicity of the prompt neutron treat-
ment and the anticipated errors in the evaluation of the yield
integrals, a sizeable uncertainty is anticipated in these quanti~
ties. Nevertheless,rthe computed value for 235U(nth’f) is about
55% which is close to the ENDF/B value of 46%, An estimate of
the error in the pairing enhancement term is provided by the per-
sistence of the pairing effect into the 14 MeV and spontaneous fis-
sion cases, where the pairing effect is expected to be completely
washed out.35 Examination of Table 4 then indicates an error per-
haps as large as 207 in this quantity,

The values of Aucd give some indication that the §(Z) para-
meterization may not be the correct way to view the process., The
presence of a Z~variation of § within a mass chain, as mentioned
above, is to enhance the low Z ylelds and draw the Zp value toward
zucd' This effect i1s most prominent near symmetric mass splits

where the value of Zp becomes less than Zu That this effect is

cd’
present in Figures 50 and 51, but not in Figure 53, the measured

data values, indicates that the § values should not vary within a
glven mass chain, other than perhaps an even-odd variation. Note

also that the value of Auc is low in the case of 235U(nth’f)’

d

even though the number of prompt neutrons computed is high, a
process which causes the deviation from Zucd to increase., This
gives another indication that the computed value of Zp is too

close to the Zucd value, as compared to the measured data., To
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correct this situation, another parameterization without a Z-varia
tion may be preferable.

A PARAMETERIZATION IN THE MASS NUMBER, A

In order to remove the effects of a Z-varying § within a given
mass chain, values of § averaged over the mass chain may be ex-
tracted from the computed yields and used to recompute yields., To
extract these parameters, the six sets of §(Z) parameters, plotted
simultaneously in Figures 48 and 49 for the GMAX and YMAX cases
and listed in Table 5, were examined to estimate the average even-
odd Z behavior in the parameters which appears on top of an other-
wise smooth variation with Z, To be sure that such behavior was,
in fact, the case, each set of §(Z) parameters occurring for the
8ix cases considered were examined for both the GMAX and YMAX
cases, In each case, the §(Z) were modeled, as described in Appen-

dix F, to determine coefficlents of the following proposed model,
Z
6(z) =£(z-2)+()gz-2)

where Zo 1s the value of the charge corresponding to a symmetric
charge split and £(Z) and g(Z) are polynomials in Z, Results of
this modeling indicate that such a decomposition is possible, model
values deviating from input values by 0,03 to 0.07 fm. Most im~
portantly, for this exercise, in each case the model was consistent

with the hypothesis,

g(Z—Zo) = g = constant,




i.e., the even-odd behavior was well described by a simple constant
magnitude term of varying sign., The values of 3 encountered

varied between - 0,05 and - 0.08 fm with average values of

g, = " 0,059 fm GMAX

g, = " 0.060 fm YMAX

To determine the average value of § for a given mass chain,
the smooth part of §(Z) is then averaged over the fractional in-

dependent yields for that mass to obtain the §(A) parameter,

S = ) £iy@a,2) [8@-)’g 1
Z

where

Zfiy(A,z) =1.0 ,
Z

Yields may then be recomputed, as previously described, using a §

parameter now depending upon both mass and charge
Z
§(A,2) = 8 + ()% .

The §(A) values resulting appear in Figures 58 and 59, and are
listed in Table 6., These are similar and are to be compared to
the 8(Z) values appearing in Figures 48 and 49,

Recomputing yields with the new G(A,Z) parameters gives mass-

chain yields which differ little from those computed with the §(Z)
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parameters. Again, 235U(nth,f) is typilcal. Yields for this case

are shown in Figures 60 through 62 and are to be compared to those
shown in Figures 25-27. As expected, there is a noticeable loss
in quality of agreement between measured and computed charge
yields. Energy accounting was performed in all cases and the
results appear in Table 7. Agreement is again comparable to that
achieved with the 6(Z) parameters, shown in Table 3.

Of particular interest, having provided the motivation for
this new parameterization, are the independent yield parameters of
the Gaussian model. These appear in Table 8 and are to be compared
with the values in Table 4 obtained with the §(Z) parameters. For

the case of 235U('nth,f) the values of ¢ and Auc are plotted as

d
functions of the mass number, A, in Figures 63 and 64, With the
8(A) parameters the Zp values tend to be further from the UCD value
than with the §(Z) parameters, as anticipated, In Figure 65 the

Zp values are plotted relative to those extracted from ENDF/B8 data,
Agreement 1s improved over that indicated in Figure 54, the same
plot for the §(Z) parameters. However, discrepancies of about 0.4
still appear in the vicinity of the 1ight mass peak, This behavior
appears in all of the six cases considered.

Comparing Tables 4 and 8, shows that the value of the width
parameter, O, is not particularly sensitive to differences in the
parameterilzation, the results being consistent with no change at
all, The value of the even-Z pailring enhancement changes somewhat

between the two parameterizations, If any conclusion is to be



drawn regarding this term, it is again an estimate of the error
assoclated with the computed value, derived from the persistence
of the pairing effect to the high energy systems. The indication
here is that an error of about 357 in the GMAX case and 20% in the
YMAX case may be anticipated. This feature 1s discussed further
later,

At this point a "model's eye view" of the source of mass
asymmetry in the fission process may be extracted. In Figure 66

are plotted three relevant parameters as functions of the fragment

233
mass for U(nth’f

and shell correction energles, respectively, averaged over all

). The parameters D and S are the deformation

charges yielded for that mass, The parameter AA is the ratio of
the fragment center-to-tip distance in the scission configuration to
that of a spherical nucleus of the same mass number and 1is a mea-
sure of the fragment deformation. Examining Figure 66, the defor-

mation energy is rising toward a large value in the vicinity of

"

mass = 120 while at rather constant deformation, AA = 1,5, By

mass 125, the fragment has assumed a nearly spherical shape,
indicated by AA = 1.1, In this region, the heavy fragment 1s pass-
ing through the vicinity of two closed spherical shells, 50 protons
and 82 neutrons. This is evident from the large shell terms in

this region. To understand the effect upon the yield, recall that

the GMAX configuration is determined by

G=S ~ (D + C) + constant .

At sufficiently large values of D, a lesser deformed shape becomes
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more energetically favorable, even though the Coulomb energy is
larger for that shape. To demonstrate that the shell effect is in
fact driving the G energy and, through it, the yield in this
vicinity, Figures 67 and 68 are to be examined. In Figure 67, the

233

yield and G energy are shown as a function of mass for U( ).

Ten?
If shell correctlons are the source of the asymmetry in both
curves, the effect should be removed by subtracting the shell
terms, S1 and SZ' In Figufe 68 the quantity G- S1 - 82 1s plotted.
While the plot is somewhat nolsy, there is no indication of an
asymmetric peak., Supporting evidence for this conclusion is ob-
tained from plots similar to Figure 66 for other fissioning sys-
tems. The Coulomb energy is proportional to the product of the
fragment charges, ZIZZ' In the vicinity of mass = 135 the heavy
fragment charge 1s slowly varying with the complimentary charge,

Z taking on that value which conserves charge. The Coulomb en-

1’
ergy in the vicinity of the mass peaks should then increase with
the charge of the fissioning nucleus and a larger D energy should
become necessary in order to overcome the difference between the
deformed and the nearly spherical Coulomb energies, Examination
of Figurés 69 and 70 confirms the expectation.
This investigation may be carried one step further with in-

teresting results, Combining the observed behavior of D for A

100 in Figures 66, 69, and 70, the following model approximates

the deformation energy,




where the o-subscript denotes that this value is typical of a
highly deformed shape., At the value of A corresponding to the
change from deformed to nearly spherical shapes, the G-~values must

be equal, i,e.,

or
Da + Ca = Do + Co s

where the o-subscript denotes quantities corresponding to a nearly

spherical heavy fragment, Writing the Coulomb energy as,
C = lezf(a) ,

where £(0) contains all of the shape dependencies, the following

relation 1is obtained,

D -D
o
Z,%,

O =f - f(a) .
(o]

From the figures, Do = 2,0 and assuming Da as given above,

0.345AT - 31,2

2,2, B fo - f = ar

where A 1s the "transition mass," that mass at which the shape
transition occurs, Examining the computed yields to determine the

charges typical of the masses at which the shape transition occurs
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and noting that the complimentary charge, Z1 is given by conserva-

tion of charge, the following table is obtailned,

A, 2, Af
P%m,,H 122 48 0.00518
2%u(n, ) 125 49 0.00543
23205 (s£) 128 50  0.00542

On the average, Af = 0,00535 and 22 = 49, Using these results,
the following formula 1s offered to estimate the location of the

shape transition mass,
AT = 0.759Zo + 53,2 .

Beyond this transition mass, the curves show a rapidly rising shell
term which has been identified as the source of the asymmetric
mass peak, The transition mass then locates that mass at which

the mass ylelds rise rapidly to form the asymmetric peak and may
be taken as an indication of the width of the symmetric valley,

the valley extending a distance of AT - Asym about that mass cor-
responding to symmetric splits, Asym' This prediction may be
checked by comparing the following predicted valley locations with

the measured yields, Figures 25, 29, 33, 37, 41, and 45.




A yA A Valley

[o] o T
234 92 123 111-123
236 92 123 113-123
240 94 125 115-125
239 92 123 116~123
252 98 128 124-128

The six cases considered show this prediction to be reasonably
confirmed, the effect being somewhat more obscure in the 14 MeV
fission cases where the valley is shallow.

This information may be added to the general observation that
the heavy mass peak 1s relatively stationary for all of the fis-
sioning systems considered, the peak extending approximately from
mass 134 to mass 146, Except for the depth of the valley and the
finer details of the shape of the peak, the location of the peaks

and valley are given approximated by these general results,

SUMMARY OF PRECEDING WORK

With the simple model developed thus far, the fission process
has been viewed through the Fermi Golden Rule with a simplifying
assumption of thermal equilibrium in order to extract a view of
the scission-point configuration of the fragments, The resulting
parameterization has a simple interpretation in terms of the spac-
ing of the fission fragments, Two configurations have been exam~
ined with regard to the shape degrees of freedom, While the YMAX

configuration is more in keeping with the spirit of the thermal
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equilibrium assumption (maximum phase-space), a special role has
implicitly been given to the GMAX configuration (minimum potential
energy) since it provides the starting point for the search for the
YMAX configuration. Coming somewhat as a surprise was the obser-
vation that overall agreement with experimental measurement could
be achieved only by constraining a large amount of energy to re-
main in translational degrees of freedom,

Semiquantitative agreement is achieved with measured mass
chain yilelds. Parameters of the independent yields agree less sat-
isfactorily, the Zp and 0 values being consistently low in spite
of a slight excess of prompt neutrons computed, an error which
should cause an over-estimation of these quantities. Even-Z pairing
enhancements are consistently high with a possible systematic error
indicated by their persistence to high energy fissioning systems.

A potential source of error which directly affects these quantities

is the treatment given to the prompt neutrons. An improved model

would give some treatment of gamma competition while remaining
simple enough to be applied to the hundreds of fission fragments
encountered in this calculation.

CONCLUSIONS OF POTENTIAL USEFULNESS

A few things may be said regarding the general behavior of the
computed yields which may be of use where data is sparse by way of
simple dependencies and scaling laws. Before beginning this dis-

cussion, a few words are in order concerning the manner in which



errors in various quantities, input to the calculation, are propa-
gated through to the yields. Of particular interest here are er-
rors in the mass, the energy constrained to remain in translational
degrees of freedom, ko, and the 6-parameters, All of the quanti-~
ties enter the calculation through the energy, G,

The yield is proportional to the integral, I,
k

G G-
I-= f p(k) f Pl(El)Pz(G—k-El)dEldk .
(o] (o]

All densities involved are assumed to be zero for argument zero so
that,
G G-k

dp_. (G-k~E_)
dI _ 2 1
ax ] p(k)J pl(El) e dEldk,

(o] [}

With the definition of the temperature, T, this becomes,

G G-
i k o, (B,)P, (G-k-E.)
U om dE_dk .
dG T2(G—k—El) 1
(o} (o]

In making the saddle-point approximation to evaluate the integral,

Tl = T2 = T = constant ’
so that

a I

dG T ?
or,

I(c) = IoeG/T .

Errors in the mass formula (Appendix A) are estimated to be about
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700 keV. Note however that newer Investigations of the masses of
neutron-rich nuclei, mentioned in Appendix A, reveal that this
error may be as high as a few MeV. For saddle-point temperatures
of the order of 1 MeV, this may give rise to an error of a factor
of 7 or more from the mass terms alone.

An error in the ko energy, of magnitude Ako, enters directly

into the calculation through the G-energy as

(G-Ak ) <TAk )
o o
I=1e T =IeT

o

The temperature is a quantity slowly varying across the chain~yield
spectrum, making an error in ko enter as an overall constant mul-

tiplier which drops out of the yield expression upon normalization.

Variations of the S-parameters shall be treated more care-

fully. The yleld of the ith fragment or chain is given by,

The dependence upon the kth d-parameter, Gk, is given by
(d1k> (dIk)
dyi=A b 0 TR B
ds k ik L k I ik

where the Kroneker delta has been written as Aik to avoid confusion

with the {-parameters, Assuming a random error in Gk of magnitude,

ok, one would write the error in the ith computed yield, © 1 as
y



2
denI
2 _ 2 K 2
s = D2y~ 7 (T&;‘) "%k
k

2

Assuming the quantity (dlnIk) '012( to be constant, the sub-

a8,

scripts may be dropped giving,

2
2 _[fasn1 2 2 _ 2, 22
%y [( 3 ) "0 ]Z G = 2P e T YYD
X

or,

%

The sum, E yi, may be bounded,
k

2 } : -
Tk < ykyk,max - yk,max ?
k

where yk,max is the largest Yie encountered, of the order of

yk,max =0.1 .

Hence,

2 2
Z(Aikyk "YW Ly G2y
K
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The quantity E%%L may be determined by chain-rule differentiation,

but a simpler estimate 1s given by examining Figure 18 and others

like it giving,

dlog. I
10 -1

or,

dinl _ -1
35 4,6 to 8,1 fm .

Then,

2 <o
¥y

where 0 ranges from 5 to 9 fm—l. To insure that ;Z < 1, the d~para-
meters must then be spegified to 0.1 to 0,2 fm. To do a 10%Z cal~-
culation, the 0-parameters must be specified to 0,01 to 0,02 fm.
and one may justifiably argue whether or not the location of the
nuclear surface may be specified to such small tolerances, The
conclusion to be made here is that the computed quantities are
quite sensitive to the model parameters, The fact that the degree
of agreement achieved between computed and measured chain ylelds
1s so good Indicates that some cancelation of errors has occurred,
A better method of error estimation is not obvious,

Not addressed here for lack of an intelligent way to do so

are errors introduced by incorrect specification of the nuclear




shapes at the scission-point, Since the assumption has been made
that these are the shapes of either the GMAX or YMAX configuration,
the errors may be assumed to be zero and the computed yields viewed
as a test of these assumptions., The indication is that the YMAX
assumption 1s the more valid, In view of the large error possible,
the small errors remaining between the measured and computed mass-
chain and charge yields are of diminished importance.

One prediction of the simple equidistant-spacing density of
states model that is confirmed in this calculation regards the
independent yield parameter, o, the width of the Gaussian des~
cribing the distribution of charges yielded for fixed mass,

According to this model, the yleld, y, is proportional to

where a is the density parameter and, in simple models, is pro-
portional to Ao’ the mass of the fissioning system. It was pre-
viously noted that the G-energy is quadratic in the charge, Z,

about some most probable value, Zo,
9

G=6G6 + G (z-Z )2
o z o

where Gz is the strength of the variation,

Then,
e 2 | 32
2vVaG |1 +-2 (@ ~-2)
y(z) «e ° € °
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a 2
J Go Gz(z - Zo) .

The width of the parameter, 0, may be identified as

y(Z) = e

0'2-: -—1—- .?.9-
2G a *
Z
The prediction here is that 0 scales with the energy as Gl/4 and
with the mass of the fissioning system as Ao-1/4' For example,

taking ¢ and G values from Tables 3 and 4,

GMAX TMAX
235U(nth,f) o=  0.462  0.458
235
UCntl4,f) o=  0.521 0,508
23500, B) G= 18.75  16.78
th
2

35U(n+14,f) G 32,29 29.36

Scaling from the thermal (th) to the 14 MeV (14) cases, the pre-

diction is,

G 1/4
G.. =0 _14 .
14 th Gth

The predicted values of o,, are,

14

0.529 GMAX
o‘ =
14 0.527 YMAX

Agreement is reasonable. Note that average values of G have been
used rather than average values of the Go. This should be accept~

able 1f the charge distribution for fixed mass i1s sufficiently




sharp that the average value of G 1s a good approximation of GO.
Encouraged by this result, the same argument may be applied
to predict values of the width parameter for individual fragment

masses for 235U(n+14,f), 014(A), in terms of the values for

235
U(n,»6)5 T, (),

1/4
Gy (&) ) .

0148 = °ch(A)(cth(A)

Comparison of computed values of olé(A) with the values predicted
by this scaling relation reveal a small systematic error in ad-
dition to a small variance, The results are tabulated here for
the GMAX and YMAX cases., Indicated are the average error, BAR,

its standard deviation, VAR, and the maximum error observed, MAX,

BAR VAR MAX
GMAX 0.015 0,029 0,065
YMAX 0.023 0.032 0.069

To compare values of O between systems, one may write,

oo (9_)“4
AO

Solving for o in the six cases, again using Tables 3 and 4,
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G g o

GMAX YMAX GMAX YMAX  GMAX  YMAX

233U(nth,f) 18,45 16.63 0.462  0.460 0.872 0,891
235U(nth,f) 18.75 16.78 0.462 0,458 0.870 0,887
2

39Pu(nth,f) 21.63 19,11 0,484 0.469 0,883 0,883

235U(n+14,f) 32,29 29,36 0,521 0,508 0,857 0.855

238U(n+14,f) 30.77 27.40 0,520 0.506 0.868 0,894

252Cf(sf) 24,97 22,86 0,512 0.492 0.913 0.896

The Indication is that

0.877 + 0,018 GMAX
0 = 0.884 = 0,014 YMAX

0.881 + 0,016 overall

The conclusion to be made here,(is that the model makes a definite
prediction of the behavior of the charge width, 0, with the mass
and excitation energy of the fissioning nucleus.

Lest teooe much faith be placed in the.behavior of the ylelds
as predicted by the equidistant model, the mass chain yields are
to be investigated. Applying the model to individual chain~yields
gives less satisfactory results as shall be shown here. In con-
junction with the Gaussian model for charge widths, the chain-yields
is given by,

y(A) = exp(2VaG)

where G is the charge~welghted value of the G-energy for that mass
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chain. Knowing that the a-parameter varies somewhat between dif-
ferent fragments and having a set of chain-yields for one incident
neutron energy, one may ask if this simple model may be used to
estimate the yield at another energy, By solving for the

a-parameter in the expression for the ith yield,

exp (2\/aiGi)

V.
* Z exp (2V a.G,)
i J 1

the resulting set of a, may be used to estlmate the yleld at the

i
new value of the G-energy resulting from absoxption of a neutron
of different energy, Again, only ratios are known and one value
of the a-parameter must be assumed., This value is denoted by a

as 1Is taken to be given by the empirically observed relationship

between ao and Ao’ the mass number of the fissioning system,26
a = A°/9.5
The remaining a; are obtained by solving
= G - .
vy, = e (2Va G, 2v'a G )

The resulting a, may then be used to estimate yields at some

3
different energy, G', resulting from a different incident neutron
energy, Using yields computed for 23SU(nth,f) to determine the

a, and using these ai to estimate the yields for 235U(n+14,f)
glves ratios of the estimated to computed yields for this reaction

of,

/1
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Yijest _§1.013 £0.781 oMmAx
Vi,cale 0.832 + 1.001  ymax

The predictions of the mass chain yields based upon the equidistant

model are not sufficiently good that a reliable scaling relation
is indicated.

PROCEDURE FOR AN ARBITRARY FISSIONING SYSTEM

The calculation of yields for an arbitrary system proceeds in

four steps,

1) Generation of yield integrals with fixed § and constrained

ko for use in interpolation.
2) Selection of S-parameters.

3) Interpolation of the fixed 6 intergral values at the de-

sired § values.

4) Empirical adjustment.
The average wvalue of ko over the six cases treated is 26.8 MeV,
As mentloned previously, errors in the term do not introduce large
errors into the yield calculation. From the cases considered, it
appears that 1t is sufficient to evaluate fixed delta integrals at
only three wvalues of 6, 5, 6, and 7 fm. Although YMAX configura-
tions glve better agreement with measured yields, the GMAX config-
uration must be computed to begin the calculation and offers diag-
nostic information, being free of the shape variation of the YMAX
configuration,

In flgures 48, 49, 58, and 59, the six sets of § are plotted.

The same quantities are tabulated in Tables 5 and 6. As previously



discussed, the §(A) and YMAX cases are recommended, It should be
noted that it is the §8(Z) parameters which are determined from the
ylelds, the §(A) parameters determined from the §(Z) after an as-
sumption concerning the magnitude of the even~odd Z term 1is made,
One could in principle use another even-odd term from Table 5 to
redetermine the §(A). The peak~to-valley ratio is determined by
the rapidity of the rise in § values near symmetry., This may be
seen in Figures 48, 49, 58, and 59 as the thermal neutron -induced
fission cases, all with large peak-to-~valley ratios, rise most
rapidly moving away from symmetry, Information available regard-
ing the peak—to-vall;y ratio may dictate a best set of §-parameters
to use, In the absence of this informatlon, averaging may be per-
formed with ﬁhe six sets., The results of such averaging may be

presented more simply by fitting the O's to a simple form,
Z
§(x) = f(x—xo) + (=) g(x—xo) s

where x is Z or A and X is the value at symmetry., f and g are
assumed to be polynomials in x—xo. The polynomials were deter-

mined as described in Appendix F with the same form resulting in

all cases,

6(x) = fo+f2(x'xo)2+f3(x-xo)3+f4(x-xo)4+f5(x-x°)5+f6(x-xo)6+(—)Zgo .

The values of the coefficients appear in Table 9 with the observed
standard deviations, The standard deviations are large compared

to that needed to insure a small error in the computed yields,
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The six data sets, strictly speaking, should not be lumped to-
gether, however, as may be obvious in the figures, since such dis-
similar behavior is exhibited by the various sets of §-parameters,
The formulas determined by the above fit then represent something
of a best guess., As shown in Figure 71 for representative cases,
use of this formula will introduce potentially large systematic
errors,

To i1llustrate the utility of the polynomial formula for the
§-parameters, yields were recomputed with coefficients for the
6(A) parameters in Table 9, The results are shown in Figufes
72-77 for a few cases., As expected, the chain and charge yilelds
have suffered a loss in quality of agreement with the measured
yields, Also, the peak~to-valley ratio is too small in the thermal
cases, as expected, since the § parameters used are not as rapidly
increasing in the region of symmetry as those specific to this re-
action, as may be seen in Figure 71.

Energy accounting may be done again for this set of §-para-
meters, the results of which appear in Table 10 and show a small
loss 1n agreement relative to those values in Table 7. In Table
11 the parameters of the independent yield Gaussian model appear,
Comparing Table 8 and 11 shows that the Gaussian parameters have
changed very little between the two cases, indicating that the
main effect of the §(A) is to determine chain yields,

Having a set of computed yields, several adjustments are

possible by way of empirical fixes, For example, the width of the




Gaussian describing independent yields, o, for 235U(n f) is cal~

th’
culated to be

o= 0,47 s

whereas extracting the same quantity from ENDF/B8 for this reaction

gives a value of
o= 0.59 .

The reason for this difference is not understood but may result
from the simple prompt neutron treatment, the presence of gamma
competition broadening the distribution somewhat., Another poten-
tial source of error is indicated by examining the ylelds in
ENDF/B8 and lumping them according to charge, It was the charge-
lumped yield data that were used to determine the original §(Z)
parameters, Examining the charge~lumped yields reveals an ap-

parent violation of charge conservation since, in general,

y(z) ¢ y(Z -2 .

This fact indicates the presence of some combination of measure-
ment error, beta~decay contamination, and modeling error in the
data, It then seems reasonable to assume the computed and measured

Gaussian widths to be related by an error term through

ot =t 4+ ,
meas calc err

where the subscripts indicate the measured, calculated, and error

terms, respectively., Using the 235U(n »£) results to determine
th
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es
cerr glv

o = 0,36 .
err

Hence, with the computed chain yields, a correction may be con-
sidered in which the Gaussian model 1s broadened in thils fashion,
The computed Zp values differ somewhat from the ENDF/B wvalues

as shown in Figure 65 for 235U(n ). The result is nearly iden-

t:h’f
tical for the other cases considered, deviations being about -0,3
through the light mass peak and +0,2 through the heavy mass peak,
Again, assuming that the chain ylelds are given, either by measure-
ment oxr calculation, one may consider a small correction in the
computed Zp values as indicated in Figure 65. A further, smaller
correctlon results from the fact that the computed number of neu~
trons is high by about 0.5, Examining Tables 7 and 8 shows that
the Zp value moves relative to UCD by about 0.16 for each neutron
emitted (light-product only), This implies an additional correc-
tion of 0,08 to the zp value from the prompt neutron treatment
alone,

The even-Z pairing enhancements, as computed, are to be used
with extreme caution, Values computed with the original §(Z)-para-
meters of Table 5, appearing in Table 4, indicate errors consist-
ently high by as much as 187 relative to the same quantities ex~
tracted from the ENDF/B8 data, appearing in Table 12. 1In Table 8
the same quantities are again computed assuming the even-odd Z

term in the {-parameters to be -0,06, As indicated in Table 5,



the values of this parameter range from ~0,05 to -0,09, the value
of -0.06 being the average over the six cases, Examining the var-
iation in the pairing term between Tables 4 and 8 and the deviation
of the even-odd Z term from -0,06 for each case shows that the
even—~Z pailring enhancement changes by 0.1 for a change of about
0.01 fm., Thus, accurate determination of the enhancement requires
an extremely small tolerance on the specification of the location
of the nuclear surface, perhaps unphysically small,

To summarize, it appears'that the model may be useful even in
the complete absence of experimental information to predict chain
yields, each pilece of evidence that is available being useful in
the selection of a better set of §-parameters. Having a set of
chain ylelds, either computed or measured, independent yields may
be computed and adjusted empirically. In making any such adjust-
ments, it is recommended that the adjustments be made in the frag-
ments, rather than the products, to insure that charge conservation
is not violated, This will, of course, affect small changes in
the prompt neutron and total gamma energy computed, With a fairly
complete set of yields for'a particular excitation energy of the
fissioning compound nucleus, yields at another excitation energy
may be estimated by scaling the measured yields by the ratio of
the computed yilelds at the two energies,
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APPENDIX A

The Mass

In order to determine G, the fragment masses must be known.
As fission fragments are unstable, neutron-rich and highly deformed,
their masses have not been measured, and a mass-formula must be
used. The earliest mass formulas, such as proposed by Weigaecker,36
were based on liquid-drop comparisons. Perhaps the best pure liquid-
drop formula is that of Myers and Swiatecki.37 Comparison of their
computations with experimental measurements show that while smooth
behavior with mass and charge is reasonably well given, deviations
of several MeV are observed, presumably due to single-particle ef-
fects. These effects would be of little consequence were it not for
the fact that in the region of interest, the light actinides, the en-
ergy release at the scission-point, computed from liquid-drop consid-
erations alone, is nearly zero. Hence, in this computation, the
small deviations are Important and a better mass formula is needed.

Since single-particle effects seem to be the problem, a
single-particle model would seem to be in order. Here, the problem
is just the reverse. Fluctuations associated with shell and pairing
effects are reasonably well predicted, but the bulk mass is diffi-
cult to obtain in a general sense. A useful formula must then com-
bine these two models with the liquid-drop formula giving the smooth
mass and charge dependence and the single-particle method giving

the observed deviations about this smooth background.
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Such a method was proposed by Strutinsk.y38 and implemented by

Seeger and Howard.9 By this method, the nuclear mass may be written

M= Mld + E (Su+P) s
n,p

where Mld is given by a liquid-drop formula, and SU and P are

single-particle correction and pairing energies, respectively. The

as

procedure presented here for determining SU and P is taken from
References 9, 32, 39, and 40.

The corrections are determined by first assuming some single-
particle potential. Seeger used a deformed Nilsson model41 char-
acterized by deformation parameters € and €4 Single-particle lev-
els were determined for each shape on a discrete grid of 20 values
of ¢ ranging -.35 < e < .6 and five values of ¢, ranging -.08 < 514< .15
with the grid turning upward in €4 for the larger values of ¢, as shown
in Figure 1. This grid was chosen after preliminary work with other
grids such that the middle value of €, corresponds roughly to the
most probable value for a given € on the grid.

In treating single-particle shell and pairing corrections,
neutrons and protons are treated independently, corrections com-
puted for each, as indicated by summing over n and p.

Having solved the Schroedinger Equation, a set of levels, in-

dexed by j, with energy E,, are given. These levels may then be

J
filled with N particles to give the total energy of the system, E,
N A
E=Z Ey =f Eg(E)dE ,
=1 -




where g(E) is the density of states,

g (E) =Z §E-E)

k
and A is the Fermi energy of the system, the energy of the last oc-
cupied state, defined by

A
N=/ g(E) dE .

=00

According to the Strutinsky prescription, everything is assumed
to be separable into a smooth, average behavior, denoted by a tilda

(~) over the quantity, to be associated with liquid-drop behavior,

and a deviation resulting from shell corrections, i.e.,

E=E + 6F

2

g(E) = g(E) + Sg(®) .

The smooth Fermi energy is defined with respect to the smooth den-

sity by

A

N=/ g(E) dE .

~co

Then,

x
E=/E§(E)dE ,

and the quantity desired, OE, is given by

N A

SE = Ej-/ Eg (E) dE
i=1 -
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Hence, the problem reduces to one of separating the smooth behavior
of the density, E(E), from the actual density, g(E).
The separation is performed by expanding the delta-function in

Hermite Polynomials, Hm,

g(E) =Z G(E—Ek) = 7 Z Z c B (u ,

k
E - Ek
where u, = — Y defines an arbitrary "smearing width," and

cn is given by

(-)m/2 -
I/ 2) ] m even
C =
n 0 m = odd

The sum over m may be split into two pieces,

1 -
- —_— E H + E ukz H( .
g(E) YJE C (uk) Y = c u

m=p+1

The lower-order polynomials vary rather slowly and smoothly, whereas
the higher-order polynomials vary rapidly and must be included to
describe the rapid fluctuations associated with shell effects. The
distrinction between smooth and fluctuating behavior is arbitrarily
made by fixing p, the smooth, liquid-drop behavior represented by
polynomials of order less than or equal to p, and the fluctuating

shell behavior represented by the higher-order polynomials. The

smooth density sought, E(E), is given by

7 <&
~ 1 E : -
g(E) = <7 e 'k E c H (u)
k m=0




and the smooth energy, E, is given by

X
E = L c Ee-uz H (ﬁ )YdE
v m T
m= “oo

The sum over k includes all levels of the Nilsson potential but,

in practice, need extend only to a few shells above the highest oc-

cupied. Then the Strutinsky shell correction term, 86U, is given by

N
6U=6E= E Ej-E .
1

As no physical significance 1s associated with the parameters, Y

and p, results should be independent of their values. Such is the
case if, as Seeger uses,

p=6 Y=1.2hwo ’

where hwo is the oscillator strength in the Nilsson Model. For os-

cillator strengths Seeger gives

1/3 1/3

hw = 31.08 MeV/A
op

hy = 35,37 MeV/A
on
for neutrons and protons, respectively, where A is the mass number.
The pairing term 1s determined from the same set of levels used

to compute the shell correction term. Using a BCS Hamiltonian, the

nuclear ground state is given for an N-particle system by

n

- E.~ A
BCS ~ Fodd-particle +§ : 1+ J E, - A2

i=1 E_Xz 2 j T~ ?
i ‘/(j )+ A G

where the sum over j runs over the n levels used to determine the

BCS ground-state, where n = N if N is even, and n = N+ 1 if R is
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odd. Any odd, unpaired particle 1s excluded from the sum and ap-
pears explicitly in the first term. The pairing strength, G, is
related to the pairing gap, A, the smooth level density, and the

smooth Fermi energy by

T2 80 108 {1GAz17 + M7 4

n
gia
For the gap parameter, Seeger uses the phenomenological result,

A = 10.5 Mev/Al/2 .

Having determined the energy of the nucleus without pairing from the
shell model calculation above, the pairing energy is given by the

difference between this energy and that of the BCS ground-state,

Note that this is the total pairing energy, as opposed to a Strut-
insky-type pairing correction. Hence, the parameters of the liquid-
drop portion of the mass formula are determined by fitting an ex-
pression for BEld to

BE 4 = BEexp - (S8U+P) ,
where BEexp is the experimental binding energy.

The binding energy of the nucleus is then given according to

Seeger and Howard by

= + +
BE BEld su+Pp

where




2
e = oa - 8D - L - Y23 5 _ce)
1d A 1+ mas(si)/Al/3 51

-zl | 1435 5 1076 5239

+ ¢A1/3 Bk(ei) - Ec(ei) - 35 A 7

B (&) = BysBe(®) ¥ Bven T Eoo

E.. (c.)= > z(z-1)e’ JI1 + 18.0295 (33 - 85.2330 Y
airt¥177 5 R . R . R
exch Z dir 16T R

. [l.-—l.3356(§) + 7.127(%)2 - 18.2104(%)3]

Lt @2

E = (.0369A — .0805%)
° R

s

2 4
- 1/3 5 2 a AR a
R=rA 1+g T <r A17?) 2% " <’r' . 173> .
(o} [o]

¢

The values of the various constants are given as

]

r 1.2254 a = 0,153

(o}

15.2568 MeV

Q
]

33.166 MeV

= 17.073 MeV

3.28

"0.76 Mev .

o w =< w
I
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The parameters €, appearing here denote a particluar point in the

1

two-dimensional space of shapes considered. The BS,Bc and Bk are the
surface, Coulomb, and curvature shape dependencies of the liquid-
drop terms as computed by Hasse.42 These terms are normalized to
unity for spherical shapes.

For a given nucleus, the binding energy formula may be evaluated

at each point in the €, £, space. The ground-state of the nucleus

4
corresponds to a maximum of the binding energy. In the vicinity of
the maximum binding energy grid point, a biquadratic interpolation is
used to determine the exact location of the ground-state. Comparison
of the binding energies computed in this fashion with 1553 measure
masses43 gives a standard deviation of 704 keV.

The question of the validity of extrapolating the mass formula
into neutron—rich regions must be addressed. Recent measurements of
52 neutron~rich masses have been made by AleklettAA and comparisons to

45,46

two other mass formulas of the droplet-plus-corrections type have

" been made. This study indicated the Seeger and Howard formula to be

best, observed errors ranging from 0.3 to 1.0 MeV. Another recent
measurement of the masses of neutron-rich rubidium and cesium isotopes
has been made47 showing deviations as large as 2.0 MeV from the predic-
tions of the Seeger and Howard formula. It would then appear that the
mass formula used, while not perfect, 1s as good as one may expect.

In general, mass recursion relations give better mass predic-
tions near B-stability. This is to be expected since they contain
many more parameters. One such set of relations has been determined

by Janecke24 giving a standard deviation of 157 MeV from measured



masses. The Janecke relations appear to work as well as the Seeger
and Howard formula in the neutron-rich mass studies cited above. As
a general rule, extrapolation of these relations into the neutron-

rich region is not advised,44’48’49

and the observed agreement may
be happenstance. However ill-advised, some yields were computed
assuming Janecke's values or, where available, experimental values50
of the ground-state mass. The shape dependence, not given by the

recursion relations, was then taken from the Seeger and Howard

formula,
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APPENDIX B

The Coulomb Energy

The two fission fragments are considered to be uniformly
charged deformed spheres whose charge distributions may be charac-
terized by a set of multipole moments. The fragments are assumed
to be axially symmetric and theilr symmetry axes are assumed to be
colinear. For such a system, the general expression for the
Coulomb energy, taken from Hirschfelder, Curtiss, and Bird o1 ’

reduces to a particularly simple form. Denoting the Coulomb

energy by C,
Q. Q
1
(na+ nb).. n,ony

o !
n .nb. na+ nb+ 1

1 a
"a'p r
where r is the center-of-mass separation between the fragments

and Qn is nth multipole moment of the ith fragment,
i

n
Qni = J pi(¥i) rii Pn(cose) d3ri .

In practice the assumed shapes are given in terms of the parameters

of the Nilsson model, € and €,. The multipoles may be determined

4
numerically by using the expression of Nix 40 for the radius, R,
1 - 3€ + 2eP, (cost ) 1/2
R(B) = Ro/)\ ) H)
1 - §-€P2(coset) + 2€4P4(coset)
where 2
1-=¢€ 1/2
3
coset = .cosb .



Assuming the charge density, p, to be a constant, this expression
may be inserted into the integrand and the integration performed
numerically. A standard Newton-Cotes qﬁadrature rule 23 with
a relative computational error of 10_9 was used to do this. The
volume preserving factor, ), was determined by requiring the mono-
pole moment to be -Ze, where Z is the atomic number and e is the
electron charge. The radius term, Ro’ is given in terms of the
mass number, A, by

Ro = roAl/3 s
with LR taken from the mass formula of Appendix A,
r, = 1.2254 fm,

Since the Nilsson model employed in the mass formula employs
only even-order deformation parameters, only even mutipoles appear
in the charge expansion. The multipoles were evaluated through
order 16 and the higher order terms were assumed to be zero.

Defining a dimensionless multipole moment, dependent only upon

shape parameters,

the expression finally used to evaluate the Coulomb energy is given

by
2 16

10 \d
oo amt Z o (Zor) [Ro2 .
T ij\ ¢ r qilqu

i,3=0
even
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The series expansion of the Coulomb energy is not of such a form
that that an error bound may be made. Examination of the higher
order multipole-multipole interaction terms for some test cases
gives some indication of the magnitudes of the neglected terms.

The interaction terms are proportional to the reciprocal of r

raised to some power. The smallest value of r that occurs in

this calculation corresponds to the case of tangent fragments.,

The largest value of an interaction term involving a l6th-order
multipole was 10_4 times the monopole-~monopole interaction term.
Separating the fragments such that the distance between their tips
was about 2.4 fm. reduced this term to 10—6 times the monopole~-
monopole term. Hence, the first neglected term may be of the

order of 100 eV. Assuming that the series does converge, this gives
some indication of the error possible.

Also of interest for this calculation is that fraction of the
Coulomb energy resulting from the multipole-multipole interactions
other than monopole-monopole. For the most extreme deformation
allowed, this fraction was less than 12% for the case of tangent
fragments and less than 8.5% for fragments tips separated by 2.4 fm.
At larger tip-to-tip distances this fraction, as well as the trunca-
tion error, should decrease.

The value of the nuclear radius constant, s should be noted
here. The value used universally in the calculation is that given

9
by Seeger and Howard . This value was determined in the mass




formula work by allowing it to be a free variable, determined by
least-squares fitting. A more conventional value 30 is given hy
high energy electron scattering experiments,

ro= 1,18 fm.
Since the Coulomb energy scales with this parameter, use of the
smaller value could increase the Coulomb energy by a few percent.
Noting the errors reported in the yield calculations, this error is
of little consequence and would be compensated by an adjustment in

the scission-point separation.
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APPENDIX C

The Neglect of Rotations and Vibratioms

The presence of rotations and vibrations complicates the scission-
point picture. These may simply be ignored or included in the list of
assumptions about the scission-point. However, modes of vibration in
the fissioning nucleus at its saddle-point have been identified which
could give rise to rotations and vibrations in the fragments at scis-
sion.52 It then seems preferable to attempt to estimate the effects of
rotations and vibrations in the hope that they are of little conse-
quence. Such shall be argued here.

Two effects result from the presence of these modes: both consume
energy and both affect the density-of-states expression. The energy in-

volved in rotation is given by

_ J(+1)R%
rot ZIL ’

where J is the total angular momentum of the nucleus, h2 is the square
of Planck's constant over 2w, and I_L is the moment of inertia of the
nucleus about an axis perpendicular to the nuclear symmetry axis. Ap-
proximating the nuclear shape as that of a pure ellipsoid described by
a radius vector, R(0),

R(8) = R [1+oP,(cosp)]
the appropriate value of IL is given by
2
I = (2/5)AmhR (lo+ a/10) ’

where A is the mass number, m = mass unit = 931 MeV/cz, Ro = radius of

a spherical nucleus of mass A, R = roAl/3, and r_ = 1.2254 fm. This is




the so-called '"rigid body" moment of inertia and best characterizes the

rotational behavior of excited nuclei.53’54

The energy of rotation 13
then largest for small masses and deformations. For mass 70,

Erot = 0.03 J(J+1) MeV .

Hence, J must be of the order of 5 or more in order to involve as much
as 1 MeV of energy in rotation. Experimentally, fission product spins

are observed to be of the order 7-10.55’56

However, this is presumed

to result from torques experienced as the deformed fragment accelerates

in the strong Coulomb field of the complimentary fragment. As shown by

Strutinsky,57 the presence of a small deviation of the fragments' symme-
try axes from colinearity can easily account for values of J as high as

20. Hence there is no experimental evidence for high scission-point ro-

tation in binary fission that would be required to consume much energy.

In the presence of a stable deformation of the nucleus, a rotation-

al band may be built upon each single-particle state characterized by a
quantum number, Q, specifying the projection of the total particle an-

gular momentum on the nuclear symmetry axis. The density of states is

1
enhanced by the presence of the rotational states. Huizenga et al. 3

have shown that this enhancement is given to good approximation by gf s

where qf is related to ;L by
02 ) %LT
)
S

T is the nuclear temperature. While qf may itself be large, its varia-

5/3/G1/2

tion among the fission fragments is slow, varying as A » and may
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be ignored as an overall constant, dropping from the yield expression
upon normalization.

The presence of vibrations at the scission-point may also consume
energy. In order to estimate these, simple harmonic motion shall be as-
sumed. If the frequency of oscillation of the ith mode is W, the total

energy involved in vibrations is given by

ho
T = n, hy, = i .
v i i éﬁ&.
T T e” i-1

For simplicity, only quadrupole and hexadecupole vibrators shall be con-
sidered. Also, for simplicity, liquid-drop inertial parameters, DA’

shall be assumed,5

2
DA = (3/4“1).A.mnRo R

A= 2,4

To low order, the quadrupole (A=2) shape may be associated with the

Nilsson quadrupole parameter, €, and the hexadeculpole (A=4) with the

€, parameter. The oscillator strength is again assumed to be given by
liquid-drop arguments58
2
1 2/3 3 A1 e" 2-1/3
€\ "% (A-1) (+2) - T2r 2)H1 ?; Z°A >
where
bsurf = 17 MeV

r, = Coulomb constant = 1.2254 fm

Z, A = nuclear charge and mass

The ground-state oscillator energies may be estimated,

] 1/2




[y

Assuming Z to be given by Uniform Charge Distribution,
Zyed (zo/Ao)A i

where zo and Ao describe the fissioning system, taken here to be 236u.

Then the ground-state oscillator energy is given by

1/2
- AQ-1) (AH2) A-1
huw [157.3 A 9.9-§X1:jf .
Some test cases are given here.

A A h“’)\(MeV)

70 2 4.0

170 2 2.3

70 4 12.6
170 4 8.0

Assuming the temperature, T, to be of the order of 1 MeV, energies of
the order of hundreds of kilovolts might be expected to appear in vibra-
tional modes. This is a small amount of energy relative to that shown
to be responsible for overall trends. It is, however, sufficiently
large to effect small changes, and this result should be kept in mind.
The presence of vibrations also affects the density of states ex-
pression. This problem has been addressed by Moretto12 and shown to in-
troduce an overall multiplicative Tl/z—term to the density expression,
where T is the nuclear temperature. The temperature is slowly varying
across the mass yield spectrum. The main effect is then that of another

overall multiplicative constant which drops out of the yield expression

upon normalization.
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APPENDIX D

The Moretto Density

Moretto 12 and others 13 have proposed a method of computing
nuclear density of states functions numerically from the partition
function assumed to describe the statistical properties of the
nucleus. The partition function, §), 1s derived from a BCS
Hamiltonian by Sano and Yamasaki 11 and is given by

2
Q= -s;(ek -\ =-E) + 2¥2n[1 + exp("BEk)] - % .

where,

Ek = quasi-particle energy = \[(ek— A)Z + A2

e, = energy of the kth single-particle level

A = a Lagrange multiplier, to be identified with the
chemical potential, o, o = BA

B = a Lagrange multiplier, to be identified with the
nuclear temperature, B = 1/T

A = A(,B) = the pairing gap

G = the pairing interaction strength, assumed constant.

In the presence of pairing, A # 0, these quantities are related
by the "Gap Equation",

g-z tanh(BEk/Z)

¢ E

k k

These relations exist separately for the neutrons, N, and the protons,
Z. The density-of-states is formally given as the inverse Laplace
transform of the partition function. For N neutrons at excitation

energy, E

N? the density of states p(EN,N), is given by




2
1 .
D(EN,N) = (m) fdaN dBN eztp{SN) s
where SN is the entropy of the neutron system,

SN = QN - aNN - BNEN

In the real nucleus with both neutrons and protons present,

the two systems are assumed to be in equilibrium such that,

By=8,=8 .
The appropriate expressions for use are
3
7y = (L
o(E,N,Z) = (2'[Ti> fdaN daZ dB exp(S) )
S = § - aNN - azZ + BE |,
E = EN + EZ R

Q

QN + QZ .

The contour integral may be evaluated exactly, as proposed by

Ford 39 » or by the computationally more simple saddle-point approx-
imation, as proposed by Moretto. The saddle-point is defined by

N Z

Through the saddle-point approximation, the Lagrange multipliers,
o and B, take on their definitions of the chemical potential and
reciprocal temperature,

Evaluating the saddle-point equations for the neutrons,

(e, = A
N = Z 1 - ———— tanh(BE, /2) The Number Equation,
K By k
(& =N .
EN = Zk ey 1~ __i-];_ tanh(BEk/Z) The Energy Equation.
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The entropy at the saddle-point may be evaluated using the Number
and Energy equations and the expression given by
E

) k
Sy = 2 zk: 2n[l + exp(-BEk):] + 262 1 + exp (BEk) -

Similar expressions hold for the protons. With these equations

the density of states may be evaluated for an arbitrary nucleus

by the following procedure,

1) The Number and Gap equations are solved simultaneously for the

pairing gap and chemical potential with the assumption of zero

temperature (B = ) for both neutrons and protons. The energy

equations are then evaluated after substituting these values

to obtain the total ground-state energy, Eo’
E0 = EoN + EoZ .

2) The critical temperatures for the proton and neutron systems,

the temperatures at and above which the pairing gaps are identically

zero, are determined by assuming the pairing gaps to be zero and

solving the Number and Gap equations simulataneously for B and A.

These values define the critical temperatures, TN,cr and Tz,cr'

3) For an arbitrary specific temperature, T <Tcr’ the Number and Gap

equations must be solved for both the neutrons and protons to deter-

mine the pairing gaps and chemical potentials. 1If TI>Tcr, only

the Number equation needs to be solved for A. With these values,

the total energy and the entropy may be evaluated as well as the

other functions required to evaluate the density-of-states expression.




With all of the necessary quantities known for a specific
temperature, the density is given in the saddle-point approximation
by

exp(SN + Sz)
3/2 D1/2 s

P(E,N,Z) =
(2m)

where E is the excitation energy, defined as the difference between
the total energy evaluated at this temperature and the ground-state
energy, Eo’ SN and SZ are the entropy expressions for neutrons

and protons, and D is the determinant of the second derivatives of the

partition function, ), evaluated at this temperature and the values

of A and A determined in step #3,

BZQN 3292
N Z
where
2 2
9 QN 9 QN
2
5 - BaN BaNBB
N 2 2 °
] QN 9 QN
! 2
| BBBaN o8

A similar expression holds for the proton term, DZ'
The above expression for the density of states involves states

of all spins and parities. In Appendix E, the decomposition of

this expression into a parity and angular momentum dependent form
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is presented. A quantity of importance for the angular momentum
dependent form is the spin cutoff parameter, d. In the model of

Moretto, this quantity is given by

2 1 2
oy =5 ; m - sech(BE, /2)

where m is the spin projection of the kth single~particle neutron
state. A similar expression holds for the protons. The spin cut-
off parameter for the entire nucleus is then given by

Fadtrad
With this definition, the angular momentum dependent form of
Appendix E may be used with the Moretto expression for the total
density of states.

To evaluate the various infinite sums over single-particle

states, a bit of digression 1s in order. 1In its most general form,

the ground-state gap equation is written

1 <kk|G|k“K”>
A =3 Ek, E, - A

where A, 1is the pairing gap for the k™ level and <kk|G[k7k™> is
the pairing interaction matrix element between nucleon pairs in
levels k and k“. The gap equation is trivially satisfied if Ak =0
for all k. Making the standard assumption that Ak = Ak' for all
k and k”“, an overall A may be removed. It must be remembered, how-
ever, that A = 0 is always a solution to the gap equation. To make
the assumption that the matrix element is constant, with a value, G,

a corresponding assumption must be made as to how the sum should be



terminated. The matrix element goes to zero for values of k and k~
corresponding to states differing in energy by very much. Removing

this term from the sum leaves
yL
k Ek
which diverges. Any prescription for evaluating G then goes hand-
in~hand with a statement as to how the sums should be terminated.
Such prescriptions have been made by Nix 40- and by Nilsson et

60. . The Nix procedure has been used by Seeger and Howard 9.

al.
in the mass formula work, described in Appendix A. This shall be
discussed later.

With the assumptions made with respect to G and A, use of the
Moretto density expression requires that one first determine whether

or not there exists a nonzero solution to the gap equation, which

is now written,

2 1

R
In order to determine whether or not there exists a ground-state
pairing gap, Moretto suggests the following procedure 26 « Ground-
state even-odd mass differences indicate pairing gaps to be given
approximately by,

A = (11+1)/VE Mev ,

where A is the mass number. Hence, a small value of Ao may be

assumed, say 0.2 MeV, and the number equation solved at zero
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temperature to determine the chemical potential, Using éhese
values, the sum of the gap equation may be evaluated and compared
to 2/G. If the sum is greater than 2/G, a larger value of Ao

is needed and the number and gap equations must be solved simul-
taneously. If the sum is less than 2/G, a smaller value of Ao is
needed and Ao = 0 is assumed. Such Ao = (0 cases occur at shell
closures.

The procedure for truncating the sums is most simple for the
case of TTZTcr since there is no gap equation to satisfy. For this
case, the sums may be truncated at a value of k approximately equal
to the maximum number of particles to be treated, higher terms
contributing negligibly.

For T< Tcr’ the procedure is somewhat more complicated.
Nilsson et al. 60 give

G/A = 19.2 + 7.4[(N-2)/A} >
where the plus sign holds for the protons and the minus sign holds
for the neutrons. With this prescription, only terms with k-values
in the range

N/2 -V15N<k< N/2 +VI5N

are allowed in the neutron sums and similarly for the protons. This
prescription is recommended for nuclei of mass 190 and above.
Also recommended are oscillator strengths for the conversion of
the dimensionless energies of the single~particle states into

energy dimensioned values, V,



V= 41/A1/3[1 + 1/3(N-z)/A] MeV -
In this expression, the minus sign applies for the protons and a
plus sign for the neutrons.,
A set of rules for terminating the sums and determining G also
comes with the mass formula of Seeger and Howard 9 . For the pairing

strength, G, the following expression is used,
1

e [GP TG

The quantities g and A are identified in Appendix A as the smooth

2]l

density of single-particle states at the Fermi energy and the the
ground-state pairing gap, respectively. The value of A used

here was taken to be the empirically observed value,

- H]
N 1.y + 10)1/6
'Z - 10.5 MeV
Z 1/6 °

(8z/3 - 50/3)
where the N and Z-subscripts refer to the values used for the
neutrons and protons, It should be noted that these relations are
empirically observed for nuclei along the B~ stability line. Their
use for the neutron-rich fission fragments is a source of potential
error. The n which appears in the G-equation refers to the number
of levels included in the sums, the value of k at which the sums are
terminated, given by

N or Z for N or Z even

N+l or Z+1 for N or Z odd
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The values of n, G, g, and A are given independently for the neutrons
and protons. Also given by Seeger and Howard 9 are oscillator

strengths, different from those of Nilsson et al. 60 s

1/3 MeV vV, = 31.08/1\1/3 Me

V., = 35,37/A 7

N A

One last difference between the Nilsson and Seeger and Howard
prescriptions is the maximum number of levels used for the TE:Tcr
cases. Nilsson et al. recommend that the sums be terminated

at k = 150. Since this has been determined to be adequate for
masses 190 and above, it seems reasonable to scale this value for
the mass region of interest in this work and k = 120 is taken as
the maximum value for the high temperature region.

The original version of the Moretto code for the calculation
of densities was used for heavy masses. As an illustration of the
sensitivity of the computed densities to the two prescriptions for
evaluating G, the sum limits, the maximum number of levels, and the
oscillator strengths, each of these prescriptions was changed, one
at a time, and the change in the various computed quantities noted.
The results are shown in Table 13 for two nuclei, starting with
the Nilsson prescription and ending with that of Seeger and Howard.
These results are presented merely as an illustration since it makes
no sense to assume part of the prescription from one source and the
other part from another source. The point to be made is that while
the density may be quite accurately evaluated by this method, the

results are quite sensitive to errors in the input models. For this



reason, it is important to have an independent check on the model
in the mass region in which it is to be used. For the fission frag-
ments, the Seeger and Howard 2 prescription is taken with the
successful mass formula offered as supporting evidence.

0dd particle numbers present a problem in this theory. In the

absence of pairing, the ground-state number equation becomes,

e, — A
SR SRR

The terms in this equation are

i.e., this is an even particle number theory. To apply the

theory to the case of odd particle numbers, Hulzenga and

Bekhami 13 introduce the so~called '"sliding energy scale'. The
observation is made that the ground-state of an odd particle

system already possesses one quasi-particle (unpaired particle)
relative to the neighboring even particle number systems. This
allows it to reach the same density of states at one quasi-particle
energy, Ek’ less than that of the even system below with one particle
less. The sliding energy scale is applied by computing the density
as prescribed and shifting the energy corresponding to that density
by the energy of the ground-state quasi-particle. This assumption
has been investigated in the vicinity of mass number 60 and found

. s 1
to give good agreement with measured densities 3 .
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At low temperature, the saddle-point approximation used to
evaluate the density fails. This manifests itself as a local mini-
mum in the density at low excitation. This is a problem only at
the lowest excitations and is less significant for odd particle
numbers than for even since the location of the minimum is shifted
off of the scale. The saddle-point approximation has been checked
by comparing its predictions to those of combinatorial calculations
and found to give errors of about 20% at 5 MeV excitation and 1%
at 20 MeV excitation.,

Another peculiarity of the saddle-point approximation is the

discontinuity in the temperature at the critical temperature,

1 %mp _ 3 . 1
T 58 " LS~ @] .

The saddle-point approximation introduces the determinant of

second derivatives of the partition function which is discontinuous
at the critical temperature. The discontinuity is small, typically
a few percent 11 , and is the type of error encountered when the
number of particles is not sufficiently large that the statistical
limit, N >> 2&n(N), 1s achieved.

The formalism presented here allows the evaluation of the
nuclear density-of-states expression to be performed at high
accuracy. However, the number of fission fragments to be treated
is large and, allowing for the possible variation in the nuclear

shapes, the computational task is enormous. Another simplification




is possible which considerably reduces the computational chore
with little loss in accuracy.

As presented, the entire density model may be written in
terms of independent proton and neutron contributions. The only
difference in the computed densities, say, for a fixed number of
neutrons, comes abouf through the oscillator strength, Vn’ and
its Al/3 term. If the step in which the dimensionless energies
of the Nilsson model are converted into energy dimensioned quanti-
ties is bypassed, the thermodynamic functions required to evaluate
the density may be computed once and for all for that particular

particle number and type and the set of Nilsson levels required

as input. (Shape dependencies are implicit in the Nilsson levels.)

The density-of-states expression may then be assembled after a table

look-up of the required values of these thermodynamic functions,

exp[SN(TN) + SZ(TZ)}

3°Q P 1/2
(2")3/2 Nl . p + Z .o
02 |T. 2 %02 |1, ¥
N N Z Z
where
Tz = T/VZ
TN = T/VN

o
i

2
N VN'DN(TN)

o
|

2
z = Vg Dy (1)) y

The quantity, DN(TN) denotes the determinant of the matrix of
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second derivatives of the neutron partition function, QN’ with
respect to the dimensionless reciprocal temperature, BN = l/TN,

and chemical potential, aN, which is dimensionless by definition,

A similar expression describes DZ(TZ). The corresponding excitation
energy is given by

~E (T) ’

E(T) = VﬁEN(TN) + VZ 7 (T,

where EN and EZ are dimensionless if dimensionless Nilsson energies
are used to compute them.

The computational savings may be realized by noting that,
in general, 350 or so fragment pairs occur in a given yield calcu-
lation and that, for each fragment pair, at least ten shape combin-
ations may be considered. This would then require 3500 evaluations
of the density-of-states expression for each yield calculation.
Using the dimensionless procedure described here and noting that
the yield calculation requires about 110 different neutron numbers
and about 55 different proton numbers, the dimensionless evaluation
requires about 6500 evaluations for all of the possible shapes to
be considered. After this is done, no further evaluations are
necessary. Noting that about 60 good yield evaluations were per-
formed, not counting those that failed for various reasons, the
savings was considerable.

The thermodynamic functions needed in the evaluation of the

density of states were computed dimensionlessly on a dimensionless




temperature grid. The resulting functions are smooth in the
dimensionless temperature and cubic splines were used to interpo-
late their values at the temperatures, TN and TZ. The actual

grid used spanned the range

0.028 < TN < .463 0.028 < TZ < .463

in steps of 0.015. Comparison of evaluations of the demnsity of
states computed with the dimensionless scheme and the exact method
showed very good agreement, typically to four significant figures,
with the worst error occurring at low temperatures. For excitation
energies greater than 1.0 MeV, the worst error observed was less
than 1%. Also needed in the yield evaluation via the saddle-point
approximation is the derivative, dE/dT. Spline interpolation of
this quantity also gave better than 1% agreement with exact evalua-
tion.

Splines were generated and saved for Nilsson levels corre-
sponding to the 39 most prolate shapes considered by Seeger and
Howard ? » shown in Figure 1. Only values of €20 were used and,

for each €, only the three smallest values of €, were used.

4
Particle numbers in the range

20< 2 < 80 36 £ N <120
were assumed. This defines the range of particle numbers and

space of allowed shapes assumed to describe the scission~-point

fragments in the yield calculations performed.
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APPENDIX E

The Analytical Density of States Expression

The nuclear density-of~states expression of Appendix D may be
evaluated analytically if it is assumed that the single-particle
states of the constituent nucleons are uniformly spaced in energy.
The resulting expression, first proposed by Bethe 16 , has been
applied to the problem of predicting values of the observed neutron
resonance spacings by Gilbert and Cameron 17 . The expression is
derived in References 17 and 58, The treatment given here is a
summary of the treatment given in Reference 17.

The assumption of equidistant spacing of the single-particle

states gives the single-particle state density for neutrons, gy

where N is the number of neutrons and e

e

A similar expression holds for the protons. This assumption allows

F is the Fermi energy,

defined by

the entropy and derivatives of the partition function to be directly

evaluated, giving

exp(ﬂzg/38)

(2n)2[n2g4<m2>/(1236)]1/2 ’

P(E,M)

where Bis the reciprocal temperature. The M dependence appears in

B as will be shown below. The presence of the terms M and <m2>



results from the inclusion of the z-components of the nuclear spin,
M, and the single-particle states, m, into the partition function,
The nuclear spin is accompanied by a corresponding chemical potential,
Oyyps in the partition function and the single-particle m~values sum
to M. Also assumed in this expression is the equality of the neutron

and proton single-particle state densities,

=1
gz zg .

N

The density parameter, a, is defined as

T

In the derivation, the expression for the excitation energy, U,
relative to the energy of the fully degenerate ground-state, which

introduces the M-dependence, is given by

2
U = M + -2 .

2<m2>g g

This expression may be solved for B giving

1 U M2
s ¥alt ")
2<m”>Ug

Defining the spin cutoff parameter, 02, as

o‘2 = g<m2>/8 ~ g<m2>vg- ,

L}

the density-of-states may be written

. 2 2
1 exp(2 vVal - M7/207)
p(U,M) = .
12vV7 al/4U5/40
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Gilbert and Cameron give an expression for 02,

o = 0.0888 /au a2/3

In using this formula, the energy, U, has been defined as
the excitation energy, the energy of the system relative to that
of the fully degenerate ground-state. This would be the ordinary
ground-state of the nucleus were it not for the presence of the
residual pairing interaction, not present in the highly excited
nucleus this formula is supposed to describe. If Xo denotes the
energy of the ground-state in the absence of pairing and Eo denotes
the energy of the ground-state in the presence of pairing, the
two energies are related by.

Xo— Eo =P s
where P is the pairing interaction energy. If E is the energy of
the nucleus, the excitation energy to be used in the formula, U, is
given by

U=E- Xo =E ~ EO - P .

The quantity, E - Eo’ is the usual definition of the excitation
energy, E*. Hence, in using the formula with the standard definition
of the excitation energy, U = E* - P is the energy to use,

In this form, the density—~of-states expression is not very
useful, the appearance of the unobservable spin projection, M,
appearing explicitly. One may, however, extract from this expression
the angular momentum dependent density-of-states expression which

may be integrated over all angular momenta to give the total density-




of~states expression. This expression is most easily obtained by

integrating over M to get the total density-of-states, p(E),

p(E) =f P(E,M) dM = f_TzT exxifz ;’elﬁz) ’
—o L/
so that
2
o(E,m) = —L(E) exp<"M2) '
ov2m 20

The angular momentum dependent form must be extracted, however,
since it is necessary for the modeling of the density parameter,
described in Appendix F.

For a given value of M, the M-dependent density contains states
of all angular momenta, J, with J > M. Denoting the contributing
nuclear states by [J,M> » consider the densities, p(U,M=J) and
p(U,M=J+1). Terms which appear in p(U,M=J) are

|3,3>, |3+1,3>, |J+2,0>,....
and in p(U,M=J+1),

[J+L, 41>, |J42,341>, |J+3,J+1>,....

For every state, b+n,M>, there is a state, [J+n,M—1>, where n=1,2 and
so on. The difference, p(U,M=J) - p(U,M=J+1) contains only the

terms, |J,M=J>. Therefore, the density of states of |J,M=J> is

2 2
o(E,J,M=J) = _Bigl.{exp :ﬂi - exp :Sii%l_ }
\’2 2 20 20
mO

2
~ _P(E) {<2J+%>exp (—(J+l£2) )} i
2 W\ 20 20

270

Each of these states is (2J+1)-fold degenerate. This expression is

used in the modeling of the density parameter in Appendix F.
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No mention has been made so far of the parity of the various
states in these results. The density-of-states expression derived
includes states of all parity. At high excitation energy, the
number of states of even and odd parity, denoted by T = even and
T = odd, are assumed to be equal. Hence, the density of states
of a given parity is related to the above expressions by intro-
ducing an overall factor of 1/2. For example,

o(E,T=even) = 0(E,T=odd) = =0 (E) -

This point shall also be important in the modeling of Appendix F.

Gilbert and Cameron sought an expression for the density
of states for use over the entire range of excitation energies to
be used in calculations of the capture processes. The expression
derived diverges at low energies. They proposed the inclusion of

the empirically observed behavior of the density at low excitation,

1 E- Eo
PL®) =gexe\—7—)

where the L~subscript denotes low excitation energy and E0 and T,
the temperature, are constants. This form is then coupled to the
higher excitation form, derived above, in such a way that the den-
sity may be described continuously as a function of energy. To do
this, they defined a crossover energy, Ex’ at which the two formulas

join smoothly,

pL(E) = py(E) pi(Ex) = pﬁ(Ex) .
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The H-subscript denotes the high excitation form based upon the
equidistant spacing assumption and the prime (*) denotes differ-~
entiation with respect to energy. These two conditions define the

low excitation form constants, T and Eo’

1=‘[§.__5
T U 4U ?

E, = E =T faf[To (E)] -

In defining the temperature, T, here, the total density-of-states
expression has been used. With these forms and a data set describing
nuclei at both high and low excitation energies, a model for the
density parameter, a, was determined and an expression for the cross-
over energy, Ex’ was given. The crossover energy was found to occur
at
E .= 2.5+ 150/A+7

where P is the pairing correction energy and all quantities are
given in MeV, This formula was determined by finding a value of
Ex for each nucleus that best fit both the low and high excitation
energy data., The formula reproduced the EX values thus determined
to about *200 keV.

One of the objectives of the work of Gilbert and Cameron 17
was to model the density parameter, a, to include the observed
effect of nuclear shells upon the density. They found that the
predicted and measured values were in better agreement if the density
parameter was assumed to be of the form,

a/A = Py + P,S ,
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where S is the shell correction to the nuclear mass and p1 and P,
are constants to be determined. This model is further discussed

in Appendix F. One may see, however, that in order to use this
expression for the density, a set of single-particle energies,

S and P, are needed. Before the introduction of the Strutinsky
procedure 38 , the method for determining these energies was ill-
defined. However, with two empirically adjustable parameters for
each nucleus, a great degree of flexibility exists to improve the
agreement between predicted and measured values of the density while
maintaining the simplicity of the equidistant model.

A first order correction may be made to the assumption of
equidistant spacing of the single-particle levels without losing
the analytical form for the density expression. This has been
proposed for use in the problem of predicting observed resonance
spacings by Kataria. et al. 21 . In this treatment, the single-
particle spectrum is written as a Fourier series,

g(e) = ;gmcosme -6
where € is the energy of the single-particle states, w is the
fundamental frequency qf oscillation of the spectrum, and ¢m is a
phase term. Dropping all but the m=0 and m=1 terms from the expan-
sion, they give expressions for the entropy, S, and the excitation,

U, by

S = 2aT + As 1r2w2T2 cosh (TwT) _ TWT
a T 2 sinh (TWT) ’
sinh” (TWT)
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U = aT2 + As T W T ;osh(ﬂwT) -1 ,
sinh” (TWT)

the density parameter is again denoted by a and T is the temperature,
determined by solving the excitation energy equation. The energy,

U, again differs from the nuclear excitation energy by the pairing
energy, P, and, to avoid confusion, the shell correction term has
been written as AS. These expression are to be used with the high
excitation energy form of the analytical density expression with

S being the argument of the exponential. To determine the model
parameters by fitting, the J-dependent form must be used. The spin

cutoff parameter used in the model is given by

..
02 _ rigid <_§> ,

Trigid =
where M is the nuclear mass, R is the radius of a spherical nucleus

of that mass, h is Planck's constant, and Ir' . , denotes the rigid-

igid

body moment of inertia. Note that these expressions asymptotically

assume the Gilbert and Cameron 17 values,

T ﬁ‘V-S S = 2v/al s

1/3

w is assumed to behave as woA with W in the range 0.15 to 0.2 .

The density parameter is assumed to be of the form,

alA = y(i. - BBS/A1/3)

with Y and B constants to be determined and Bs being the ratio

of the surface area of the nucleus relative to a spherical nucleus
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of a spherical nucleus of the same volume. Note that, through the
Bs term, this model introduces deformation in a natural way, a fea-
ture not present in the Gilbert and Cameron 17 model., This is an
important point in this work since, in general, the fission fragments
are highly deformed at the scission-point and the single-particle
correction energies are also shape dependent.

Each of the models presented here shall be examined in Appendix

F and their parameters determined and discussed.




" APPENDIX F

The Density Parameter

The observed neutron resonance spacing, <D>, provides an

experimental measure of the level density,

In the mass range 70 to 165, 99 values of < D > are available18

from s-wave neutron capture measurements with a corresponding
excitation energy of the compound nucleus formed of one neutron

separation energy. With this data, one may assume a model for

the density parameter, a, to be used in the analytical density-
of-states model of Appendix E, and determine its parameters by
fitting.

Single~-particle shell and pairing energies, S and P, appear
in the analytical density models and must be known before fitting
can begin. 1In principle, these are the Strutinsky correction terms
described in Appendix A. Since the analytical density expression
predates the Strutinsky procedure, various empirical sets of these
energies have evolved and are generally used with this model.

The first set of single-particle energies was determined by

(61) and was used by Gilbert and Cameron17 in

Cameron and Elkin
their model. The procedure for determining these is described
in Appendix G. In determining their model for the density para-

meter, Gilbert and Cameron found it necessary to devide their

data into two sets, one corresponding to nuclei with spherical
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ground—-state shapes and one corresponding to nuclei with deformed
ground-state shapes. They chose a model with a linear dependence
of the density parameter upon the shall correction energy. The

model was otherwise assumed to be proportional to the mass number,

A. Fitting then gave,

a/A = 0.00917S + 0,142 undeformed

a/A = 0.00917S + 0.120 deformed

Later, Cameron and Brancazio20 concluded that the required
separation into deformed and undeformed groups was the result
of an improper determination of the single-particle terms. They
redetermined the model with the result,

a/A = 0.143 + 0.0091 (S - 0.23D)
where S was the old shell term and D is the difference in the
number of neutrons or protons in the nucleus in question from
that of the nearest spherical closed shell nucleus.

Cook et al.18 took the Gilbert and Cameron model and
empirically adjusted the S and P values to improve the agreement
between predicted and measured values of <D>. The P values
were taken by Kataria et al.21 in the determination of their
model, also described in Appendix E. Their shell terms were,
however, determined independently by using the liquid-drop part
of the Seeger and Howard mass formula9 and experimental masses50
to give

As - mexp T Mg T PCook




is the liquid-drop portion of the Seeger and Howard9

is the paring term as given by Cook et al.18,

Here, o4

mass formula, PCook

mexp is the experimentally measured massso, and AS is the shell
correction energy,

Fitting was performed to detemine models for the density
parameter using several of these published data sets. For the
disussion that is to follow, the two data sets appearing in
Tables 14 and 15 are used., The data in Table 14 is determined
from the Kataria prescription and the data in Table 15 is taken
from the mass formula work of Appendix'A. These two data sets
are chosen to compare the results achieved with the empirically
determined energies with those given by the Strutinsky prescrip-
tion of Appendix A, The conclusions are not changed by the use
of any of the other data sets mentioned.

In the fitting procedure, several models are to be consi-
dered. Needed is some criterion for determining the preference

for one model over another. The quality of fit is indicated by

the sum of squares of the residual errors, SS,
> 9 2
SS = Z [£; -£,®]
data, 1

where £, is the ith

i
th >
i~ datum, dependent upon model parameters, p.

As the number of parameters in the model increases, SS de-

creases, in general, The criterion for determining the signifi-

datum and fci(g) is the calculated value of the
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cance of an additional parameter is provided by analysis of var-
iance techniques62. This is done by testing simple hypotheses.
Assume that a p-parameter model has been determined from n data
points giving a sum of squares of SS1. If one wishes to determine
the significance of q of these parameters, the q parameters are

set to zero and the model redetermined for the remaining parameters,
giving a sum of squares, SS2. 1In general, SS2 is greater than SSl.
One then forms the F-statistic,

$82 - §s1
F = q
ss1
n-p

the ratio of the variance per gegree of freedom attributable to
the q hypotheses and the variance per degree of freedom of the
residual fit. This ratio is distributed as Fq,n—p’ the F-statis—~
tic with q and n-p degrees of freedom. If the hypotheses are
valid, the q parameters will add little to the quality of fit,
8S2, and a low value of F will be obtained. If the hypotheses
are not valid, SS2 will increase such that a larger value of F

is obtained. For a given value of F, the power of the test is

given by 0o,
[+ -]
a = F x) d
./;- q’n-p( ) x

The power of the test is related to the conifidence level for
rejection by

confidence =1 - o




In general, 95% is taken as the confidence level for solid rejection
of a hypothesis, or o = 0.05. The hypothesis that q of the para-

meters are insignificant(zero) is then rejected if

b4

>F
q,n=p,0
where values of F are taken from standard tables62. The
q,0~-p,0
determination of a model for the density parameter, a, of the
analytical density model may now begin.

In s-wave neutron capture by a nucleus, the parity, T, of the
target nucleus is presumed to be a good quantum number, With a
target nucleus of spin, Jo, either of two states may be formed
in the compound nucleus, Jo + 1/2, with only the J = 1/2

state being formed for a spinless target. The predicted value

of the observed neutron resonance spacing, <D> , is then given by

s = P(ELD)

u

p(Ex,Jo+1/2,1r) + p(Ex,Jo—l/Z,‘n’)

% [O(EX,JO+1/2) + p(Ex,Jo-l/Z)] .

As a starting point, consider the model originally proposed

by Bethel6,

where A is the mass number of the compound nucleus. Using a stan-

dard Marquardt fitting algorithm63 and data from Table 15,

Py = W27712 8S = 4,135 x 108 0
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Gilbert and Cameron suggested the inclusion of a shell energy

correction term, S,17

a = plA(l - p7S) .

Refitting yields

p, = .25317 p, = 11713 S = 3.151 x 10°

The hypothesis, P, = 0, may now be tested to determine the sig-

nificance of Pye Forming the F-statistic,

4.135 x 10° - 3.151 x 10°

F = L - = 30.3
3.151 x 10

99-2

since there are 99 data points in Table 15. Consulting a table

of values of F 62 gives F

2,97,.05 3.95. The hypothesis,

2,97,.05
Py = 0, may then be rejected at greater than 95% confidence.

Ignatyuk et al..19 pointed out that the shell effects
present in the ground-state tend to wash out with incresing
excitation energy. To include this effect, they proposed a
model of the form,

a= 3[ 1 - F(U)«S/U] F(U) =1 - exp(—p7U) ,
where U is the excitation energy reduced by the pairing energy
and 4 is a polynomial is A. Assuming this model with a= plA,
Py = .27012 Py = .16279 SS = 3.099 x 108

a slight improvement in the quality of fit over that given with

the Gilbert and Cameron model. The two models with the shell term

are not related by a simple hypothesis and an F-statistic can not




be formed. Model selection becomes subjective at this point.
The wash-out feature of the Ignatyuk model19 is desireable and
is therefore kept.

Continuing with the Ignatyuk form for the shell term
dependence, the following general form for 2 is tested,

8 = p)A + pyA+ p a2+ p At pa[1 - (5] + pa [l - (9N,
where N and Z are the number of neutrons and protons in the
compound nucleus. Note that the terms Py and Pg allow pairing
effects in the a-parameter. Of particular interest here is the
question of possible error in the pairing energy term, P. If
such errors are present, the parameters, Pe and P should com-
pensate somewhat. The extent to which these parameters are
significant gives an indication of even-odd behavior in the
density parameter from this, or any other, source.

The parameters of this proposed model are determined by
fitting and the significance determined by comparison of the
quality of fit to other models connected by simple hypotheses
through a F-test. The results of the fitting and testing are

tabulated here. The quantity, F denotes the values of

crit?

Fq,n—p,.OS taken from Reference 62.
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F-test

relative -8
Case P; allowed to SS x 10 n-p q F Fcrit
0 1,7 —_— 3.099 reference case —
1 1,2,7 case 0 1,150 9% 1 163.5 3.95
2 1,2,5,6,7 case 1 1.146 94 2 .16 3.10
3 1,2,3,7 case 1 1.020 95 1 12.1  3.95
4 1,2,3,4,7 case 3 1.011 94 1 .84  3.95
5 1,2,3,5,6,7 case 3 1.027 93 2 <0

The parameters of case 3 give the best fit without introduction of
insignificant parameters. Of note here is the apparent lack of
sensitivity of the model to the pairing terms, Ps and Pg-

In the modeling of the density expression of Kataria et a1.21,
the same procedure is used. A different quality of fit indicator
is suggested also, differing in a rather fundamental way from
that used previously. Since the observed values of the resonance
spacings vary over some three orders of magnitude, a more pleasing
overall fit may be achieved by fitting logarithms of the predicted
and measured values. This gives, as a measure of the quality of
fit, the sum of the squares of logarithms of the ratio of computed
and measured values. The model error, by this assumption, is given
in terms of an overall multiplicative factor rather than and addi-
tive factor. The coefficient, 8, in the Kataria model can not be
determined very well since there is such little variation in the
values of Bs in Table 15. Theoretically, B=1 is expectele. This
is a hypothesis which may be tested. In each of the models postu-

lated below, fitting was performed for both of the cases, B = 0 and




B = 1. The F-test may then be applied to the hypothesis, B= 0.

To compare the model of Giibert and Cameron17 to that of
KatariaZl, only subjective choices may be made since the models
are not connected by simple hypotheses. Recall, however, that
the Kataria model is expected to be an improvement over the

Gilbert and Cameron model, For the purpose of comparison, each

of the models is tested with each of the two data sets, Tables 14

and 15, and for the two quality-of-fit indicators, denoted here by

¢ss and ¢2n’

¢ss ;Z:'(Dmeasured - Dcaiculated)
ata

D 2
E : calculated
¢2,n [Q,n(D ) :I
data measured

2

The results of the the eight possible combinations are summarized in

Table 16.

Regarding the B parameter of the Kataria model, three of the

four models indicated no preference for this parameter, i.e., the

hypothesis, B = 0, could not be rejected with confidence. The

remaining test indicated a clear loss in quality of fit with 8 = 1.

The W, parameter of the Kataria model is to be in the range of

0.15 to 0.2. Three of the four tests then give undesirably large

values of this parameter. Overall, the best results appear to

come from the empirically adjusted parameters of Table 14, Using
¢2n as the quality of fit indicator gives a larger number of computed

values within an overall multiplicative factor of two of the mea-
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sured values in the range,

2> Dcalculated

s 1

D 2
measured

This may reflect the adjustment of the S and P terms performed

by Cook et al.18. Worthy of note here are the predictions of

the numerical density expression(Appendix D) made by Huizenga

et a1.14’15

. With no adjustable parameters and no explicit
shell and pairing energies, the numerical model achieves
predictions of comparable quality for both spherical and
deformed nuclei,
The quantity denoted g_l in Table 16 is also noteworthy.

It represents the value of the polynomial part of the a-model
devided by the mass number, A, and averaged over the data set,
i.e., excluding shell effects, aﬁ:A/;—l. The indication is
that

452'15 7.
Computing densities with the numerical model of Appendix D
and solving for the density parameter of the analytical model
gives

8< a3 l< 12
with an average of 9.5. It has been argued that 3_1 = 20 should
be used with the analytical model in computing fission product

yieldsl. The basis for this statement is unknown and the indi-

cation here is that it is wrong.
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The pairing terms, Ps and Pgs appear to be of significance
with both data sets. No conclusion can then be drawn regarding
the presence of a error introduced by using the entire pairing
energy in Table 15 rather than a correction-type pairing term.

In summary, the comparison of computed and measured valués
of <D> does not indicate the periodic level scheme to be a great
improvement over the equidistant spacing scheme. Comparison of
the predictions of the analytical model to those of the numerical
model over a wide range of excitation energies gives some indica-
tion of the validity of the assumed eZJEﬁ dependence and the
adjustment necessary to obtain agreement not only with the <D>
measurements, but also with values of the density at higher
excitation energies than those at which the measurement of <D>
was made. Tests on the B-parameter of the model of Kataria et
al.21 were inconclusive leaving open the question of the effect
of deformation on the density parameter. If one must use the
analytical model for the prediction of <D> , the best results are

obtained using the empirically adjusted P values of Cook et al.

and the shell energy prescription of Kataria et al., as in Table 14.

It should be noted that these are determined from measurements
on nuclel lying near the line of B-stability. The question of
extrapolating this model into the neutron-rich region remains

open. Again, the numerical density model of Appendix D avoids

all of these questions.
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APPENDIX G

The Single-Particle Shell and Pairing Energies

In order to improve the quality of mass formulas, Cameron and
Elkin61 attempted to extract single-particle energies, S, the nuclear
correction term, and P, the pairing energy, from measured masses. To
do this they define a correction term for each mass, C(N,2),

C(N,Z) = mexp(N,Z) - mld(N’Z) s

where mexp(N,Z) is a measured mass, and m_ 2, is the mass predicted by a

1d
liquid-drop mass formula. The object is to decompose C(N,Z) into indi-
vidual contributions from shell and pairing effects for neutrons and
protons independently,

C(N,z) = CQN) + C(2) = S(N) + PQN) + S(2) + P(2) .
The general procedure for the determination of the S and P values is to
minimize the sum,

:E:: [?exp(N,Z) - m (N,2) - SQ) - P(W) - 5(2) - P(N)] 2

data
However, for each "known," mexp’ four "unknowns" are introduced and
there are more 'unknowns" than equations. To circumvent this problem
and simplify the algebra, difference equations are formed. Letting

§(C)i and GZC(i) be defined as
§C(i) = c(d) ~ Cc(i-1)
82c(i) = C(i) - 2C(i-1) + C(i-2)

where i may be N or Z, the following difference equations, with values

of h and k, may be formed,




= (W2)8%c(i) = (1/2)[8C(1)+6C(1-2)] - 8C(1-1)

h =

= (1/2)8%s(1) + (1/2)[6P(4)+6P(1-2)] - SP(1-1)

= (1/2)6%5(1) + (1/2)[P(3)-P(i-3)] - (3/2) [P(1-1)-P(i-2)]
Kk = =(1/2)8%C(1+1)

—(1/2)628(i+1) -(1/2){P(i+1)-P(i-2)] + (3/2)[P(1)-P(i-1)]

To guarantee a unique solution, the assumptions are made that for odd
pafticle numbers, i, P(i) = 0, and that the shell terms vary smoothly
between closed shells such that 528(1) = 0. These assumptions reduce
the number of unknowns and simplify the set of difference equations to
be solved. The P(i) are then given, for even i, by solving the follow-

ing set of equations,
= - 3 p(1-1) - X pri-
h=- 5 P(1-1) > P(1i-3)
ko= - 3 P(I+) - 3 p(1-1)

The S(i) are then given, for even i, by

S(1) = c(1) - P(1) .

For odd 1,
P(d) =0
S(1) = c(1) .

By this procedure, Cameron and Elkin61 determined thelr set of shell
and pairing correction energies.
Cook et al.18 later addressed the problem of shell and pairing cor-

rections in order to improve the agreement between the measured and
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predicted values of neutron resonance spacings. They empirically ad-

justed the Cameron and Elkin values as necessary to improve the agree-

ment. In their work, the values S and P were constrained to sum to the
constant determined by Cameron and Elkin,

[SC) + B(1)] g = [S() + P(D)] - o) .

Cameron~Elkin
The Cook data set thus determined appears to be the most widely used
with the analytical density expression, the improved fit offered as
justification for the adjustment.

This method of determining single-particle correction energles pre-
dates the Strutinsky procedure38 and is still in widespread use. The
Strutinsky procedure, as described by Nix,40 predicts S and P values
with the same physical significance. In Appendix A, the mass formula
of Seeger and Howard9 is discussed. In it the shell correction energy
is computed and may be used with the analytical density expression. The
pairing energy is not a correction, in the Strutinsky sense, but repre-
sents the total energy attributed to the pairing interaction, i.e., it
includes the smooth Strutinsky pairing term also., As such, it may not
be suitable for use in the analytical density expression. To allow for
this error, the density parameter model of Appendix F was allowed to ex-

hibit even-odd fluctuations.



APPENDIX H

The Extraction of Shape Parameters

The fragment shapes are given in terms of the Nilsson para-

meters, £ and 84, by Nix 40
R 1——1—8 +2—€P (cosf ) 1/2
o) 3 3 2 t
Re(e) = 3 5 s
e{l1- §€P2(coset) + 2 €4P4(cos6t)
where
1~ %e 1/2
cos(et) = cos(®) ,

1 +%€ - Ecosz(e)

where )\E: is a volume preserving factor. A more transparent
expression is givep by expanding the nuclear radius in Legendre
Polynomials,

R,(8) = R /A [1+a,P,(cos®) + P, (cos®)] .
The term, >\a, is also a volume preserving factor. The cqefficients,
oci, may be extracted from the Nix expression by evaluating the

integrals,

5 AOL 1
o, = 5.-};1‘1 Re(e) P2(cose) d(cosb)

A 1
f: /:1 R_(9) P, (cosB) d(cosb) .

Q
~
It
N[

Seeger and Howard 9 give approximate values of these coefficients,

2,5 2,2 50 2
G, =38 +tg3e Ftofg t 37 €,
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e 12 2 50 L 243 2

% 355 T 231°5%4 T1001%4

All yield calculations were performed using the Nix expression to
give the nuclear center-—to~tip distances, needed to evaluate the
Coulomb energy. For illustration, a's computed by the above
integrals appear in Table 1. Other terms appearing there for
comparison are AA, the exact center-to~tip distance, R€(6=O),
and AAP, the center—to~tip distance given by the two term

Legendre expansion, Ra(6=0). Both are given in terms of Ro'

The term, AAP, is the volume preserving factor, Xa.




APPENDIX I

The Energy Available for Prompt Neutron Emission

The prompt neutrons are assumed to be emitted from the fis-
sion fragments after scission. The amount of energy in internal
excitation determines the probability of neutron emission. At
scission, the fragments are excited by an energy, E, and have
an amount of energy, D, involved in shape deformation. As the
shape relaxes to that of the ground-state, the deformation energy
is fed into internal degrees of freedom giving the energy avail-
able for prompt neutron emission, En’ by

EL En.S E+D
The rate at which the deformation energy is converted into internal
excitation is then important., If the time is long relative to the
time required for the emission of a neutron, the neutrons will
appear to come from a nucleus of excitation less than E + D. If
the relaxation time is short, the neutrons will appear to come from
a more highly excited nucleus. A estimation of the relevant time
is presented and discussed here.

The nucleus is treated as a viscous vibrator with inertial
parameter, M, spring constant, K, and dissipation coefficient, N.
Assuming the shape to be described by a single deformation coordi-
nate, 0, the Lagrangian describing the motion is,

L=T-V= (/2M& ~ (1/2)Ko? ,
and the Rayleigh dissipation function is

(1/2)n8>
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The equation of motion is
Md + n& + Ka = 0. .
Assuming the intitial conditions, a(0) = o and &(0) = 0., the

solution is

a(t) = a_exp(~yt) [cos(wt) +(~$—)sin(wt)] ,
where
Y = n/2M w2=w§—Y w§=K/M .

Davies, Nix, and Sierk10 give, for ellipsoidal-shaped liquid-drops,
_ 3,2 w = L 3
n = 4T(R_/c)u M=z[1+ R /)" I M
where
Ro = relaxed nuclear radius = roAl/3
¢ = semi-major axis length
M = rest mass = An
o n
U=3x 1010 Poise
m = one mass unit = 931 MeV/(speed of light)2
1 Poise = lO_33 MeV-sec/fm3
A = mass number .
The value of r, is taken from the mass formula work of Appendix A,
r = 1.2254 fm, .
o}
Estimates of the damping time may then be made.
From Table 1, it may be seen that values of ¢ range from
1.0 to 1.6 times Ro' For the heaviest nuclel of interest here,
A=150, v is approximately 2.0 x lO21 sec_l. This gives a charac~-

teristic damping time of 5.0 x 10_22 sec. Vandenbosch and Huizenga32

report a characteristic time for the emission of neutrons from the




fragments of about 10_20 sec. Hence, it appears that the shape may
be relaxed before a neutron is emitted. The implication for this
work 1s that all of the deformation energy should be included as
excitation energy of the nucleus from which the first neutron is
emitted.

A related quantity in this regard, leading to the opposite
conclusion, is the kinetic energy of the prompt neutrons as given
in the yield calculation. According to Vandenbosch and Huizenga32,
the average laboratory kinetic energy of the neutrons is about
2 MeV., Of this, approximately 2/3 MeV is the result of the center-
of-mass to laboratory transformation. In the yield calculation,
the center-of-mass neutron kinetic energy was recorded. For

2

35U(n f), the value is about 1.5 MeV, about 0.2 MeV higher

th?
than that indicated by Vandenbosch and Huizenga. An estimate of
the error indicated in the fragment excitation energy may be made.
The neutron kinetic energy in the center-of-mass of the fragment,
Tn’ is related to the temperature of the nucleus, T, by

T =2T .

n
The nuclear temperature is related to the excitation energy, Ex’

approximately, by

T « vE .

X

1 Tn
dTn = s\ dEx
X
2

For Ex = 12 MeV, an average computed for 35U(nth,f),

Then,
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and Tn = 1,5 MeV, dTn ~ 0.2 MeV implies that dEx = 3,2 MeV,

a value typical of the deformation energy of the fragments in

the vicinity of the mass peaks. The inclusion of the deformation
energy in the calculation of the emission of the first neutron
may then be in error., This point should be kept in mind in using
the computed fission product mass-chain yields. As indicated

in Appendix J, the problem of prompt neutron emission is an area

for potentially great improvement in this model.




APPENDIX J

Prompt Neutrons

Two methods are offered to estimate the number of prompt
neutrons emitted from the highly excited fission fragments and
to relate the computed fission fragment yields to the measured
fission product yields. The spectrum of neutrons emitted from
an excited nucleus is assumed to be given by a simple evaporation

model,

P(k) =(l%>exp(—k/T)
T

where P(k) is the probability of emitting a neutron of kinetic
energy, k, from a nucleus excited by an energy, E, to a temper—
ature, T. This particular probability distribution gives:dn
average value of the kinetic energy of 2T . 1In emitting a neutron,

the nucleus cools by an energy of S, + 2T, where S, is the neu-

1 1

tron separation energy of the emitting nucleus. The simplest
assumption, valid at high excitation energies, is that the
nucleus will emit a neutron of kinetic energy, 2T, if it is
energetically possible, i.e., if E 2 S1

may be repeated for the product nucleus until emission of further

+ 2T, The procedure

neutrons is energetically impossible. The remaining energy may
be assumed to appear as prompt gamma-ray energy. This method is

called the 2T-model in the text.
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In the next treatment, it is noted that the spectrum has a
finite upper limit, k = E - Sl. If 82 is the neutron separation
energy of the product nucleus, emission of a neutron of kinetic

energy, k> E - S, = 82, will result in a product nucleus too

1
cool to emit another neutron. Any neutron emitted with energy
less than this results in a product nucleus with sufficient excit-
ation energy to emit another neutron. The probability of terminating
the neutron emission sequence with the emission of one more neutron,
Pstop’ is then given by
E-S
Pstop = CJ/;_S is (f%) exp (-k/T) dk .
172

The probability of continuing the sequence, Pg;, is given by

Pgo =1- Pstop *
C is the normalization constant given by integrating the spectrum
to its upper limit, E - Sl.

For each case, an average neutron kinetic energy may be
computed and recorded. This is used to give the average excitation
of the product nucleus and the average neutron kinetic energy for
the neutrons emitted from that fragment, necessary to compute
vp. Once neutron emission is no longer possible, determined
by P o< 10-3, the remaining energy is assumed to appear as prompt

g

gamma-ray energy. This treatment is called the Simple Cascade

Model in the text.

The treatments suggested here for computation of the
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prompt neutron number and kinetic energy i1s not meant as a defini-
tive answer to the problem, but is offered as an estimate of the
relationship between fission fragment and fission product yields,
A more realistic treatment must properly address the problems of
gamma decay competition with neutron emission in the later stages
of decay and the rate at which deformation energy at the scission-
point 1s dissipated, producing internal excitation energy which
may lead to prompt neutron emission, Both of these problems

are left open for further improvement. A careful treatment

should improve the estimates of both Vp and the neutron kinetic

energy.
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EP EP4 ALAMP
-.35 -.08 1.011
-.30 -.08 1.009
-.25 -.08 1.006
-.20 -.08 1.004
-.15 -.08 1.003
-.10 -.08 1.002
-.05 -.08 1.001
0.00 -.08 1.001

.05 -.08 1.001

.10 -.08 1.002

.15 -.08 1.003

.20 -.08 1.005

.25 -.08 1.008

.30 -.07 1.011

.35 -.06 1.014

.40 -.05 1.018

.45 -.04 1.023

.50 -.03 1.029

.55 -.02 1.035

.60 -.01 1.042
-.35 -.04 1.010
-.30 -.04 1.008
-.25 -.04 1.006
-.20 -.04 1.004
-.15 -.04 1.002
-.10 -.04 1.001
-.05 -.04 1.000
0.00 -.04 1.000

.05 -.04 1.000

.10 -.04 1.001

.15 -.04 1.002

.20 -.04 1.004

.25 -.04 1.007

ALPHA2?

L2211
.1903
.1592
.1278
.9599E-01
.6385E-01
.3135E-01
.1532E-02
.3481E-01
.6849E-01
.1026
.1371
.1721
.2073
.2431
.2795
.3166
.3543
.3928
4320
.2229
.1921
.1609
.1293
.9744E-01
.6521E-01
.3261E-01
.3634E-03
.3373E-01
.6751E-01
.1017
.1363
L1714

ALPHA4

.1122
.1037
.9639E-01
.9051E-01
.8606E-01
.8309E-01
.8167E-01
.8185E-01
.8370E-01
.8729E-01
.9269E-01
.9997E-01
.1092
.1093
.1113
.1156
.1222
.1313
.1431
.1578
.7495E-01
.6574E-01
.5786E-01
.5137E-01
.4633E-01
.4278E-01
.4079E-01
.4042E-01
.4174E-01 -
.4482E-01
.4972E-01
.5653E-01
.6533E-01

AAP

.8812
.9056
.9314
. 9587
.9874
.018
.049
.083
117
.154
.191
.231
272
.303
.336
.370
.406
v
484
.525
.8432
.8669
.8921
.9187
. 9469
.9765
.008
.041
.075
.111
.149
.188
.229

e o o o L o Y Y Sy Sy STy S

b b b b b e et

AA

.8559
. 8847
.9147
.9462
.9792
.014
.050
.089
.130
.173
.219
.269
.321
.358
.396
435
476
.520
.565
.613
.8271
.8538
.8817
.9108
.9413
.9732
.007
042
.079
.119
.160
.205
.252

Pt e bt et b e e e e e bt b e e

b fod ot ok b o

Table 1: Approximate realationship between the parameters of the
Nilsson mode1(41), EP and EP4, and those of a collective radial

expansion in Legendre polynomials, ALPHA2 and ALPHA4, described in

Appendix H. The Nilsson parameters here correspond to those taken

by Seeger and Howard in the mass formula determination(g). Other

quantities appearing here are described in Appendix H.




EP EP4 ALAMP
.30 -.03 1.009
.35 -.02 1.013
40 -.01 1.017
.45 0.00 1.022
.50 .01 1.027
.55 .02 1.034
.60 .03 1.041
-.35 0.00 1.010
-.30 0.00 1.007
-.25 0.00 1.005
-.20 0.00 1.003
-.15 0.00 1.002
-.10 0.00 1.001
-.05 0.00 1.000
0.00 0.00 1.000
.05 0.00 1.000
.10 0.00 1.001
.15 0.00 1.002
.20 0.00 1.004
.25 0.00 1.006
.30 .01 1.009
.35 .02 1.012
.40 .03 1.016
.45 .04 1.021
.50 .05 1.027
.55 .06 1.033
.60 .07 1.040
-.35 .04 1.010
-.30 .04 1.007
-.25 .04 1.005
-.20 .04 1.003
-.15 .04 1.002
-.10 .04 1.001

Table 1, continued.

ALPHA2

.2070
.2432
.2801
.3177
.3560
.3950
4348
.2243
.1933
.1620
.1303
.9827E-01
.6589E-01
.3314E-01
.1110E-13
.3353E-01
.6748E-01
.1018
.1366
.1719
. 2080
L2447
.2821
.3202
.3591
.3987
4392
.2253
.1941
.1626
.1308
.9855E-01
.6598E-01

ALPHA4

.6541E-01
.6762E-01
.7212E-01
.7906E-01
.8862E-01
.1010

.1164

.3834E-01
.2852E-01
.2006E-01
.1300E-01
.7411E-02
.3337E-02
.8456E-~03
.8993E-14
.8690E-03
.3525E-02
.8043E-02
.1450E-01
.2299E-01
.2316E-01
.2555E-01
.3032E-01
.3766E-01
.4776E-01
.6082E-01
.7708E-01
.2252E-02
.8143E-02
.1717E-01
.2476E-01
.3087E-01
.3543E-01

fot b b b b b et

AAP

.261
.294
.330
.367
.406
448

490

.8059
.8291
.8536
.8797
.9074
.9366
.9675

bt b o ot ok b ot e o b ok | et

.000
.034
.070
.108
.147
.188
.220
.255
.291
.330
.370
413

458

. 7694
.7919
.8160
.8416
.8688
.8977

AA

e

.285
.319
.355
.392
.431
472

516

.8005
.8255
.8515
.8786
.9069
.9365
.9675

bt b et b o et e et b e b e

.000
.034
.070
.108
.148
.191
221
.233
.286
.320
.355
.393

432

.7758
.7992
.8236
. 8489
.8753
.9029
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EP EP4 ALAMP
-.05 .04 1.000
0.00 .04 1.000

.05 .04 1.000

10 .04 1.001

15 .04 1.002

20 .04 1.004

.25 .04 1.006

.30 .05 1.009

.35 .06 1.012

40 .07 1.016

45 .08 1.021

.50 .09 1.027

.55 .10 1.033

.60 .11 1.040
-.35 .08 1.010
-.30 .08 1.008
-.25 .08 1.005
-.20 .08 1.004
-.15 .08 1.002
-.10 .08 1.001
-.05 .08 1.001
0.00 .08 1.001

.05 .08 1.001

10 .08 1.002

15 .08 1.003

20 .08 1.004

.25 .08 1.007

.30 .09 1.009

.35 .10 1.013

40 .11 1.017

45 .12 1.022

.50 .13 1.028

.55 .14 1.034

.60 .15 1.041

Table 1, continued.

ALPHA2

3302E-01

.3313E-03
.3408E-01
.6826E-01
.1029
.1379
.1734
.2099
L2472
. 2852
.3239
.3634
4037
4448
.2260
.1946
.1629
.1308
.9836E-01
.6554E-01
.3234E-01
.1272E-02
.3529E-01
.6974E-01
.1046
.1400
.1758
.2129
.2507
.2892
.3286
.3687
4097
.4516

ALPHA4

.3837E-01
.3964E-01
.3916E-01
.3686E-01
.3264E-01
.2644E-01
.1816E-01
.1787E-01
.1526E-01
.1016E-01
.2366E-02
.8315E-02
.2211E-01
.3927E-01
.3342E-01
.4439E-01
.5395E-01
.6206E-01
.6866E-01
.7368E-01
.7705E~01
.7870E-01
.7856E-01
.7654E-01
.7257E-01
.6656E-01
.5840E-01
.5796E-01
.5510E-01
.4963E-01
.4135E-01
.3004E-01
.1546E-01
.2654E-02

AAP

.9283
.9605
.9945

e e e e

.030
.068
.107
.148
.182
.217
.254
.294
.336
.380

427

.7333
.7553
.7789
.8041
.8310
.8595
.8899
.9219
.9558
.9916

bbbt b b et ok et e (b

.029
.069
.110
144
.180
.219
.259
.303
.348
.397

.9317
.9618
.9934

b ot et et e b b e e

.027
.062
.099
.138
.165
.194
.225
.256
.289
.323

359

.7527
L7747
.7976
.8214
.8461
.8719
.8988
.9269
.9563
.9871

S

.019
.054
.089
.115
142
.170
.199
.229
.261
.294




Table 2: Comparison of the calculated and measured values of

the total kinetic energy, TKE, prompt neutron number determined
by assuming the 2T prompt neutron treatment of Appendix J, NUP,
and the total prompt gamma energy, EGAMMA, for 235U(nth,f). This
calculation assumes the analytical density of states expression
with € as the only shape variable. Reference values for this

reaction are(S’zs),
TKE = 169.9 MeV
NUP = 2.4

EGAMMA = 6,96 MeV
Cases considered are 1) Cook(ls) S and P values and Garvey-
Kelson(24) ground~state masses; 2) Seeger and Howard(g) Sand P
values and ground-state masses; 3) Seeger and Howard S and P
values and Garvey-Kelson ground-state masses.

CASE QUANTITY GMAX YMAX SUM

1 TKE 166.6 169.5 170.6
NUP 2.96 2.81 2.80
EGAMMA  6.07 5.26 4.72

2 TKE 168.9 170.6 171.4
NUP 2.91 2.75 2.89
EGAMMA  7.32 6.82 5.32

3 TKE 166.1 168.9 170.1

NUP 3.27 2.95 2.99
EGAMMA 7.04 6.92 5.51
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9yt

2% .6 PPua, e Pum 6 PPumts,n  2Buis,e) 2o
th th th

GMAX YMAX GMAX YMAX GMAX YMAX  GMAX YMAX  GMAX YMAX  GMAX YMAX
v, 2,69 2.94 2,81 3,02 3.18 3.34 4,71 4.91 4,79 4,92 3,96 4,12
cool 7.43  7.47  7.22  7.26 7.44 7.59  7.50 7.69  7.00 7.15  7.38 7.39
35 2.49 2.40 2.87 4.37 4.43 3.76
R 0.3  0.45 0.41 0.61 0.31 0.47 0.34 0.54 0.36 0.49 0,20 0.36
E, 5,00 5.39 4.75 5.12 5,41 6,10  4.85 5.05  4.40 4.83  6.10 5.73
E, 7.60 6.96 7.78 6.96 6.28 8.60
AR -1.1 =-1.2 0.74 2.62 -0.1 1.90 0.40 2.30 0.67 2.10 =1.0 =-.02
TKE 170.4 168.1 169.6 167.7 177.1 175.2 168.8 166.7 168.9 167.2 181.3 184.5
TKE 168.7 169.6 176.0 169.6 170.0 185.7
ATKE 1.7 =0.6 0. -1.9 1.0 -0.8 -0.8 -2.9 1.1 2.8 -0.7 -1.2
G 18.45 16.63 18.75 16.78 21.63 19.11 32.29 29.36 30.77 27.40 24.97 22.86

values.

All energies in MeV,

energy, and G, the scission-point energy -release.

Table 3: Energy accounting for yields computed with the 6(Z) parameters of Table 5.

Quantities with a bar above denote ENDF/B

Quantities
appearing are vp, the prompt neutron number, Ey’ the total prompt gamma energy, cool, the total

energy of de—excitation associated with each prompt neutron, TKE, the total fragment kinetic

(8

Quantities preceeded by a A denote direct or inferred deviation from ENDF/B values.




YT

23350 g
th
235
U(n,, ,f)
th
239
Pu(n h,f)
235, .t
U(nt+ls, £)
2385 414, £)
2320¢ (s£)

23350 g
th
235
U(n_, ,£f)
th
239
Pu(n h,f)
235, °C
U(n+14,£)
2385 (n+14, £)
252Cf(sf)

Table 4: Independent yield parameters of the Gaussian model assuming 8(Z) parameters of Table 5.

A =7 -7 ’
ucd “p “ucd
exp(Aé)—l. All quantities are mass-chain yield weighted averages except those denoted "Light-

product only" which are averaged over only those chains of mass less than or equal to one half

GMAX

ucd

.290
.319
.283
<224
«246
.210

.529
.548
«624
.919
.923
771

c

J462+,024
.4621,024
L484+,024
«521+,015
.520+.016
.512+,016

.466%,033
.470+,033
494%,033
.527+,025
.525%,023
.522%,026

.668
.835
.663
.315
.007
«353

451
<548
«352
.116
.040
.212

of the mass of the fissioning system.

ucd

.264
«261
.259
.190
«195
.210

.579
«588
+656
+956
<947
.801

.460+,021
.458+%,021
.469%,019
.508+,013
.506%,014
.492%,014

«478+,043
.469%,031
.483%.030
.516%,024
.513%,023
.500£,027

A
z

.698 |
.262 5
®
.541
413
1728
1))
.038
277

.480 |
5637
]
L2988
Q
.049%
.089
.152

Light~product

only, Aucd
GMAX YMAX
746 .676
.796 .678
.849 .754
1.041 . 945
1.053 .935
.970 .926

= width of Gaussian, Z¥= even-Z pairing enhancement, redefined here as
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Table 5: GMAX §(Z) parameters determined by fitting to ENDF/B

233U-TH 235U-TH 239PU-TH 235U-14 238U-14 252CF-S

5.000 5.000 5.000 5.000 5.000 5.000
5.145 5.178 4.879 5.186 5.163 5.038
5.140 5.162 5.302 5.060 5.067 5.370
5.598 5.535 5.442 5.445 5.427 5.418
5.686 5.692 5.735 5.464 5.445 5.519
5.880 5.951 5.783 5.724 5.731 5.378
5.890 5.935 5.933 5.630 5.595 5.501
6.144 6.128 5.735 5.819 5.706 5.458
5.999 5.946 5.769 5.609 5.499 5.624
5.994 5.967 5.656 5.676 5.635 5.503
5.986 5.950 5.816 5.614 5.553 5.770
6.184 6.160 5.802 5.873 5.769 5.672
6.245 6.227 6.046 5.884 5.758 5.846
6.555 6.511 6.127 6.173 6.085 5.790
6.613 6.583 6.372 6.194 6.158 6.076
6.711 6.644 6.420 6.325 6.375 6.114
6.764 6.671 6.565 6.319 6.273 6.459
6.951 6.845 6.600 6.595 6.533 6.524
6.828 6.858 6.544 6.496 6.718
6.939 7.231 7.044 6.754
7.827 7.662 7.482
-.048 -.054 -.053 -.077 -.083 -.072
27.5 28.0 28.0 25.0 25,2 27.0
(8

charge lumped yields for the six reactions considered. DZ is the

deviation of the charge from the symmetric split value, Z

sym’

DZ =Z__ - Z. P is the magnitude of the even-odd fluctuation

sym

about the smooth Z behavior. The energy constrained to remain
in prescission kinetic energy, ko’ is given in MeV.




o
N

- 233U-TH 235U-TH 239PU-TH 235U-14 238U-14 252CF-S

0 5.000 5.000 5.000 5.000 5.000 5.000
1 5.107 5.138 4.876 5.127 5.087 4,989
2 5.120 5.152 5.234 5.010 5.008 5.224
3 5.472 5.454 5.338 5.258 5.243 5.141
4 5.527 5.535 5.542 5.147 5.134 5.324
5 5.759 5.783 5.447 5.377 5.358 5.248
6 5.741 5.747 5.605 5.286 5.241 5.398
7 5.896 5.899 5.510 5.514 5.455 5.349
8 5.788 5.795 5.663 5.410 5.356 5.545
9 5.917 5.902 5.589 5.593 5.550 5.517
5.925 5.902 5.748 5.543 5.481 5.761
6.116 6.097 5.742 5.784 5.694 5.699
6.195 6.169 6.006 5.803 5.710 5.904
6.511 6.466 6.094 6.122 6.050 5.844
6.564 6.507 6.343 6.078 6.069 6.116
6.708 6.632 6.357 6.339 6.311 6.162
6.759 6.665 6.562 6.281 6.259 6.503
6.933 6.830 6.582 6.562 6.516 6.518

: 6.803 6.840 6.529 6.467 6.783

6.888 7.216 7.028 6.821

7.795 7.671 7.530

P -.051 -.051 -.061 -.086 -.077 -.070

27.5 28.0 28.0 25.0 25.2 27.0

Table 5, continued: YMAX &§(Z) parameters.
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DA  233U0-TH 235U-TH 239PU-TH 235U-14 238U-14 252CF-S
0 5.063 5.059 4.940 5.062 5.071 5.169
1 5.060 5.099 4.954 5.101 5.081 5.044
2 5.087 5.109 4.961 5.092 5.101 5.150
3 5.170 5.139 5.198 5.128 5.116 5.292
4 5.242 5.218 5.306 5.132 5.139 5.346
5 5.252 5.280 5.279 5.193 5.177 5.331
6 5.482 5.297 5.486 5.119 5.333 5.458
7 5.600 5.498 5.489 5.374 5.396 5.436
8 5.600 5.708 5.535 5.460 5.444 5.469
9 5.737 5.684 5.662 5.475 5.501 5.463

10 5.745 5.754 5.722 5.533 5.548 5.468

11 5.766 5.846 5.735 5.628 5.586 5.461

12 5.819 5.861 5.837 5.634 5.644 5.454

13 5.867 5.900 5.843 5.666 5.661 5.450

14 5.854 5.985 5.852 5.683 5.664 5.411

15 5.945 5.977 5.868 5.685 5.659 5.443

16 6.005 5.994 5.841 5.693 5.656 5.465

17 5.993 6.019 5.863 5.707 5.653 5.466

18 6.068 6.022 5.825 5.706 5.646 5.512

19 6.063 6.056 5.803 5.741 5.622 5.530

20 6.075 6.049 5.784 5.730 5.600 5.539

21 6.066 6.044 5.728 5.719 5.587 5.560

22 6.026 6.005 5.739 5.671 5.572 5.558

23 6.046 5.939 5.714 5.633 5.572 5.574 |

24 5.952 5.982 5.618 5.651 5.581 5.570

25 6.032 5.938 5.739 5.638 5.596 5.632

Table 6: GMAX 8(A) parameters extracted from Table 5 values

assuming an even-odd Z term of -0.059 fm. DA is the deviation
of the mass number from that of the symmetric split, ASym’
DA = ASym- A. The energy constrained to remain in prescission

kinetic energy, k_, is given in MeV.

0,
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DA  233U-TH 235U-TH 239PU-TH 235U-14 238U-14 252CF-S

26 6.036 6.006 5.749 5.674 5.615 5.624
27 6.053 6.049 5.772 5.745 5.643 5.704
28 6.113 6.055 5.851 5.753 5.687 5.716
29 6.179 6.115 5.901 5.819 5.717 5.723
30 6.184 6.245 5.894 5.891 5.739 5.735
31 6.302 6.239 5.973 5.906 5.793 5.775
32 6.420 6.291 6.037 5.947 5.846 5.790
33 6.381 6.394 6.051 6.043 5.906 5.803
34 6.491 6.392 6.182 6.048 6.012 5.851
35 6.550 6.473 6.258 6.119 6.108 5.954
36 6.577 6.600 6.255 6.193 6.141 5.954
37 6.669 6.604 6.327 6.205 6.200 6.023
38 6.660 6.639 6.431 6.252 6.233 6.105
39 6.686 6.606 6.430 6.264 6.279 6.100
40 6.680 6.671 6.479 6.304 6.311 6.182
41 6.814 6.637 6.499 6.303 6.325 6.352
42 6.812 6.729 6.536 6.381 6.342 6.362
43 6.817 6.760 6.525 6.467 6.368 6.423
44 6.887 6.739 6.652 6.439 6.423 6.545
45 6.873 6.783 6.668 6.529 6.455 6.528
46 6.892 6.887 6.671 6.560 6.497 6.587
47 6.794 6.562 6.565 6.650
48 6.900 6.601 6.714 6.713
k 27.5 28.0 28.0 25.0 25.2 27.0

Table 6, continued: GMAX §(A) parameters.
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DA  233U-TH 235U-TH 239PU-TH 235U-14 238U-14 252CF-S
0 5.058 5.061 4.938 5.061 5.052 5.013
1 5.061 5.072 4,945 5.064 5.048 4,988
2 5.052 5.097 4.949 5.064 5.042 5.053
3 5.154 5.101 5.127 5.068 5.049 5.117
4 5.165 5.209 5.177 5.072 5.067 5.093
5 5.197 5.284 5.206 5.111 5.087 5.162
6 5.376 5.260 5.390 5.096 5.137 5.185
7 5.388 5.394 5.365 5.173 5.165 5.186
8 5.437 5.535 5.402 5.174 5.181 5.204
9 5.576 5.482 5.457 5.200 5.190 5.244

10 5.573 5.594 5.444 5.209 5.201 5.241

11 5.596 5.661 5.482 5.255 5.224 5.267

12 5.685 5.636 5.503 5.244 5.260 5.300

13 5.707 5.720 5.502 5.312 5.286 5.300

14 5.717 5.781 5.509 5.331 5.298 5.311

15 5.798 5.771 5.537 5.341 5.306 5.332

16 5.805 5.807 5.542 5.355 5.325 5.347

17 5.805 5.828 5.549 5.423 5.350 5.352

18 5.832 5.798 5.569 5.415 5.384 5.401

19 5.833 5.839 5.581 5.453 5.402 5.428

20 5.839 5.851 5.579 5.464 5.413 5.432

21 5.846 5.847 5.602 5.474 5.427 5.483

22 5.851 5.855 5.625 5.478 5.445 5.534

23 5.860 5.846 5.620 5.521 5.470 5.529

24 5.870 5.887 5.650 5.542 5.494 5.579

25 5.968 5.876 5.672 5.554 5.517 5.657

Table 6, continued: YMAX §(A) parameters.
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DA  2330-TH 235U-TH 239PU-TH 235U-14 238U-14 252CF-S

26 5.967 5.960 5.684 5.600 5.540 5.638
27 5.990 5.990 5.702 5.655 5.565 5.700
28 6.050 5.993 5.789 5.661 5.605 5.736
29 6.140 6.047 5.828 5.728 5.647 5.739
30 6.129 6.193 5.832 5.815 5.694 5.766
31 6.252 6.188 5.937 5.821 5.753 5.828
32 6.351 6.236 6.044 5.876 5.816 5.843
33 6.327 6.344 6.022 5.995 5.885 5.857
34 6.451 6.337 6.151 5.996 5.965 5.903
35 6.562 6.419 6.221 6.065 6.029 5.986
36 6.542 6.550 6.214 6.117 6.077 5.986
37 6.621 6.540 6.290 6.139 6.128 6.062
38 6.638 6.568 6.39 6.158 6.174 6.165
39 6.663 6.573 6.382 6.262 6.216 6.157
40 6.677 6.662 6.422 6.273 6.256 6.233
41 6.810 6.631 6.485 6.292 6.291 6.386
42 6.801 6.724 6.521 6.341 6.321 6.374
43 6.820 6.744 6.519 6.409 6.340 6.454
44 6.869 6.732 6.637 6.395 6.387 6.557
45 6.856 6.769 6.653 6.496 6.428 6.560
46 6.874 6.863 6.653 6.545 6.475 6.596
47 6.773 6.534 6.538 6.710
48 6.870 6.587 6.705 6.784
k 27.5 28.0 28.0 25.0 25.2 27.0

Table 6, continued: YMAX S(A) parameters.
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23500 .5y 2Py, D%um.,f)  Puis,n  2Bumas,n  Ples(se)
th th th

GMAX YMAX GMAX YMAX GMAX YMAX GMAX YMAX GMAX YMAX GMAX YMAX
v, 2.69 2.93 2.82 3,01 3,21 3.35  4.72 4,93  4.80 4.95 3,95 4.12
cool 7.46 7.47 7.23 7.25 7,50 7,58  7.57 7.67  7.03 7.4  7.41 7.38
35 2.49 2,40 2.87 4,37 4.43 3.76
v, 0.20 0.44 0.42 0.61 0,34 0.48 0.35 0.56 0.37 0.52  0.19 0.36
Ey 5.10 5.46 4.83 5.15 5,47 6.05  4.90 4,78  4.44 4,81  6.12 5.71
E, 7.60 6.96 7.78 6.96 6.28 8.60
AE -1.0 1.12 0.87 2.57 0.30 -1.7 0.59 2,12 0,80 2,30 -1.0 =-.20
TKE 170.4 168.2 169.6 167.8 177.2 175.2 168.8 167.0 169.0 167.2 185.2 184.6
TKE 168.7 169.6 176.0 169.6 170.0 185.7
ATKE 1.7 =0.5 0. -1.8 1.2 -0.8 -0.8 2.6 -1,0 -2.8 =0.5 ~-l.1
G 18.50 16.64 18.81 16.79 21.63 19.13 32.39 29.43 30.88 27.51 24,95 22,92

Table 7: Energy accounting for yields computed with the §(A) parameters of Table 6.

Quantities

appearing are vp, the prompt neutron number, EY,'the total prompt gamma energy, cool, the total

energy of de~excitation associated with each prompt neutron, TKE, the total fragment kinetic

energy, and G, the scission-point energy release.

values.

All energies in MeV,

Quantities with a bar above denote ENDF/B

(8)

Quantities preceeded by a A denote direct or inferred deviation from ENDF/B values.




§ST

233U(n
235U(
239

th’f)
nth’f)
235Pu(nth,f)
U(n+14,£)
238 nild, £)
2520 (s£)

233U(n ,£)
th
235
U(n,, ,f)
th
239
Pu(n h,f)
235, .t
U(n+14,£)
2384 (414, £)
252Cf(sf)

GMAX

ucd

«391
+405
.321
.316
.318
+307

+529
+549
.630
.921
«925
.770

(o]

463,021
.462+,018
.494%,020
.525+,021
.523%,017
.512+,016

L474%,028
.470+£,034
.498%,033
.530%,029
.525+,024
.521%,024

«524
.700
.646
454
.152
.356

431
.438
.266
«343
.197
.167

YMAX

ucd

«399
.381
.368
.334
«332
.367

576
.586
.658
+962
.954
.803

o

«453%.016
.454+,018
AT74%,012
.507+,012
.505%,014
.492+,015

.468%,031
.476%,039
.486%,027
.514%,024
.512%,026
.496%,026

A
z

.591 l
.709

[a]
.52305
374 8

(m3
.160 ¢
.322

404 |
.376
3
.278 A
[y
.196 &
n
.163
172

Light-product

only, Aucd
GMAX YMAX
.806 .849
.884 «794
.900 .860
1,125 1,077
1.126  1.063
1.068 1.074

Table 8: Independent yield parameters of the Gaussian model assuming §(A) parameters of Table 6.

A

ued zp- Zucd’

0 = width of the Gaussian, AZ

even—~Z pairing enhancement, redefined here as

exp(Az)—l. All quantities are mass-chain yield weighted averages except those denoted "Light-

product only" which are averaged over only those chains of mass less than or equal to ome half

of the mass of the fissioning system.
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Table 9: Coefficients of the §(A or Z) formula determined by
fitting over the six sets appearing in Tables 5 and 6. The form
determined is

_ 2 3 4 5 6 Z
8(y) = fo + fzx + fsx + f4x + fsx + f6x + go(-)
where y is A or Z and x is Asym" A or Zs - Z, Standard
deviation for all fits is .17, All quantities are in fm.

Estimated kO for use here is 26.8 MeV

GMAX §(2) YMAX §(2) GMAX & (A) YMAX § (A)
£, 4.9626 4.9749 5.0336 5.0220

£, 1.3740E-01  8.8966E-02 1.8313E-02  1.0537E-02
£ -3.6844E-02  -2.4254E-02 -1.8376E-03  -1.0306E-03
£, 3.92338-03  2.7002E-03 7.2840E-05  4.1576E-05
fo  -1.8512E-04  -1.3278E-04 -1.2735E-06  -7,3924E-07
£, 3.2365E-06  2.4061E-06 8.2215E-09  4.8280E-09
g, =059 -.060 -.059 (input) -.060 (input)
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2By, ) 235U(nth,f) 239Pu(nth,f) 2By mi1s,£)  23Bycnris,e)  22ce(sh)

GMAX YMAX GMAX YMAX GMAX YMAX GMAX YMAX GMAX YMAX GMAX YMAX
v, 2.65 2.83 2,74 2.86 3.13 3.30  4.76 4.97  4.84 5.04  4.20 4.31
cool 7.63  7.35  7.24  7.09 7.32  7.49  7.51 7.75  6.94 7.17  7.29 7.33
3; 2.49 2.40 2.87 4,37 4,43 3.76
vy 0.16 0.34 0.34 0.46 0.26 0.43  0.39 0,60  0.41 0.61  0.44 0.55
E 4,45 4,90 4,23 4.57  5.26  6.01  4.92 5,06  4.44 4,98  6.68 5.44
E, 7.60 6.96 7.78 6.96 6.28 8.60
AE -1.9 -0.2 -0.3 -0.9 ~0.6 1.40 0.90 2.80 1.00 3.10 1.30 0.90
TKE 172.4 169.4 170.8 168.4 175.9 174.4 168.1 166.6 167.4 166.2 182.8 183.8
TKE 167.4 169.6 176.0 169.6 170.0 185.7
ATKE 5,0 2.0 1.2 -1.2 =01 =1,6 -1.5 =3,0 =2.6 -3.8 =2.9 -1.8
G 16.99 15.07 17.23 15,38 21.37 19.34 33.07 30.35 32.01 28.83 27.08 24.02

energy release.

fitting to the §(A) parameters of the six cases considered.

Quantities with a bar above denote ENDF/B

denote direct or inferred deviation from ENDF/B values,

(8)

values.,

Table 10: Energy accounting for yields computed with the 8(A) parameters of Table

9, determined by
Quantities appearing are vp, the prompt
neutron number, EY’ the total prompt gamma energy, cool, the total energy of de-excitation associ~

ated with each prompt neutron, TKE, the total fragment kinetic energy, and G, the scission-point

Quantities preceeded by a A

All energies in MeV,
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233U(n ,£)
th
235
U(n, , ,f)
th
239
Pu(n h,f)
235 .t
U(n+l4,£)
238 0414, £)
252Cf(sf)

233y0n . .5)
th
235
U(n ’f)
th
239
Pu(n,, ,f)
235, B
“TU(n+14,£)
238} (nt14, £)
252Cf(sf)

GMAX

ucd 9 Az
.338 .469+,029 ,606
.363 .463%,026 .726
402  .486%,020 ,651
.328 .521+,019 .619
.364 .517+,019 .346
.319 ,517+,019 .521
520 .470+,033 .441
.532 .473%.,039 .430
614  .496%,032 .282
.929 .529+,027 .367
.932 .519+.,026 .465
.817 .525%,027 .433

ucd

416
415
«410
.346
«350
.373

«557
.558
647
.971
.972
.839

.452+,013
L454%,016
JA4T74+,013
.513%,011
.511+,014
.498+,013

J471%,032
.475+,038
L487+.027
«519+,025
«513+.023
.501+.025

A

Z

441 |
4263
[%)]
.502%
3942
]
.164
.304

.276 |
.2307%
(o]
2642
0
.231%
.232
.176

Light-product

only, Aucd
GMAX YMAX
.824 .818
.850 .818
.921 .878
1.138 1.089
1.149 1.083
1.075 1.091

Table 11: Independent yield parameters of the Gaussian model assuming 8§(A) parameters of Table 9.

Aucd= Zp
exp(Az) -1,

- zucd’ o=

width of the Gaussian, Az= even~Z pairing enhancement, redefined here as

All quantities are mass-chain yield weighted averages except those denoted "Light-

product only" which are averaged over only those chains of mass less than or equal to one half

of the mass of the fissioning system.




Table 12: Independent yield parameters of the Gaussian model,
extracted from ENDF/B(S) data. Aucd is the deviation of Zp
from the UCD value for the light mass product, only, O is the
width of the Gaussian, and Az is the even-Z paring enhancement,
redefined here as exp(Az)-l. All quantities are chain-yield

weighted averages.

Reaction A o] A
ucd z

233U(nth,f) 1.039  .595£.011  .305

235U(nth,f) 1.077  .598+.021  .464

239Pu(nth,f) 1.118 »595+.011 .258

235G (n+14,F) 1.234  .596:.011  .035

2384 (n+14,F) 1.187  .593£.013  .077

2320 (s£) 1.234  .593+.011  .107
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SUM LEVELS

QUANTITY START LIMITS MAX G \Y%
GN .28543 .26015 .26015 .89425 .18631
GP .31698 .28070 .28070 1.0663 .19520
DNO 1.9778 1.5916 1.5916  15.0468 .8078
DPO 1.9219 1.5098 1.5098  14.6462 . 9436
TCN 1.102 .9075 .9075 7.8675 .4862
TCP 1.041 .8033 .8033 7.6176 L4944
LNC 49.585  49.606 49.606 48.076 41.518
LPC 44,104 44,218 44,218  42.559 34.727
EON 1483.2  1483.8 1483.8 1382.1 1239.6
EOP 1071.3  1072.5 1072.5 976.1 841.3
LN(.245) -.379 -.915 -.915 8.509 -.651
LN(1.063) 13.51 14.49 14.45 -.957 17.60
LN(2.045) 26.07 26.07 26.07 -4.76 32.49

A=1T71 Z =132

Table 13: The effect of cumulative change upon the various com-
puted quantities of the numerical desity-of-states expression of
Appendix D. Quantities appearing here are GN and GP, the neutron
and proton interaction strengths, DNO and DPO, the neutron and
proton ground-state pairing gaps, TCN and TCP, the neutron and
proton critical temperatures, LNC and LPC, the neutron and pro-
ton chemical potentials at the critical temperature, EON and EOP,
the ground-state energies of the neutron and proton systems, and
the value of the logarithm of the density-of-states expression
evaluated at the three temperatures shown. All energies are in
MeV. The column marked ''START'" shows values obtained using the

prescription of Nilsson, et. al.(GO).

Column headings then show
changes in the tabulated quantities as the prescription of
Seeger and Howard(g) is assumed. The last column gives values
obtained with the pure Seeger and Howard prescription. The

transition illustrated here is described in Appendix D.




QUANTITY

GN
GP
DNO
DPO
TCN
TCP
LNC
LPC
EON
EOP
LN(.161)
LN(1.019)
LN(2.039)

Table 13, continued: Effect of cumulative changes of the prescrip-

START

.10848
.12425
1.5291
1.3251
. 7897
.7118
51.676
40.989
3807 .4
2127.8
-.783
37.94
66.20

SUM
LIMITS

.10848
.12425
1.7466
1.3859
.9116
7441
51.660
40.989
3805.9
2127.5
-.462
37.94
66.20

A = 165

LEVELS
MAX

.10848
.12425
1.7466
1.3859
.9116
L7441
51.660
40.989
3805.9
2127.5
-.462
37.94
61.14

Z =68

.41500
.55871
17.5674
16.9606
9.1246
8.7447
49.712
39.679
3464.5
1858.3
6.326
-.765
-5.56

A

.06527
.07722
.8179
.6297
.4178
.3392
42.137
33.059
3105.7
1715.3
-.600
43.23
82.22

tion for evaluateing the numerical density-of-states expression

of Appendix D.
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D A Z S EX P J ERR

320.00 70 31 -.874 7.655 -.280 1.5 90.00
190.00 72 31 -1.643 6.522 .040 1.5 50.00
2000.00 71 32 -1.785 7.420 .880 0.0 800.00
3900.00 73 32 -1.982 6.782 1.200 0.0 1500.00
77.00 74 32 -1.656 10.200 2.790 4.5 9.00
8500.00 75 32 -1.260 6.506 1.410 0.0 4500.00
8000.00 77 32 -1.591 6.073 1.600 0.0 800.00
87.30 76 33 -1.482 7.329 .010 1.5 11.40
200.00 75 34 -2.423 8.028 1.370 0.0 350.00
1200.00 77 34 -1.887 7.419 1.580 0.0 600.00
150.00 78 34 -2.478 10.497 3.080 .5 40.00
4500.00 79 34 -2.493 6.961 1.770 0.0 1000.00
1600.00 81 34 -.749 6.702 1.360 0.0 600.00
6900.00 83 34 405 5.928 1.520 0.0 1100.00
61.00 80 35 -2.525 7.883 .160 1.5 13.00
52.00 82 35 -.573 7.604 -.250 1.5 14.00
1100.00 86 37 1.072 8.651 .040 2.5 200.00
1800.00 88 37 1.688 6.081 .050 1.5 600.00
350.00 85 38 -1.190 8.526 1.080 0.0 120.00

Table 14: Data used in modeling the density parameter for the
analytical density-of-states expression described in Appendix E.
Quantities appearing are D, the observed resonance spacing, in eV,
taken from Cook, et. 310(18), A and Z, the mass and charge of the
compound nucleus, S, the shell correction energy, in MeV, given
as prescribed by Kataria, et. al.(21), EX, the excitation energy
at which D was measured, in MeV, P, the pairing correction energy
as given by Cook, et. al., in MeV, J, the spin of the target
nucleus, and ERR, the experimental error in the measurement of D,

in evV.
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A Z

87
88
89
90
91
92
93
95
97
94
96
97
98
99
101
100
100
102
104
106
108
110
112
113
114
114
116
113
115
116
117
118
119
120
121
123
125
122
124
123

38
38
38
39
40
40
40
40
40
41
42
42
42
42
42
43
44
44,
45
46
47
47
48
48
48
49
49
50
50
50
50
50
30
50
50
50
50
51
51
52

NN

S

.856
.645
.027
.072
.105
.545
.207
.200
.028
.671

-.421

Table 14, continued.

.733
.671
.092
.838
.146
.831
.155
.835
.321
.375
.811
.503
.691
.032
.703
.546
.516
.071
406
171
.069
.648
.692
542
.786
.003
<347
.588
.094

OO NUIOHTLOONONONNANONOOANONOOONUNTUNIONONUIONONOON OOV 0

EX

428
114
.365
. 859
.204
.636
.733
474
.586
.230
.155
.819
643
.927
.399
.765
.674
.220
.001
.561
.269
.806
.396
. 544
.041
.275
. 784
747
.547
.562
.947
.326
.485
.105
.173
. 947
.732
.807
467
.934

NN IR RN = NN B e N

=R NN

-1

. 240
.170
.250
.300
.100
.710
.590
.220
440
. 240
.590
.300
.690
.520
.090
420
.670
.950
.160
.640
.130
.100
.020
.130
.700
.360
.170
.830
.350
.920
.160
.530
.810
.330
490
.200
.370
.220
.070
.270

N NDNLPOONONPLPOCOONDS OO

SuntocoouUuICUICUICOCOUVIULTUTIoUTULTULIUTIULTULIGTIUNO O ULIOLULTOOOULOCLULTO WL
=
N

OCWNOOO © © oo~ o

ERR

.0 1000.

80.
2000.
400,
800.

1100.
900.
300.

40.
500.

550,

150.
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D

33.
46.
550.
5700.
19.
21.
31.
500.
20.
120.
380.
35.
3800.
460.
9600.
41.
110.
3000.
1000.

A Z

124
126
129
131
128
130
132
136
134
131
135
136
137
138
139
139
140
141
143
142
144
146
148
148
150
151
152
153
152
154
156
157
158
160
162
163
164
166
163
165

52
52
52
52
33
33
54
54
55
56
56
56
56
56
56
57
57
58
58
39
60
60
61
62
62
62
62
62
63
63
64
64
64
65
66
66
66
67
68
68

= HENRFRPwwPhPUOPRWOND LWONWWHEOIWE

WNWWWNNNNERFE

Table 14, continued.

S

.337
.355
.729
.698
.815
.089
.324
.803
.397
7127
.815
.182
.316
074
.530
.199
.782
.193
.720
.140
.262
.702
.243
.513
.693
.920
.289
.703
.821
.839
.893
.594
.386
.834
.897
.381
.181
429
.095
.092

NN AN UTOOUNNOOUINNTIUTUNIUNTIOO SOV OANOANOONONUNTONO O

EX

424
.117
.165
.925
.826
461
.937
.992
.892
.495
.975
.107
.899
.612
7124
.778
.162
429
.156
.844
.819
.566
.903
142
.987
. 597
.259
.868
.306
438
.537
.361
.938
.376
.197
.273
.655
244
.904
.650

RN N HE S RERN N

T = R

.600
420
.780
.700
.100
.270
.920
.050
.260
.300
.850
.390
.200
.250
.950
.250
.050
.150
.190
.680
.610
.900
410
.090
.930
.810
.910
.850
.290
.250
.890
.710
.910
.010
.570
.560
.750
.220
.690
.320

OCOWNONFHFMHFOFHNNOREOWWWWWINOOWUIOROHFOOWHMFWNOO

J

ocouviuviouiutuouUutuiiiouIouTtiutuIUoOo oo ouUTCULICOULTLNTUTNNnNOoO O Ut

ERR

11.
125.
800.

100.

40.
100.

2400.
240,
3400.

20.
1000.
200.

UVik= = O




D A Z

320.00 70
190.00 72
2000.00 71
3900.00 73
77.00 74
8500.00 75
8000.00 77
87.30 76
200.00 75
1200.00 77
150.00 78
4500.00 79
1600.00 81
6900.00 83
61.00 80
52.00 82
1100.00 86
1800.00 88
350.00 85

31
31
32
32
32
32
32
33
34
34
34

34

34
34
35
35
37
37
38

S

174
.354
.203
.541
.109
.399
.847
.160
.685
.531
.705
.137
.392
404
.833
.835
.232
.821
.160

cosuyi~Noyon PSSO UTUIONOY

o
"

.493
.308
.898
.273
.030
.432
473
.856
.730
.480
.138
.796
.732
.276
473
.59
.668
.359
.576

OFENMMESOOO OORROOPL,rOOHH
.OKJ'ILI‘IWUOOOU'IOOUIOOMOOLHW

ERR

90.
50.
800.
1500.
9.
4500.
800.
11.
350.
600.
40.
1000.
600.
1100.
13.
14,
200.
600.
120.

N Y e e e e e

BS

. 004495
.005016
.005286
.005641
.005016
.006268
.001236
.006965
.007165
.007901
.003000
.001987
.001186
.000546
.001837
.001186
.000636
.000301
.001066

Table 15: Data used in modeling the density parameter for the

analytical density-of-states expression described in Appendix E.
Quantities appearing are D, the observed resonance spacing, in eV,
taken from Cook, et. al.(18), A and Z, the mass and charge of the

compound nucleus, S, the shell correction energy, in MeV, UX,

the excitation energy at which D was measured, reduced by
subtracting the pairing energy, in MeV, J, the spin of the

target nucleus, ERR, the experimental error in the measurement

of D, in eV, and BS, the ratio of the surface area of the compound
nucleus to that of a spherical nucleus of the same volume.

The

energies S and UX and the term BS were computed with the Seeger
and Howard mass formula(g), described in Appendix A.
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D A Z S UX J ERR BS
2100.00 87 38 484 6.879 0.0 1000.00 1.000481
210.00 88 38 2.419 8.706 4.5 80.00 1.000000
12000.00 89 38 1.234 4.927 0.0 2000.00 1.000222
1600.00 90 39 .989 6.684 .5 400.00 1.000576
3300.00 91 40 .658 5.079 0.0 800.00 1.000234
250.00 92 40 -1.283 4.366 2.5 50.00 1.000000
3400.00 93 40 -2.094 2.921 0.0 1100.00 1.000000
3300.00 95 40 -2.356 3.152 0.0 900.00 1.000171
1100.00 97 40 -3.610 2.139 0.0 300.00 1.001676
36.00 94 41 -1.073 5.525 4.5 4.60 1.000316
100.00 96 42 -2.740 3.895 2.5 40.00 1.000000
1200.00 97 42 -2.178 3.655 0.0 500.00 1.000160
120.00 98 42 -3.042 4.212 2.5 60.00 1.000000
790.00 99 42 -2.816 3.273 0.0 550.00 1.001491
400.00 101 42 -1.740 4.016 0.0 75.00 1.005531
26.00 100 43 -2.294 5.094 4.5 5.00 1.001641
200.00 100 44 -2.110 5.103 2.5 50.00 1.000000
15.00 102 44 -5.355 2.694 2.5 4.00 1.000000
10.30 104 45 -1.868 5.487 .5 2.00 1.003255
11.10 106 46 -2.595 5.444 2.5 1.70 1.001147
50.00 108 47 -1.352 5.850 .5 12.00 1.003305
19.10 110 47 -1.662 5.422 .5 3.80 1.004181
34.00 112 48 -2.799 5.042 .5 6.00 1.001397
200.00 113 48 -1.777 4.208 0.0 75.00 1.003075
27.00 114 48 -1.862 5.412 .5 3.00 1.002760
7.10 114 49 -1.966 4.718 4.5 1.20 1.001540
9.50 116 49 -1.469 4.807 4.5 2.40 1.002051
140.00 113 50 -.803 4.825 0.0 50.00 1.000000
320.00 115 50 -1.149 4.558 0.0 90.00 1.000000
50.00 116 50 -1.168 5.922 .5 20.00 1.000000
250.00 117 50 -1.230 4.186 0.0 40.00 1.000423
65.00 118 50 -2.166 4.539 .5 15.00 1.000000
730.00 119 50 -1.114 3.779 0.0 180.00 1.000328
62.00 120 50 -2.356 3.616 .5 12.00 1.000000
240.00 121 50 -.848 3.244 0.0 50.00 1.000210
400.00 123 50 -1.197 1.800 0.0 150.00 1.000000
250.00 125 50 .498 2.023 0.0 75.00 1.000000
13.00 122 51 -.538 5.207 2.5 2.00 1.001361
30.00 124 51 .413 5.083 3.5 13.00 1.001133
130.00 123 52 -.936 4.889 0.0 8.00 1.002110

Table 15, continued.

166

,




D A Z

33.00 124 52 -
46.00 126 52

5700.00 131 52
19.00 128 53
21.00 130 53 -
31.00 132 54 -1

20.70 134 55 -

35.00 136 56
3800.00 137 56
460.00 138 56
9600.00 139 56
41.00 139 57
110.00 140 57
3000.00 141 58
1000.00 143 58
83.80 142 59
19.00 144 60
25.00 146 60
5.70 148 61
7.90 148 62
3.22 150 62
24.00 151 62
1.30 152 62
60.00 153 62
.72 152 63
1.30 154 63
1.99 156 64
75.00 157 64
06.10 158 64
4.30 160 65
2.55 162 66
42.00 163 66
9
5
7
7

NI I =ENWNEN

1
[

.60 164 66
.67 166 67
.10 163 68
.00 165 68

NRNWWWNNNNWWNRWN -

S

1.019
-.909
550.00 129 52 -,
2

473

.596

407
.208
.534
500.00 136 54 5.

866

.880
120.00 131 56 -1.
380.00 135 56 -1.

337
636

.131
.575
.140
.733
.569
.167
.791
.502
.238
.857
.806
.116
117
.291

.761

426
141
.361
.696
.166
.063
.830
.852
.886
.003
.239
271
.110
.793

Table 15, continued.
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UX

.672
.700
.651
.662
.757
.063
.890
.702
.530
.290
.597
.364
457
.785
.116
.380
.577
.842
.619
.248
.812
.018
943
.335
.138
.139
.107
442
.231
473
.821
.540
.879
.315
714
.789
.480
.311
403
.399
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ERR

9.
11.
125.
300.

100.

40.
100,

2400.

240,
3400.

1000.

U= =N

L R N T o o L el L e e Sy R e ey e ey Ty o Y e e e el e

BS

.001369
.000535
.000000
.000000
.001880
.000201
.000000
.000000
.000000
.003227
.000000
.000000
.000113
.000000
.000000
.000000
.000000
.000000
.000000
.000146
.000000
.000000
.004575
.001528 -
.006030
.008680
.009845
.010949
.008854
.010804
.011117
.012016
.011783
.012662
.012018
.012256
.012435
.013201
.011275
.012080
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-1

Model ¢ Data Table ¢-best a w, B Polynomial form Systematics
1. Kataria SS 14 1.214x108 6.730 .1987 inc 1l-term no
2. Kataria SS 15 1.963x10% 5.227 .3566 0 4~term with pairing no
3. Kataria £&n 14 56.49 7.003 .2136 inc 4~term with pairing no
4, Kataria fn 15 150.5 6.367 .3086 inc 4-term with pairing yes
5. GC ss 14 1.058x10° 6.214 - - 2-term yes
6. GC SS 15 1.150x10% 3.936 - -  3-term yes
7. GC fn 14 57.03 7.093 - - 4-term with pairing no
8. GC fn 15 166.3 6.201 - -  4-term with pairing yes

Table 16: Results of fitting described in Appendix F for the analytical density-of-states models.
(21) (17)
’

Indicated are the model type, either that of Kataria, et. al. or Gilbert and Cameron
denoted GC, the form of the function indicating quality of fit, ¢, either the sum of squares (ss)
or sum of squares of logarithms, (&n), the data table from which the energies were taken, the
value of the quality-of-fit function corresponding to the best model, ¢-best, the reciprocal of
a, 3—1, the value of W, in the Kataria model, a quantity not present in the Gilbert and Cameron
model, the preferred value of B, either 0 or 1, in the Kataria model, inc denoting an inconclusive
result, the form of the polynomial part of the density parameter, a, and whether or not the even-
odd pairing terms were significant, and whether or not systematic errors were observed in the

final model predictions.
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Figure 2: GMAX mass chain yields for fragments and products.

Products are determined assuming
a 2T neutron treatment.

The analytical model is assumed with the Cook18 S and P values and

a-model. The ground-state mass is assumed to be given by Garvey-Kelson recursion relations24

The spacing parameter, §, is assumed to be constant for all masses, § = 3 fm,
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Figure 3: YMAX mass chain yields for fragments and products. Products are determined assuming
1

a 2T neutron treatment. The analytical model is assumed with the Cook S and P values and

a-model., The ground-state mass is assumed to be given by Garvey-Kelson recursion relationsz4.

The spacing parameter, §, is assumed to be constant for all masses, § = 3 fm.
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Figure 4: SUM mass chain yields for fragments and products. Products are determined assuming
a 2T neutron treatment. The analytical model is assumed with the Cook18 S and P values and

. . . . 2
a-model. The ground-state mass is assumed to be given by Garvey-Kelson recursion relations 4.

The spacing parameter, §, is assumed to be constant for all masses, § = 3 fm.
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Figure 5: GMAX mass chain yields for fragments and products. Products are determined assuming
a 2T neutron treatment., The analytical model is assumed with the Seeger9 S and P values and
a-model. The ground-state mass is assumed to be given by Garvey-Kelson recursion relations24

The spacing parameter, §, is assumed to be constant for all masses, § = 3 fm,
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Figure 6: YMAX mass chain yields for fragments and products. Products are determined assuming
a 2T neutron treatment. The analytical model is assumed with the Seeger9 S and P values and
/,

. . . .24
a-model, The ground-state mass is assumed to be given by Garvey-Kelson recursion relations .

The spacing parameter, §, is assumed to be constant for all masses, § = 3 fm.
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Figure 7: SUM mass chain yields for fragments and products. Products are determined assuming

a 2T neutron treatment. The analytical model is assumed with the Seeger9 S and P values and
: 2

a-model. The ground-state mass is assumed to be given by Garvey-Kelson recursion relations 4.

The spacing parameter, 8, is assumed constant for all masses, § = 3 fm.
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Figure 8: GCMAX mass chain yields for fragments and products. Products are determined assuming
. X . 9

a 2T neutron treatment. The analytical model is assumed with Seeger S and P values, a-

model, and ground state masses. The spacing parameter, §, is assumed constant for all masses,

§ =3 fm.
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Figure 9: YMAX mass chain yields for fragments and products. Products are determined assuming
a 2T neutron treatment. The analytical model is assumed with Seeger 9 S and P values, a-

model, and ground-state masses. The spacing parameter, 8, is assumed constant for all masses,
§ = 3 fm.
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Figure 37: Fission fragment yields for 235U(n+14,f) assuming 6(Z) as in Figure 36. Circles are

fission product yields from Reference 8, shown here for comparison.
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