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~oMpREs~IBLE LAGRA~GIAN HyDRoDy~A~Ics uITH~uT LAGRA~:~~A~ c~LLs

!

1. INrRODUCTIOti

Traditional

Robert A. Clark

Computational Physics

GFoup x-7,!?sB257

Los Alamos National Laboratory

Los Alamos, New Mexico 89745

Lagranglan hydrodynamic codes for time dependent, corr!presu:blu.

multlmaterlal problems in two dimensions use the same general method. A

LalYiiR6iZin mesh is defined, which moves with the fluid and this mesh deflncs a

set of Lagranglan cells. The mass in each cell remains fixed and the motion of

the mesh de~ermines the volume and nenct! ths denslly of each celi. These ~eLn~as

WOrk well unLll the meS}I beccx!ws dis:ortec! dur LO shear or LUFbL’lt?tIC~. L9”gc

distortjorrs cause computer codus to quickly grind to a hfilt.

The usual SO1UL1O!I to dlstorLlon 1s Lo “rozonc” L}Ie mesh. tlcrc wi’ movo Lh~’

musn points artificially so &s to reduce dlsLort~oas and thtm radp Lhc qulnLltltis

from the old mesh to the new. This rc9u2Lo in unwlnLPd diffusion of ma!mt mosPlI-

tum and energy throughout the mesn. EVCII with rt?xonlnfi, f(?w Lkgrunglan CCJCIWI (:I!I

hmdle mor(! Lhnn limited dluLor’Llon9. HwonLAy, ~hiiL we c;I1l “Fr(’c’-L:l~r:lnKl-#fl”

codc!s hav(: t)(!(!tl duVC)lo~(.’L! :Ipoolf’lLwlly W hiit)(llt lMFKL* djslorllonn. ‘HIPS!: :!P’I! !!” ,

ill Urlc!ltlon LO udJusLlng Lhc mush pOlnLS, [XIII t’C(:Ollll{’(!L m(!!l!l pointu, Lt)uu :’FL?il-

ln~ nl!w CCIIS. Whll~’ k’p(!t:-l,~~ril~glim CLMN!U cot] Mndlc VIPLUnlly uny (ll:;Lo?’Lion,

they nr’f’ OVUII mor’c cllf’fuMlvL’ Lll:ln rczonurs.

Utr ~ro Lr’yltl~ n tlif’for’uriL uppro:u!h to Lh&I ~r’uhlwu. H(I (Ibi!n(lori t,hc 1 d(~ii of’

Lii~r’nr]~lun CO1lU onLlraly. III Lh(’ nOXL :N(!llori wc’ WI II (I1!M!uMI+ how th(’ (’l)IINUr’V:I-

tlon equ.iLIunu cnn LJd solvod dlruc!Lly wilil:oul. r@.lorLln~ to Lql’unl:l.lu r~.llu,

M!xL w(! w1ll HIv(’ MOMO ux4Jml)lofl of (!iIl(’u]nLlorr:I u:~jn~ LII1!I mc!lho(l, l~Iri;llly, WII

will ~lVII d(~LilAlo c)!’ Lho (:{il(’lil lillorllil m(’Lho(l ~w’(!u(’rlLly ~)~llliK u:I(wI.

... .... .. ...
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II. SOLVING THE CONSERVATION EOUATIONS

The equaticns WC! are trying to solve can be written

[2.1]

[2.2:

[2.3]

P = P(p,e)

Where ~ r~p~e~ent~ the vector velociLy, p the density, e Lt,& spec~fic ~nLwn51

ener~y and P Lhc pressure of Lhe fluid. EquaLAon [2.1] expresses cDns”rvaLlon of

mass, [2.2] conservation of nomcntum and [2.3] conscrv9Llon of cnerfiy. ~t!~

Lagrimglan Llmc derivative, l.c., the derivative followlng the fluid, 1s inc!l-

D
cat+(’d by

Em

In a standarrl Lagranglirn calculation only Eq. [2.2”], thn momcn:u~ cquatlon

1s solved dlrccLly. The procedur(! is to lnLL!graLc L?.?] rnu?r surrc re!:lon of

spa(!(. U) arrive nL Lhr wxwmlcrn:lon of cnc!h rnesn polnL. The mcs!’r points w’!’ L.hon

movoc! rind the now cell volumf’u i~l~~g wiLh tho i’ix(’d GC1l mamr dcLrmiln:’ L!Ii: n~w

dcnulLy, Ih’’nci!, indlrcrcLly EIOIVIIIH M. [2.1 ]. ThP ii~80~lilt~d P(IV work term up-

(Ii!toti tht] c(;]1 (’n(*r’#y af)(! lndirvctly UOIV(!S F;q. [L’,jj atlll Llw t)(’w prcssu:’(! 1s



. .
. energy and velocity of the fluid, but wc do not aasociate any parLlcul&r mss

with the point.

Looking now at Eq. [2.11, we note that to apwox~mate the t~~e jnLc~r~l of

the density change from time t to time t + at we need an approxlmaLlon to f s i)

●t that point. To solve Eq. [2.2], MO need an approximation for 6P and for [2.3]

we again need $ ● ~. To obtain these, we select a set 0!’ ‘rewes6mL4tive”

neighbors. He then make a finite di~terence approximation to 8? and $ . fi, usin:

these neighbors, and update p, 8 and e at aach point. Each point 1s Lhcn xoved

the distance 8 bt and onc time step Is c~.~lcted.

AL the next tlac atcp the sclectlon of a set of “reprcsentatlve” nel~hbors

❑ay chan&e, but Lhis dots nOt require any sorL of’ ro-mapping of vtiriablcs. It

only means that a different set of points will be used 19 the nax% flnito clf-

fcrence approximation to ? ● ~ and ~P. Lar&@ distortions in Lhe flou will

produce frequent changes in neighbor selection, buL since there are no CCIIS to

distort and no re-mapping to be done Lhc calculation proceeds from CYC’lC to cycie

with no difficulty.

11:. SOW EXA!4PLE CALCULkTTOW

3.1 Here we will give three

HCM using th~ f’rcc Lagranglan

problum, the lnlLlid condlLion 1s

examplca of calcul&tions Wrformod by Lhn cod!’

method dwaoribed herein. In the first lCYL

a uphorc of pcrfoct gas .#lLh H SaRX!Ia of’ 5/3.

The gas ia dlvldcd Inlo four re~lona as seen in FiR. 1.1. Pruasurcu art: in

●cgnlws, den:ity in gin/cc and dlmcnnion in cm.

I

8
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The high pressure in region IV will drive a spherical implosion uk, ich u1ll

greatly compress region 111, 11, and particularly I. There are two challenges to

this problem, the first is to maintain a spherical ball tihile running the cal-

culation in cylindrical (r,Z) geometry. Six anapshoLs or region 11 are shohm in

Fig. 3.2. Region I is interior to region II. The minimum volume or region I oc-

curs in the rifth snapshot after which rc~ion I begins to expand. lie ran 10C3

Calculational cycl.-’s with 73 points in the rddi~l direction and 64 point9 cover-

ing 180° of angle. The left half of the snapshot is a reflection or the right

half which was calculated.

cm c) o 0

t-o.o t-.o49 t-.o99 C-.15O t=.185

FiK. 3.2

The secord chsllengc is the accuracy or the soluLion.

. ..

0
t= ● 289

For comparison pur-

POSWI we ran a standard one-dimension Lagrangian coc!e using 63~ zones, lGO zcmcs

in each ?eglon. In Figs. 3.3.a, b, c, and d. lie have plotLcd tnc averauc dcn-

91ty and average specific internal energy in regions I afid II as calculated by

HOBO wllh 73 polntti In Lhc radial dlrcction and the onc-dimcnslon La6ran61an c~l-

culat.ion wlLh flO(l points. tic feel the a&rccmenL to be qultc good. Onc notable

dlfrercnco is the tlmc aL whicn minimum volume io reached. HCNKI i9 sled by abodL

.0075 utiec or 4: or the problem time at Lhat point, Since uvcragc dcnslLy and

energy are integral quantities wc hav[! plotted onc of the varlabl~s as a function

of r~dlus In FIR. 3.4. W chose r’adlill velocity, but tho agrPemenL in all other

varlublas lH very slmllar. The plotu arc from sllgntly dlfrerent times to C!O!E-

pensute for the tlmc shlfL juut. mcntloned. Tho It) I,agrango plot. is at 2.125 usw

and the tif.)hl) plct Is from 2.25 us~~c. Ap;lr’t from thr inablllty of tho r.ort’

Coarsely zon(” hO!l(.) to resolve the shock front ill Lhe radlun l.? cm we f’wl Lhv
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Figs. 3.3. a, b, c, and d
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.. . 3.2. For our second tesL problem wc .have chosen a ?leshkov instability based

on Lhc geomeLry used in one of Mt!shkov’s experimen~g. The in~Lial conditions arc

.
shown In Fig. 3.5. A piston driven

then helium. The air to helium

initial perturbation in the air --

shock is driven through a region of air and

density ratio is just over 7. There is an

He interface which grows with time after Lhe

8hOCk passes through the interrace. In Fig. 3.6 we plot several snapshots of tne

Lagrangian point positions in the air (the lie is not plotted). For compa?lson

purposes we ran Lhe same problem in a two-dimensional EulerJan code with the CC1l

size simil?r to the point separation used in HOBO. In Figs. 3.7.a and b, tie com-

pare the size of the perturbation as it grows in time. In 3.7.a the inltlal

perturbation, 6, is .2 cm and in 3.7.b it 1s .4 cm in width. The agrccmcnt bc-

twcem the two codes is exccllcnt.

t-o-o t935: . t94;0, tmf155. t=10-5. t=120 i).
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Figs. 3.7. a and b

3.3. OUT third test pro blcm is the pcnctra~ion of a concrete plaLe by a

steel roa moving at an initial velocity of .2134 cm/uscc. Th2 roe is 9.066 c!n in

diameter and 45 cm in length. The concrete is 50 cm thick. In Fig. 3.~ WC? shou

six snapshots of the rod penetrating the concrete. Incomprcssiblc theory

predicts a constant time rate of change in the len@h of the steel roa. ‘iVw

2
sound apecd in the rod 1s .4545 cm)vsec and (v/c) = .22, so this problen shculd

not be too far from the Incompr’esuible 901ULJOn. As is shown in Fig. 3.9, th~]

rod lengt,h as a function of’ time matches the incompressible theory very weli.

Calculations ulth a tuo-dimensional EulerIan code produscd an almost iccnLical

result.
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lV. TH5 FINITE DIFFERENCE SCHEYE

4.1 The pressure gradient

We want to approximate 6P at the poir,t k where neighbors arc the poinLs k,,

‘2 ““” ‘mmax”
Our neighbor selection ~uarantees at least three neighbors for

each point, the average is sir and there is no maximum number. Clearly there are

many methods that could be used to approximate ~P. The following was arrivec at

through much trial and error and appears to work very well.

.k2 .kl

‘2 ‘1

‘3 “
.k

5

‘4

.k4

Fig. 4.1

Consider point k in Fig. 4.1 that has five nelgnbors. tic construcL a

polygon wiLh vertices mlduay between the point and each of its neighbors. Tnc

posltlon of’ the nth vertex is in

●

x n 1s denoted by O;n = ;n - ;k,

weighted average of P(k) and P(kn)

linear pressure dist.rlbution along

pressure over the surface to get a

the polygon to calculate a mass M.

= 1/2 [~(kj + ~(kn)] and the vector from jk to

The pressure at the nth vertex, Pn, Js a

(:o bc described in section 4.3). We assume a

each edge of the polygon and inrcgratc the

force ~. We assume a constant density pk over

Then we have ~ g = F~. Now let ;’ ;R +
n’

c~~n and the preaaure at the new vertex is P: = P
k

+ ~(Fn - pk), Now F and Y arc

!’unctlonn of c and we oompute



//
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The resulting exp~esaion for the pressure gradient Is

“~? (6Yn1- a ~ (dxn+l- 5xfyl)6Yn+l) + y n ‘n
aP. xnn - .-., —.- k 1 (6xn+16Yn - 6Yn+1 dxn)

n

[4.1:

m .

where x and y are respectively the ucit vectors in the x and y directions zzd

h;n = 6; n x + hyn;.

If the prececdlng Is done in cylindrical geometry, the result is ldcnLieal ror ~?

with x and y replaced by r and z. It is of interest to note that if the ~~pj is

~ot taken, the result does not give a spherically ay,mx!tric pressure gradient ir?

a spherically symmetric problem using cylindrical coordinates.

There is an Oasier way to arrive at Eq. [4.1] althou~n the method just

described la how we originally aerivcd it. Since it takes only three points LO

describe a plane surface, each consecuLlvc pair of neighbors along with the point

k defines a pressure plane to first order. If we assign a weight to eaah of’

those approximations we have an approximation for ~P. It the wei~htlnq function

is the area of the triangle formed by the three points, the resulL 1s Lhc sam as

Eq. [4.1]. tic have tried other weighting function, O and sing whore C 15 the

~nglc between d;n and 6~n+1 both Work fairly well, but area weighting appears to

be

In

best at this time.

4.2 The divergence of the velocity field

.
cartesean coordinates we reprcaent Lhe veloclty at the point k by ok - Uk x +

m

Vk Y. Thu divergence of the velocity field can be expressed as V.J ‘U‘Vat
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unere V is the specific volume of the fluid. Referring brick to Fig. 4.1 the

specific volume of the constructed polygon 1s proportion to the area of the

polygon given by

IJA=112 Xn+1 + q (Yn+l - Yn)

Hence we can write

1(Un+l+ Un) (Yn+l - Yn) + (Xn+l+ Xn) (Vn+l - qw.;g~ [4.2]
~xn+l yn- yn+l Xn
n

Equation 4.2 can be derived directly from Eq. 4.? by tIOLitI~ that 4.1 (XpllF9

a definition for the operatars ~ and ~
ax

~y and wh~n Lhese are applied Lo $ 9 ; = ~

av
+ Ty ‘q” [4.2]is obtained. Thus, we have in ef’feCt LhreC ways of’ derlvln~ the

same finite Difference approxlmal.lon to Lhc operators ~
a

In cylind-~cai
ax and z“

coordinutea we express the divergence of t!w veioclLy field as

whel,a~ + av
- W

~ 1s calculated by Eq. :4.2] wlLh X,Y replaced by r,z.

4.3 TtIc mldpint pressure and vclocit~

In 4.1 we u~c a prossurc Pn whlctt Is mldw~y betwmn pulrlLs k ancl Icn. This IN rloL

a numerlctil average. Conulder the or~e-dln:crlsloll~l problcm dcpicLcd lt! Fig,

4.2.u.
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p
● 0.0 -1

%2 %-1 % % ‘1+2 %+3

,; - “1+1*S*ip@l

% + %+1

rig. 4.2.~

k-

%’% I \\
%-a‘i-l 81 ‘4+1 %+

(&lc2),l’i● (Ai+,t’i+,q 9

(d)l+ (uc2)g+1

Fig. 4.2. b

Hhat pressure should we uae for P; = P~+l 7 If we uac tho avera~e, 1/2 (P1 +

P2) the acceleration at i+l ulli DC ❑uch greater than at i. However, MC know

that the velocity snould be conLlnuous across the dlaconllnuity. Glvcn equal

zoning the boundary pressure which gives equai accelorationz to points i anti i+l

It oan be shown Lhat the resultin~ ~lnlte difft?rcnco approximation Ox = (P; -

P~)/6x 1s second order accurate when the donslty is continuous.

Now consider Lha problem depicted in ~.2.b. Here wc have a heavy IIiatcrlul

on the loft mOVltIg into a very light IUtUPid~. on the righL. UhuL should W@ usc

‘w “; - “1+1 7 If we uac the avoruga, 1/2 [Ui ● “i+,). Lhore will be u vary

large rate of’ compression in region 2 whloh is Incorroct bccausc roglcn 1 lM

moving into a now vucuum. Ths quanLILy thaL should be conLlnuouu 1s prcssur~.

Tho voloclty which cimsm oquul Preusuro incrouucu ML polnLs 1 crul i+l lU U+ =

la M consLank. Aguin it can bc uhuwn LhaL thu t’uMultJmL f’lnlLo

proxlmutlon to Ux is second ordur uccuratc lf pop 10 c!!rlLlnuou:l,
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The midpoint pressure used in Eq. [4.1] are inverse dens~ty weighted ana tnc

2❑idpoint velocities in Eq. [4.2] are PC weighted.

4.4. The artificial viscosity

An artificial viscosity, q, is added to the midpoint pressure in Eq. [4.1]. It

Js quadratic inform. Let UC be the closing rate bctwccn points k ana Kn, i.e.

($ - 3k )
UC - (t

‘-’’”’”ml

Then let qk - a2pkU~ and qk =
n

verse aCnalLy weight the two LO

u’920k ~. In the splrlt of paragraph 4.3, wc in-
n

get our expression for the midpoint q, i. c.,

% - 2a2 llc~ / (l/pk + I/pk )
n

In all of’ om example calculations in section 2 bJP usual a2 = 5.76. I;ow WC must

fold q into the lntcrniil energy cquatlon in which we need to Qvaluatc (P + q)f”il.

C)dr

the

approximation for ~-~ 1s given by Eq. [4.2]. The q term 1s brGu~;hL InLic’:

sutmnation so tha;

~ (Pk Y 1) + ~ (Pk + qn)vn(xn+l - ‘n-l)“ qn)”n(yn-l - n+
(~ + q)r.t . n 01,11’]

} Xn+, yr - yn+, x,,
n



.
. ●

4.5. Prevention of density striation!

The method so far described has one remaining difficulty. By having all of the

variables cerltcred in space it becmea impossible to detect a sawtooth type wave

as depicted in one dimension in Fig. 4.3.

P

‘i-2 ‘i-1 ‘i+l ‘i+2

Fig. 4.3

-P
kn “ If’ ttmy uro not cquhl, there 1s

uhlcrh wti att(!mpt to roduco. Physl(!olly

to nrrlvn nt



[11. u:

u’ 1s added to Un in zalculaLing 6-U.
n

In our pregent calculations b2 - 1.44. We further l~mtt U’n to bc lC:ISII
than 2C% of the maximum of (Ck, Ck ). In practloa, Ui Js a very small term, but

n

an absolutely necessary one. For example, ~n test problem 1 , density Striation$

of around 5!)%u1ll occur without using u’. Wc note alsc that 6P 1s Proportional

to 6P iS 6X2PXX ana thun ia quadratic in naturz. The simllarlLy bctwccn q and u’

1s striking. The q is an aril.if’lcial pressure which smooLhs t,nc VC1OC1LY f’i~ld

wnllc u’ is an wLiflcial veloc~ty which smooths the pressure fluld.

4.6 NOlghbOr Wlcctlon



not unique, but the one being used at present appcnrs to do an excellent job.

The method could be directly tended to three dimensions. One drawback to the.

method 1s it’s failure to explioltly conserve mass, momentum and energy. In

fact, at my given time, the ❑ ags ia not defined. We must perform and auxlally

calculation by integrating the density field over apace to obtain ❑ass, enerl;y

and momentum. Houever, in all cases whore ue have done this, we have found the

draft in these quanLILiea to ba no more than a fow present.
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