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A NEW SIMULATION METHOD FOR THE EFFICIENT CP.LCULATIO!JOF BENCH,M.ARKS
FOR DETONATION PRODUCTS EQUATIONS OF STATE

M. S. Shaw
Group T-14, !4SB21&

Los Alamos National Laboratory
‘LosAlamos, New Mexico 87545

A new variation on the Monte Carlo method is presented here in the
context of its potential impact on the development of dcconation
products equations of state (EOS). The configurational density of
states and other quantities are determined for a nonstandard reference
simulation. Then the EOS for a linear combinations of potentials is
evaluated through a density of states transformation at arbitrary
densities and temperatures in the fluid range. The compucer time
required for the EOS calculation (including free energies) is negligible
once the reference simulation is made. The EOS over the entire fluid
regime for a Lennard-Jones fluid (including the location of the
gas/liquid equilibrium phase line) is calculated. Preliminary results
on the extension of the method to the exponential-six po~enti~l nre
presented. The efficient calculation of benchmarks over the very large
parameter space of relevance to detonation products EOS may now be
possible.



INTRODUCTION

In the last two decades, a great. deal of
progress has been made in the area of theoretical

equations of state for fluids. Of particular

Interts: to the explosives community has been the
work of the last decade in applying these methods
to the construction of physically ❑eaningful
detonation products equations of state. The gOdi

for thermodynamic cheery is to be able to take a
given set of interaction potentials for an
arbitrary mixture of product molecules and
calculate accurately and quickly the equilibrium
EOS under rhe extreme conditions of pressure and
temperature characteristic of detonation products.
Then the potentials could be determined from
quantum mechanics or normalization to data
(typically the quantum calculations are
qualitative and are useful for the determination
of functional forms to be used in fitting d,~ta),
Until the thermodynamic theory is tied down, there
will be too many free parameters to assure a
predictive EOS in which all of the constants are
physically meaningful.

Although much progress has been made, we arc
not yet at this goal for thermodynamic theory,
Fas: quantitative methods] are available for :hc
EOS of single species with spherically symmetric
interaction potentials. MetFtods exist for
spherical mixturesz, but their accuracy has only
been tested against a limited set of simulations
in the regions of interest Pm accurate me~hocl]
for treating single species nonpolar, nonspherical
interactions (e.g. Nz and C02) as an effective
spherical interaction has been developed. ‘l’he
mixture problem for molecules with shape and the
problem of the large dipole moment IR H20 are
largely unsolved, Of course, there are benchmark
type methods such as molecular dynamics (MD) nnd
!’lent.eCarlo (MC) which provide accura~.e
~hermodvnamics at LI)Ccost of around 10 minutes of
C!G4Y Lllnuper EOS point. The parameter spncr 1s
too l~rgo to us~ these mrt}]ods rfirectly for a
pt-tlcticnlPxplosivcs Eos, l’hcy fll-e used LO t[tst
I]lC ~lCCUI.~Cy O: much fnster npprox!mnte met.llo(ls

[l~nlnre then usc(i to model cxplosi~rcs,



simulation is only calculated once and the
remap?ing is very fast, the cost per EOS point IS
small.

In the remainder of the paper, we will begin
wir.h a discussion of the evaluation of the
configurational density of states for a reference
potential using a nonstandard Monte Carlo method.
Then the transformation of the reference density
of states into that for a linear combination of
the reference potential and other potentials is
presented. Next is given the ❑ethod for
evaluation of thermodynamic quantities from the
transformed density of states. Results for the
Lennard-Jones potential are then illustrated.
This is followed by a preliminary version of the
treatment of the exponential-six potential fluid.
Finally, the implications for the development of a
predictive, accurats EOS for detonation products
is discussed.

DENSITY OF STATES FROM MONTE CARL5

The usual NVT ensemble Monte Carlo (MC)
method uses importance sampling to ev~,luate
integrals of the form

ff(rl, .,.,rn)exp( -~U(rl,...,rn))drl”””dr

(f)- -
n

—-— (1)
z(p)

where Z(/1)-~exp(-/3U(r,..,,rn))drl’”’dr is the
configuration integra ~, Uischetoca~ potential
energy, and ~-i/kT. The MC steps are taken with a
probability densit P,(rl,”’’,rn)which is

Jproportional to e- ‘. The approximation to (f)
from the MC sample is given by

(f)- ~f,e-6uP,(i)-’/~PuP,(i)i]-~f,f~1~N-~fi~fi, (2)
i-l 1-1 1=1 1-1 i-1

where only ratios of integrals are evaluated since
the overall normnllzation 1s not defined by the
methad, Here i deslgnat.es the coordinates
r1’ “’rtjat the ith st.cp of tl~es~mulat~on,

We can trnnsforrn the compltcntions of tllv
mnl~y-bo(lyIl~t-e,gt-aLlor~to th;itof fln(i{llg the
collf_lp,urnt ional dt-’l)sjt.yof stnr@s. I,aylnf,tlIrI
foulld(ltionfor n w}101c clnss of met}~ocls,Mcl)o[l;ll(l
fIlldSlnp,(,r

5,6
cvlllUiltcd l-clnt IVP V,ll(l(’sfor (11(’

t.onf!r,urntIon{i]dIIIIslt,yof :i!ntrs‘Y(LI)OVOI- (I

IIlnitod I-; II IF,(Z I)j rrw~,lp,t)t ifly, tl~~ ros\Ilts of ;I

s[nli(!nl’d MC S[11111]{1! lot), milt is, l:l{tl:l( 1o11 (1 ) (’(III
})cr(lwl”fttrn as

Jf (11),((1)(.s,)(-p(l)(l[l
(f)- (“))

7,(/1)



where Z(/l)-~V(U)exp(-/?U)dU, T(U) is the number of
configurations between U and U+dd, and f(U) is the
average of f over those configurations. Then T(U)

is proportional to e+n times the number of counts
in the range U to U+dU. With further reweighing,
thermodynamic quantities can be evaluated for
different values of density, p, and temperature,
T, over a limited range. Fo~ example, Equation
(3) can be evaluated for any value of ~ provided
7(U) and f(U) are known over the range of
importance to the integrals. This idea was made
❑ore efficient by Torrie and Valleau’s umbrella
sampling’ in which a non-Boltzmann distriblltion is
[.sed to cover a wider range in a single sample. A
number of applications of these and related
methods have been made.

Ir this paper, we develop a variation on the
types of methods n,ntioned above with the
advantage of spanning a very large rarlge in U in a
straightforward manner. In addition, a reasonable
number of particles can be used in the simulation
(in this example N-122) in contrast to many of the

other methods which are typically implemented with
N-32 . The evaluation of thermodynamic quantities
from the simulation is different from the above
methods although there is some overlap. In
addition to the usual steps in configuration
space , a step in ln~ is made after a given number
of steps in U. This combined algorithm samples
with probability density P(~,rl, ”””,rN)-
exp(-@(rl,’”’, r~))/Z(8) in the limit of S1OW
motion in 19relative to mot:on in U. A uniform
distribution Ovei lrr~could be made with random
steps . For numerical convenience, however, we
have chosen to make constant size steps in ln$
movin~ altern~tely up and then down a given r~inge
of lr@,

Consider each value of ~ to designate a
separate NVT ensemble simulation, Pr~vided the
initial cond~tioil of the ~ simula[:ion !s from a
configuration that is typical of a simulation at
that value of /3, then the,usual equilibration pnrt

of the v.incan be eliminated. (Note that Ll]crc 1s
no preference inherent in the simulation for any
givpn configuration wi~h energy U over any othct-
witll the sonleU. So, a change in /3only chnr)~cs
the ovorall prohib{ljty of snmpl~ng n st(ltcwill]
cn~ry,y U ond not the relntlvc prollnh{liti(lsof
part icu]fir ronflEurat!ons witl~ thr s.qme U,) Clvell
1) Iismn]l (’lloufihSLC;){n P [o ylPld n small
(’hmI~;cITItiledlstrlhutlnn of U’s snmplt)d m)(l 2) :1

loll~ crlol.1~,11!;(lh-,t;[ln\ll,lt{(>11Ilt(’(1(’11/3 to e] IInlllll((,
;Illy s~y,rlific;lllrcorr~’lnt{011[r)(ll)(ItwPcIIt})(.
Irllt1111:111(1flllnlS([lf(’r~f’II)()s~il>-:;lmllilt1(~11,
IIlvl!tI](’rlc~,lr(.t()!Illr(,(1(111Il)rfl[10?}stn~,(~Is
V{lll(l, IllJl(l(ll(101),fl~l!ll(}(ll(’(loiltl_y {)! [11P (l

stll).slmlll(ll1011JIIsvvvrnl $tll~~,csIllrho !((11
!mtll~l[lol)Is !III:IlltmlvolytlI(,:O;im(’{Is tnklll~,,,



uncorr-lated sub-simulations from a very long NVT
MC run.

Given this reference simulation, how can we
evaluate 7(U)? Now Y(U) is a very rapidly rising

function and exp(-~U) js a very rapidly decreasing
function such that the product Is sharply peaked.
l%is peak occuro where d[ln7(U)-/?U]/JU-O, Beca\lse
of the very sharp peak, we also know that it
occurs at U-(U). This gives a simple relation
from which to determine v(U),

dlnV(U)”
6- (4)

au U-(u)d ‘
where the ~ subscript is a reminder that (U) is a
function of 19. Then by integration,

ln~(U)--&U)dU. (5)
u

From the reference simulation, we obtain
approximate v:.lues for U(@) for as many values of
~ as were sampled. The scatter in this data can
be reduced by fitting to a reasonable functional
form. Since the reference simulation used
throughout this paper is for the r-lzpotet-rtial,we
will restrict the discussion to that particular
case . In reference 6, we fit ln~ vs. lnU which is
fine for a relatively large but finite range in U.
For this study, however, we have extended the
range of the simulation from the virial region to
the melt line.. By choosing a functional form
consistent with the virial EOS, the range is
further extended from the ideal gas regime to the
melt line.

The soft sphere fluia has scaling properties
that allow the “excess” or non-ideal properties to
be expressed in terms of a single scaled variable,
x-p~p . (The reference simulation of the soft
sphere fluid was made with parameters p-t-o-l. )
In the virial region (i.e. ideal gas plus second
virial coefficient terms only), the
corrpressabil,it: factor Z-PV/NkT is given by Z-l+BX
where B-n23J2r( ~ )/3-3,62958864 is the reduced

second virial coefficient. Similarly, thp @X(7<?SS

energy ts given by U/N-4Bx-3. Since wc hnve
chosen p-l, this ex ression can be invertpd tc

J’~Ive X-/3’-(lINB)B1-1’, TIICsimuln:!orr results L-II-(*
then fit to [he form,



integrating the appropriate expressions to get the
long range contribution co the quantities of
interest. The intial configuration was determined
by choosing each coordinate from a uniform random
distribution within the box and then ignoring
steps in an equilibration period.

AS a check on whether 6P is small enough and
the number of steps in U between steps in 90 is
large enough, cwo sub-averages of U are made for

each value of 13. One average is made from
segments of the simulation where /l is increasing
and the other for ~ decreasing. The lack of a
systematic difference between the two types of
averages indicates that the simulation is
satisfactory.

DENSITY OF STATES TRANSFORMATION

The real advantage of the method comes from
the transformation of the reference density of
states to that for an arbitrary linear combination
of potentials. Then the EOS over a large
parameter space may be sampled from one reference
simulation, as demonstrated below.

Consider the following functional form for W
the total potential energy per particle,

(7)

where

pi is the ith pair potential for particles k and 1
separated by distance rkl.

For A fixed reference energy U, the
probability distribution of configurations with
potential energy W, denoted P(W,U), can be sampled
from the reference simulation, Then the
configurational densiry of states fcr the
potential W is given by

r(w)-,f~(u)P(k’,u)du. (9)

The cvnluntfon of P(W,U) is Et-catly simplified
because its functional form in the variable W Is

that of G normal distribution to a very good
approximation, (This is essenLlally a consequcr-w(’
of !hc cent.rnl llmit rlleol”cm,) Thrn P(W,U) is
d(’termin~rl bv tile cvalLIaI Ion of momrrlts

<W>u+l ,<w~,,, (10)

,-illd



u(u)&lJ2>”-(*u)2-~ ~:i:, (aiwj>u-ai>ua,>u), (11)

where < >“ denotes the average over all
configurations with the reference energy between U
and U+dU. For a given value of U, the normal
distribution form is

P(W,U)- exp(-h((W-*u)2/a(U)2))/u(U)~2fi. (12)

Note that the linear coefficients ai en~er in a
trivial fashion and Equation (12) can be evaluated
for an arbitrary set of ai’s once the set of
Gli>’s and CWi!Jj>’s are sampled from the reference
simulation as a function of U. In practice, the

moments are sampled over bins in U and fit to
algebraic functions of U over the region of U
s:ampledby the reference simulation. Then ~>u
and U(U)2 are evaluated using Equations (10) and
(11) for the given set of a~’s. For a given value
of W, we can evaluate p(w)-r’(w)ir(w) (i.e.
Equi~tion (4)) from the integral

r’(w)-J((dbU-w)/02(u))7(u)P(w ,U)dU (13)

and Zquation (9).
In order to get the pressure, we also need

th,eaverage over configurations in the range U to
l~+dUof that part of the virial due to
interparticle forces. For s herical potentials,

F’tilerelevant functions are - /3rpi’(r) rather than
@i(r) in Equation (8). For the special case of
inverse power law potentials, these two quantities
only differ by a constant multiplier. It is a
straightforward generalization of the der~vation
above to obtair, an expression for pressure
involving the ratio of one dimensional integrals,
The Gibbs free energy can also be obtained since
the excess entropy is equal to the logarithm of
the configurational density of states,

A further simplification can be made,
however, Again using the sharpness of the
distributions, the integral in Equation (8) can be
approximated as

in r(w)- in [-f(U)P(W,U)]u@Pati+ O(N”l), (1/,)

The or.her [Ilormoclynamicaverages then brcome the
values of qunlltitit.sevaluated at the peak of L}IC

sharp distribution, For example, we now hflve

p(w)-r’(w)/r(w)-(<w>u.w)/02(u) (u@pcnk). (1’))

The details nre beyond the scope of tileprcscrrt.
discussion nnd will he presented in n subsetl~lrl~t
papera, The !mport~nt point 1s thnt tl~c
(Ilcrmodynamic quantl~~es ::rc12’JHIUiltCd from
~lgcbraic expressions.



LEN’NARD-JONES FLUID

We now turn to the calculation of
thermodynamics for a system of interest in order
to test the precision of this method. Because of
its widespread use and avail~ble simulation data
from other methods, we have chosen the Lennard-
Jones fluid as the tesz case with the soft sphere
fluid for the reference simulation.

The soft sphere pair potential is given by

u12(r)-4c(r/0)-12 , (16)

and the Lennard-Jones potential is

\J(r)-4( [(r/u)-12-(r/u)-6] , (17)

where c is the well depth and u is the point where
the M potential crosses O. The same parameters
are used in the soft sphere potential to simplify
the connection between the two even though a
single constant would be sufficient. The scaling
properties of the LJ potential make it convenient
to use reduce! quantities with the following
relations: T -kT/t, P -PU3, u“-u/c-U*/N, and
P“-Po3/c, where T is the temperature, p is the
number density, u is the potential energy per
particle U/N, and P is the pressure. The
simulation was made with p-l and we have chosen
(-1 for convenience. Then we have p*-u3, al-ulz,
a--o , W1-4r-~2, With p* and U* as
tie [dependent v;;;a;~;~;*, P*, and G* are
calculated as outlined in the previous section.
In this example, the one dimensional integral
forms were evaluated using a 20 point Gauss-
Hermite quadrature.

In Figure 2 we show hcw well the simulation
fits the functional form Equation (12) for several
values of U

‘i
The data are scaled such that the

data would t en li~ on a single curve if the
fuctional form were exact, We see that this form
does flc quite well. In Figures 3 and 4, the
analytlc fits to scaled values of - and 02 are
compared with those directly evaluated from the
reference simulation, The results for P* are
compared with MCg’10and molecular dynamicsll’12
(MD) simulation values in Figure 5, Similar
comparisons for a different range of p* and T* are
shown in Figure 6, Note that differences are
smaller than the inherent scatter in the USUH1
MD/MC methods. Thr gas/liquld phase equilibrium
llne calculation is compared with stnn(lard
simulntion10’13and perturbation met,hodslhin tiEurcI
7.



EXPONENTIAL-SIX FLUID

The most commonly used pair potential for
detonation products EOS is the exponential-six
form given by

q(r)-c[6exp(a(l-r/r*))-a( r/r*)-gl/(a-6). (18)

Preliminary results are presented here for a fir
(to an accuracy of better than 1%) of the exp-6 as
a linear combination of inverse power law
potentials given by ~i-4r-i over H range of i-6 to
15. The a ‘s are chosen for a given value of a
with ,-r~-~. The scaling properties in the
Lennard-Jones sect~on are the same here with the
additional relation a6-2r*6. Then the a~’s are
scaled to give results for different values of P*.
The algebraic forms for evaluation of
thermodynamic quantities are used. “.ihereference
simulation needs to be run longer to improve the
statistics, but the preliminary results are
accurate to about 2% in comparison with standard
MC simulations15 for a-13.5. The analytic
representation for the moments are compared with

the direct evaluation from the simulation in
Figures 8, 9, and 10 for a typical case. Results
for 5 values of a, 30 values of P*, and 3 values
of T* are shown in Figures 11 and 12. Since the
final expressions are aluebraic, as many EOS
points as are desired may be generated with a
negli~ible amount of computer time once the single
long reference simulation ~.smade.

IMPLICATIONS

We have demonstrated a very efficient method
to generate EOS simulation benchmarks for the
Lennard-Jones and exponential-six potentials.
Indeed the final analytic representations could
compete with perturbation theories for spe~d rnd
accuracy. The extension of the method to
mixtures, polar fluids, nonspherical interactions,
and combinations of these appears to be

straightforward. For example, mixtures could be
studied by choosing the Wi’s to include the
interactions within findbetween subgroups of
particles rather than all of the particles in a
simulation. Then the cross potential could be
varied as easily as the density. The phase

se~regation line could then be explored as a
function of cross potential parameters us~ll~ rhr
free energy results for pure species aIId mlxt.lires,

These t.}pes of studies would he extremely
expensive in both computer time nnd man-time for
any systematic study with standard mttllods, Wi tll
Chp rlew method, these studies become trartnbl~ al](l
the remain{ng paramettir space fol”detonation



1i)
products E3S can be explored. The net goal is to
fill in the gap of missing benchmarks for the
development of thermodynamic theories that will
lead to a detonation products EOS that is
accurate, predictive, and physically meaningful.



FIXJRE CAPTIONS

FIGURE 1. COMPARISON OF Simulation DATA (+) AND
EQUATION (6) (LINE).

FIGURE 2. COMPARISON OF THE NOPJ4AL DISTRIBUTION

(LINE) AND SAMPLES CF THE AC1’UAL DISTRIBUTION FROM
THE SIMULATION (SYMBOLS).

FIGURE 3. COMPARISON OF THE FIT TO - (LINE) AND
VALUES FROM THE SI!lUIATION (+). VALUES ARZ

SCALED .

FIGURE 4. COMPARISON OF THE FIT TO a2 (LINE) MD
VALUES FROM THE SIMULATION (+). VALUES ARE

SCALED .

FIGURE S. P* VERSIIS T* FOR A RANGE OF REDUCED

DENSITIES FROM 0.6 TO 1.2. M~/MD SIMULATIONS
(SYMBOLS), THIS WORK (LINE), .:D LOCATION OF THE
MELT LINE (DASH).

FIGURE 6. PV/NKT VERSUS T+ FOR A RANGE OF F_lDUCED
DENSITIES FROM 0.1 TO C.9. MC/MD SIMULATIONS
(SYMBOLS) AND THIS WORK (LINE).

FICUKE 7. GAS/LIQUID EQUILIBRIUM PHASE LINE FOR
THE LENNARD-SONES FLUID. THIS WORK (LINE),
STANDARD MC SIMULATION (BOX, +), AND PERTURBATION
THEORY FOR THE CRITICAL FOINT (LARGE +).

FIGURE 8. ~> VERSUS U-l” FOR A TYPICAL EXP-6
CASE . ANALYTIC FIT (LINE) AND VALUES FROM THE
SIMULATION (DASH),

FIGURE 9. SAME AS FIGURE 8.

FIGURE 10. 02 VERSUS U-l’sFOR A TYPICAL EXP-6

CASE a ANALYTIC FIT (LINE) AND VALUES FROM THE
SIMULATION (DASH).

FIGURE 11. PV/NKT VERSUS 7* FOR a-12, 12,5, ‘3,

13.5, AND 14, T*-5, 20, AND 100, AND Y*-O.1 TO
30. THIS WORK a-13,5 (LINE) AND OTHER a’S
(DASH) , STANDARD MC SIMULATIONS FOR a-13,5 (BOX).

FIGURE 12. SAME AS FIGURE 12 EXCEPT @ VERSUS 7*.
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