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A NEW SIMULATION METHOD FOR THE EFFICIENT CALCULATION OF BENCHMARKS
FOR DETONATION PRODUCTS EQUATIONS OF STATE

M. S. Shaw
Group T-14, MS B214
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

A new variation on the Monte Carlo method is presented here in the
context of its potential i{mpact on the development of dctonation
products equations of state (EOS). The configurational density of
states and other quantities are determined for a nonstandard reference
simulation. Then the EOS for a linear combinations of potentials is
evaluated through a density of states transformation at arbitrary
densities and temperatures in the fluld range. The computer time
required for the EOS calculation (including free energies) 1is negligible
once the reference simulation is made. The EOS over the entire fluid
regime for a Lennard-Jones fluid (including the location of the
gas/liquid equilibrium phase line) is calculated. Preliminary resulrts
on the extension of the method to the exponential-six potential are
presented. The efficlent calculation of benchmarks over the very large

parameter space of relevance to detonation products EOS may now be
possible.




INTRODUCTION

In the last two decades, a great deal of
progress has been made in the area of theoretical
equations of state for fluids. Of particular
interuvs: to the explosives community has been the
work of the last decade in applying these methods
to the construction of physically meaningful
detonation products equations of state. The goal
for thermodynamic theory is to be able to take a
given set of interaction potentials for an
arbitrary mixture of product molecules and
calculate accurately and quickly the equilibrium
EOS under the extreme conditions of pressure and
temperature characteristic of detonation products.
Then the potentials could be determined from
quantum mechanics or normalization to data
(typically the quantum calculations are
qualitative and are useful for the determination
of functional forms to be used in fitting data).
Until the thermodynamic theory is tied down, there
will be too many free parameters to assure a
predictive EOS in which all of the constants are
physically meaningful.

Although much progress has been made, we are
not yet at this goal for thermodynamic theory.
Fast quantitative methods® are available for the
EOS of single speciec with spherically symmetric
interaction potentials. Mcthods exist for
spherical mixtures?, but their accuracv has only
been tested against a limited set of simulations
in the regions of interest. An accurate method’
for treating single specles nonpolar, nonspherical
interactions (e.g. N2 and COZ) as an effective
spherical interaction has been developed. The
mixture problem for molecules with shape and the
problem of the large dipole moment ir H O are
largrly unsolved. Of course, there are benchmark
type methods such as mnlecular dynamics (MD) and
Monte Carlo (MC) which provide accura:e
thermodvnamics at the cost of around 10 minutes of
CRAY time per EOS point. The parameter space Is
too large to use these methods directly for a
practical explosives EOS. They are used (o test
the accuracy of much faster approximate methods
that are then used to model explosives,

This paper gives results for a new'

varfation on the Monte Carlo method that retaing
the accuracy of the standard MC methods, but
dramatically fncreases the speed with which the

parameter space can be mapped out. Starting {rom
a no standard reference simulation which samples
essentially all of the phase space relevant to
fluids, a remapping {s made to determine th- FOS
for different values of density and temperature
throughout the flufd regime.  Since the reference



simulation is only calculated once and the
remapplng is very fast, the cost per EOS point is
small,

In the remainder of the paper, we will begin
with a discussion of the evaluation of the
configurational density of states for a reference
potential using a nonstandard Monte Carlo method.
Then the transformation of the reference density
of states into that for a linear combination of
the reference potential and other potentials is
presented. Next 1s given the method for
evaluation of thermodynamic yuantities from the
transformed density of states. Results for the
Lennard-Jones potential are then illustrated.

This is followed by a preliminary version of the
treatment of the exponential-six potential fluid.
Finally, the implications for the development of a
predictive, accurate EOS for detonation products
is discussed.

DENSITY OF STATES FROM MONTE CARLD

The usual NVT ensemble Monte Carlo (MC)
method uses importance sampling to evaluate
integrals of the form

( > 'rf(tl'""rn)exp(-ﬂU(-rp"'-rn))drl"'dl‘n
£)= L)
rA¢:))

where Z(B)=fexp(-pU(r.,...,r ))dr ~~'dr_ 1is the
configuration integrai, U is the total potenctial
energy, and B=1/kT. The MC steps are taken with a
probability densiﬁg Pr(r‘,“',rn) which 1is
proportional to e ', " The approximation to (f)
from the MC sample 1s given by

N N N N N
(£)= LF e PP (1) '/Fe P (1)7'-Rf /T1=NTTE , (2)
1=1 =1 f=1 =1 1=l
where only ratios of integrals are evaluated since
the overall normalization is not defined by the
method. Here | deslignates the coordinates
r, .r, at the ith step of the simulation.

We can transform the complications of the
many-body Integration to that of finding the
conflpuratfonal density of states. Laying the
foundation for a whole class of methods, McDonald
and Singer>® evaluated relative values for the
confipurational density of states y(U) over a
lmited range by rewefphting the results of a
standard MC simulation. That s, Equation (1) can
be rewrfitten as

Sy (Wexp-pu)du
(1)- . (1)
7(f)
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vhere Z(ﬂ)-fv(U)exp(-ﬂU)dU, y(U) is the number of
configurations between U and U+dJ, and f(U) is the
average of f over those configurations. Then y(U)
is proportional to e*” times the number of counts
in the range U to U+dU. With further reweighting,
thermodynamic quantities can be evaluated for
different values of density, p, and temperature,
T, over a limited range. For example, Equation
(3) can be evaluated {or any value of g provided
v(U) and f(U) are known over the range of
importance to the integrals. This idea was made
more efficient by Torrle and Valleau’s umbrella
sampling’ in which a non-Boltzmann distribution is
v.sed to cover a wider range in a single sample. A
number of applications of these and related
methods have been made.

Ir this paper, we develop a variation on the
types of methods m.ntioned above with the
advantage of spanning a very large range in U in a
straightforward manner. In addition, a reasonable
number of particles can be used in the simulation
(in this example N=122) in contrast to many of the
other methods which are typically implemented with
N=32. The evaluation of thermodynamic quantities
from the simulation is different from the above
methods although there is some overlap. In
addition to the usual steps in configuration
space, a step in 1ng is wade after a given number
of steps in U. This combined algorithm samples
with probability density P(ﬂ,rx,“',ru)-
exp(-pU(r,, "",r))/2Z(B) in the limit of slow
motion in B relative to motion Iin U. A uniform
distribution over 1nf could be made with random
steps. For numerical convenience, however, we
have chosen to make constant size steps In 1nj
moviny, alternately up and then down a given range
of 1nf.

Consider each value of B to designate a
separate NVT ensemble simulation. Provided the
initial condition of the A simulation {s from a
configuration that is typical of a simulati{on at
that value of g, then the usual equilibration part
of the run can be eliminated. (Note that there {s
no preference inherent In the simulation for any
piven confipguration with energy U over any other
with the sane U. So, a change in f only changes
the overall probibility of sampling a state with
cnerpy U and not the relative probhabilities of
particular conflgurations with the same U.) CGlven
1) a small enough step in 8 to yleld a small
change {n the distribution of U's sampled and 2) a
long enough sub-simulat{fon at each B to ellminate
any sipnificant correlation Iin U between the
fnttial and final state of the sub-stmulation,
thet the neglect of the equllibratton stapge fs
valld, In addition, a repeated catry of the g
sub simulatfon at several stapes in the full
stmulatfon Is qualitatively the same as taking



uncorrelated sub-simulations from a very long NVT
MC run.

Given this reference simulation, how can we
evaluate y(U)? Now y(U) is a very rapldly rising
function and exp(-fU) is a very rapldly decreasing
function such that the product is sharply peaked.
This peak occurc where 3[1lny(U)-AU]/3U=0. Because
of the very sharp peak, we also know that it
occurs at U={(U). This gives a simple relation
from which to determine y(U),

dlny(U) |
fo — , (4)
au U-(U)
where the 8 subscript is a reminder that (U) is a
function of 8. Then by integration,
Iny(U)=-fB(U)dU. (5)
u

From the reference simulation, we obtain
approximate values for U(B) for as many values of
B as were sampled. The scatter in this data can
be reduced by fitting to a reasonable functional
form. Since the reference simulation used
throughout this paper is for the r’!? potential, we
will restrict the discussion to that particular
case. In reference 4, we fit Inf vs. 1rnU which is
fine for a relatively large but finite range in U.
For this study, however, we have extended the
range of the simulation from the virial region to
the melt line. By choosing a functional form
consistent with the virial EOS, the range is
further extended from the ideal gas regime to the
melt line.

The soft sphere fluld has scaling properties
that allow the "excess" or non-ideal properties to
be expressed in terms of a single scaled variable,
x=8"5. (The reference simulation of the scft
sphere fluid was made with parameters p=¢=g=1.)

In the viria: region (l.e. ideal gas plus second
virial coefficient terms only), the
compressabi]it; factor Z=PV/NKT is given by Z=1+Bx
where B=n2/%r(%/,)/3=3.62958864 is the reduced
second virial coefficient. Similarly, the excaoss
energy is given by U/N=kBx™?. Since we have
chosen p- , this exPreqsion can be Inverted tc
glve x=A"~(4U/NB) 1/ The simulation results are
then fit to the form,

n
- ) auth? (6)

1=1
The fit and the simulatlon data are compared in
Fipure 1. Note that Fquatfon (5) can now be
integrated analytfcally for the functional form,
Equation (6).

Perfodie boundary conditions were used with
a potential cutoff radlus r_ chosen at half the
box size. Corrections were made with the usual
approximation that g(r)=1 outside r_and



integrating the appropriate expressions to get the
long range contribution to the quantities of
interest. The intial configuration was determined
by choosing each coordinate from a uniform random
distribution within the box and then ignoring
steps In an equilibration perilod.

As a check on whether §8 is small enough and
the number of steps in U betwe~n steps in ﬁo is
large enough, two sub-averages of U are made for
each value of f#. One average is made from
segments of the simulation where A 1s increasing
and the other for B decreasing. The lack of a
systematic difference between the two types of
averages indicates that the simulation is
satisfactory.

DENSITY OF STATES TRANSFORMATION

The real advantage of the method comes from
the transformation of the reference density of
states to that for an arbitrary linear combination
of potentials. Then the EOS over a large
parameter space may be sampled from one reference
simulation, as cemonstrated below.

Consider the following functional form for W
the total potential energy per particle,

w-Za‘wi, (7)
where
1 NN
W — 2 L e (n), (8)
2N kml

¢, 1s the ith pair potential for particles k and 1
separated by distance r .

For a fixed reference energy U, the
probability distribution of configurations with
potential energy W, denoted P(W,U), can be sampled
from the reference simulation. Then the
configurational density of states fcr the
potential W is given by

F(W)=[y(U)P(W,U)dU. (9)

The cvaluation of P(W,U) is greatly simplified
because 1its functional form in the variable W is
that of a rormal distribution to a very good
approximarion, (This {s essentially a consequence
of the central limit vheorem.) Then P{W,U) is
determined by the evaluation of moments

<w>u':“;<w1>u' (10)

and



a(U)2-<u2>U-(<w>u)2-z X‘};‘p(“"’l“’?u'wfu“,)u)- (11)

where < > denotes the average over all
configurations with the reference energy between U
and U+dU. For a given value of U, the normal
distribution form is

P(W,U)= exp(-4((W-<W>)%/0(U)?))/0(U)J2n. (12)

Note that the linear coefficlents a, enter in a
trivial fashion and Equation (12) can be evaluated
for an arbitrary set of a 's once the set of
<W>'s and <W W >'s are sampled from the reference
simulation as a function of U. In practice, the
moments are sampled over bins in U and fit to
algebraic functions of U over the region of U
sampled by the reference simulation. Then <W>,
and o(U)? are evaluated using Equations (10) and
(11) for the given set of a"s. For a given value
of W, we can evaluate B(W)=['(W)/T'(W) (i.e.
Equation (4)) from the integral

P (W)=J ((<W>,-W) /o*(U)) ¥ (V)P (W, U)dU (13)

and Zquation (9).

In order to get the pressure, we also need
trhe average over conflgurations in the range U to
U+dU of that part of the virial due to
interparticle forces. For therical potentials,
the relevant functions are - /Srwl'(r) rather than
w‘(r) in Equation (8). For the special case of
inverse power law potentials, these two quantities
only differ by a constant multiplier. It is a
straightforward generalization of the der!vation
above to obtairn an expression for pressure
Involving the ratlo of one dimensional integrals.
The Gibbs free energy can also be obtained since
the excess entropy is equal to the logarithm of
the configurational density of states.

A further simplification can be made,
however. Again using the sharpness of the
distributions, the integral in Equation {8) can be
approximated as
In T(W)~ 1In [7(U)PW,U) ]y, + OND), (14)
The other thormodynamic averages then become the
values of quantities evaluated at the peak of the
sharp dlstribution. For example, we now have

BW)=T" (W) /I'(W)=(<W> -W) /o*(U)  (U@peak). (1)

The details are beyond the scope of the present
discussion and will be presented In a subsequent
pnpera. The important point {s that the
thermodynamic quantlties are evaluated from
algebraic expressions.



LENNARD-JONES FLUID

We now turn to the calculation of
thermodynamics for a system of interest in order
to test the precision of this method. Because of
its widespread use and availsable simulation data
from other methods, we have chosen the Lennard-
Jones fluld as the tes:t case with the soft sphere
fluid for the reference simulation.

The soft sphere palr potential is given by

u, (r)=be(x/o) ™, (16)
and the Lennard-Jones potential is
u (r)=4e[(r/0) 2-(x/a)®] , (17)

where ¢ is the well depth and o 1is the point where
the LJ potential crosses 0. The same parameters
are used In the soft sphere potential to simplify
the connection between the two even though a
single constant would be sufficient. The scaling
properties of the LJ potential make it convenient
to use reduced quantities with the following
relations: T'-kT/e, p'—pa’, u'-u/c-U*/N, and
P'-Paa/c, where T is the temperature, p is the
number density, u is the potential energy per
particle U/N, and P is the pressure. The
simulation was made with p=1 and we have chosen
e=1 for convenience. Then we have p¥*=¢°, al-ala
a --0'5, wl-br'u, and ¢.=4r'%. With p* and U* as
tﬁe independent variabies. T*, P*, and G* are
calculated as outlined in the previous section.
In this example, the one dimensional integral
forms were evaluated using a 20 point Gauss-
Hermite quadrature.

In Figure 2 we show hcw well the simulation
fits the functional form Equation (12) for several
values of U,. The data are scaled such that the
data would t%en lie on a single curve if the
fuctional form were exact. We see that this form
does fic quite well. In Figures 3 and 4, the
analytic fits to scaled values of <W> and ¢ are
compared with those directly evaluated from the
reference simulation. The results for P* are
compared with MC®'!® and molecular dynamics'!'!?
(MD) simulation values in Figure 5. Similar
comparisons for a different range of p* and T* are
shown in Figure 6. Note that differences are
smaller than the inherent scatter in the usual
MD/MC methods. The gas/liquid phase equilibrium
line calculation Is compared with standard

simulation’®!? and perturbation methods!* in Figurc
7.



EXPONENTIAL-SIX FLUID

The most commonly used pair potential for
detonation products EOS is the exponential-six
form given by

p(r)=¢[6exp(a(l-r/r*))-alr/r*)8]/(a-6). (18)

Preliminary results are presented here for a fit
(to an accuracy of better than 1%) of the exp-6 as
a linear combination of inverse power law
potentials given by gpi-ln:'1 over & range of i=6 to
15. The a,'s are chosen for a given value of a
with e-r*-i. The scaling properties in the
Lennard-Jones section are the same here with the
additional relation o%-2r*®. Then the a's are
scaled to give results for different values of p*.
The algebraic forms for evaluation of
thermodynamic quantities are used. The reference
simulation needs to be run longer to improve the
statistics. but the preliminary results are
accurate to about 2% in comparison with standard
MC simulations!® for a=13.5. The analytic
representation for the moments are compared with
the direct evaluation from the simulation in
Figures 8, 9, and 10 for a typical case. Results
for 5 values of a, 30 values of p*, and 3 values
of T* are shown in Figures 11 and 12. Since the
final expressions are algebraic, as many EOS
points as are desired may be generated with a
negligible amount of computer time once the single
long reference simulation is made.

IMPLICATIONS

We have demonstrated a very efficient method
to generate EOS simulation benchmarks for the
Lennard-Jones and exponential-six potentials.
Indeed the final analytic representations could
compete with perturbation theories for speed £nd
accuracy. The extension of the methed to
mixtures, polar fluids, nonspherical interactions,
and combinations of these appears to he
straightforward. For example, mixtures could be
studied by choosing the W, 's to include the
interactions within and between subgroups of
particles rather than all of the particles in a
simulation. Then the cross potential could be
varied as easily as the density. The phase
sepgregation line could then he explored as a
function of cross potential paramecters using the
free erergy results for pure specles and mixtures.
These types of studies would be extremely
expensive in both computer time and man-time for
any systematic study with standard mcthods. With
the new method, these studies become tractable and
the remainfng parameter space for detonatfion



products EOS can be explored. The net goal is to
fill in the gap of missing benchmarks for the
development ot thermodynamic theories that will
lead to a detonation products EOS that lIs
accurate, predictive, and physically meaningful.
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FISURE CAPTIONS

FIGURE 1. COMPARISON OF SIMULATION DATA (+) AND
EQUATION (6) (LINE).

FIGURE 2. COMPARISON OF THE NOPMAL DISTRIBUTION
(LINE) AND SAMPLES CF THE AC1UAL DISTRIBUTION FROM
THE SIMULATION (SYMBOLS).

FIGURE 3. COMPARISON OF THE FIT TO <W> (LINE) AND
VALUES FROM THE SIMULATION (+). VALUES ARZ
SCALED.

FIGURE 4. COMPARISON OF THE FIT TO 0% (LINE) AND
VALUES FROM THE SIMULATION (+). VALUES ARE
SCALED.

FIGURE 5. P* VERSUS T* FOR A RANGE OF REDUCED
DENSITIES FROM 0.6 TO 1.2. M/MD STMULATIONS
(SYMBOLS), THIS WORK (LINE), . 'D LOCATION OF THE
MELT LINE (DASH).

FIGURE 6. PV/NKT VERSUS T* FOR A RANGE OF F"DUCED
DENSITIES FROM 0.1 TO €.9. MC/MD SIMULATIONS
(SYMBOLS) AND THIS WORK (LINE).

FIGURE 7. GAS/LIQUID EQUILIBRIUM PHASE LINE FOR
THE LENNARD-JONES FLUID. THIS WORK (LINE),
STANDARD MC SIMULATION (BOX, +), AND PERTURBATION
THEORY FOR THE CRITICAL POINT (LARGE +).

FIGURE 8. <W> VERSUS U™Y?® FOR A TYPICAL EXP-6
CASE. ANALYTIC FIT (LINE) AND VALUES FROM THE
SIMULATION (DASH).

FIGURE 9. SAME AS FIGURE 8.

FIGURE 10. o2 VERSUS U'!® FOR A TYPICAL EXP-6

CASE.. ANALYTIC FIT (LINE) AND VALUES FROM THE
SIMULATION (DASH).

FIGURE 11. PV/NKT VERSUS y* FOR a=12, 12.5, 3,
13.5, AND 14, T#*=5, 20, AND 100, AND y*=0.1 TO
3.0. THIS WORK a=13.5 (LINE) AND OTHER a'$
(DASH), STANDARD MC SIMULATIONS FOR a=13.5 (BOX).

FIGURE 12. SAME AS FIGURE 12 EXCEPT AU VERSUS .
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