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A Diffusion Accelerated Sn Transport Method for
Radiation Transport on a General Quadrilateral Mesh

R. E. Alcouffe
X-6, MS B226
Los Alamos National Labo.atory
Los Alamos NM, 87545

Abstract

We present the development of a diffusion accelerated Sn
wransport method for the solution of temperature coupled
-adiation flow problems on a spatial mesh of artitrary
quadrilaterals in R-Z geometry. The diffusion acceleration
equation is derived from the diamond-like transport spatial
discretization. The effectiveness of the DSA method 1s shewn
on an example calculation and also computation times are
indicated.

I. Introduciion

Two-dimensional, time dependent radiation transport problems are frequently done on systems
that are described by a general quadnirteral spatial mesh in R-Z geometry. A characteristic of
thermal radiation transport problems 1s that in order to obtain a solution on reasonably larpe tme
steps, 1t s essential that the ime differencing be completely impheit. In order to solve the implicit
transport equation via the Sn method, both the usual inner and outer source teritions must be
pertormed; and ity vital that an effecuve and ethicient iteration accelerator be emploved P in e
paper we descnbe the basic approach used to develop a diamond ditterenced representation for the
Sntransport equation that 1y highly vectonzed and hence computationally etticient on the Crn
XMI's We alvo desenibe a nonhinear version of tne ditfusion synthetic aceeleration cquation that
works with the above Sn equanon with good success We conclude that we have developed
viable Snotransport method that W8 apphoable 1o many problems an two dinensional theomy

radution flows



II. Sn Spatial Solution on an Arbitrary Quadrilateral Mesh.

Given that we wish to describe the transport of radiation through a medium which exchanges
energy with the radiation field through absorption, scattering, and emission processas. we ¢un
write the foilowing set of equations:
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where

1" 1(r,v.42) is the radiation intensity at frequency v and angle €2 at time (1 I

o, (v.Te) s the absorption cross section at trequency v and temperature T,

a (v.T,) ts the scattering cross section at frequency v and temperature T,

n!(v.'l‘c) nu(v.'l‘c). “J"’-Tc"

XvTe) g vTeb(vTe) 6T,

0(Te)  Jo,v.Te)b(v.Todv.
U, u'l'c4.

h (\’.'l'c) is the normalized Planck tunction (J b (v, l'c) dv 1),
T liCAL
kc 1y the matenal conduction,

nCl s adenved tunction of the medium at temperature Tooand 01,
Qand S, are extrancous sources of radution and matenal enerey respectively
I'he time diseretizanon has been included in Egn o 1 so that s apparent that the eauanon v
solved completely imphatly in time for accuracy and stabihty conaiderations Also Fan 1 has hee:
denved from the radiation transter equation by includimg the effects of the medinm apon e
crmsston term - Our vadiation transport problem consists i solving Fgno 1 over some e step

obtan the tadinon tensity at the advanced nme and then solving Tagn 2o obtaey the e



temperature. From the temperature, the cross sections and other quantuities in Eign. 1 are evaluaed
and the procedure is repeated for the next ume step. In this work we focus on methods of solution
of Eqn. ! in two-dimensional R-Z geometry 1in which the spatial discretization consists ot arburan
quadnlaterals whose connectivity 1s logically rectangular.

We note that in general Egn. 1 must be solved iteratively for the intensity and that analogous to
transport calculations with fission, we have both inner iteranons (to converee the scattenne) and

outer iierations (to converge the emission term). [t 1y 1n the nature of radiation transport

valculatons that for large time steps the quanuty N(T,) 18 very close to unity. Thus, the spectra!

racius of convergence of the outer iteraaons 1s also close to unity requiring many terations for
convergence; for most radiation flow problems, the number of iterations required for convergence
at reasonable time steps 1y prohibitive. Thus a good acceleration method 1s required for
convergence. In ref. 1 we outline 1n some detail for the orthogonal geometry case the diffusion
acceleration method for radiation ransport. In the next section of this paper. we detail how this s
adipted for our non-orthogonal mesh.

We focus now on the question of finding the solution to Egqn § on the non-orthogonal mesh for
cach iterate. Following Hill2, we use his non tteranve diamond difference - like approach to ivert
the left-hand wide of equation | given that the nght hand side s known. Reterning to g 1) the

transport balance equation over spatial mesh cell () s wrtten an the tollowimg torm.
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Fhis halanee equation i then aupemented by s appropoate duamond difterence approvimation



relating the edge values to the cell centered values depending upon the number ot sides visible
This method is supplemented by a set-to-zero fixup 1n case the anguiar intensity extrapolates to
negat:ive value. As in the orthogonal case, the diamond differencing method is the simplest methad
having the diffusion hmit.  The simphcity allows for efficient coding with mimimum storage
requireme nts and the diffusion limit allows the accelerator to perform etficiently and vet obtuim an
dccurate solution when the transport solution 1s diffusion hike. This certainly iy an appropriate tirs
attempt with the Sn method itself. In order to obtain a computationally efficient solution to Egn. 3,
we choose a space-angle sweeping sequence by means of ar appropruate orcanng scheme  The job
of the ordenng routine is to pick out the sequence of spatial meshes 10 an order which will allow the
solver to invert the ransport operator 1n a non-iterative manner. Since the transport operator s it
order tn both the spatial and angular denvatives, this can always be done. However, there 1s un
additional task that the ordering routine must perform in order to take advantage ot the architecture
of the CRAY XMP computers. That 1s, since this 1s 4 vector machine. an ordering must be chosen
so that the mesh sweeping can be vectonzed for maximum solution speed on this machine  This
means that groups of cells that can be colved simultanrously must be found by the ordenng routine.
on the logical mesh these cells will e on diagonals.

We do the ordertng on the logical mesh by typing cells as to how many sides are visible Onis
two side visible cells can be efficiently solved simultancously since they have a predictabie stiide as
they do hie on the diagonals of the Togical mesh. Operationally the ordenne routne collocos the
folloming intormation (1) the starting cell number, (2) the starting cell type and (1) the number o
sells ain the diagonal  The mesh sweeper can then take thiy information, process it order, and
ctliciently invert the transport operator on the vector machine. Thus the main difference between
sweeping on 4 Lagrangian mesh and on an orthogonal mesh 1y making provisions in the mesh

sweeper to solve one and three side visible quadnlaterals.
I{1. Diffusion Synthetic Acceleration of the Source Iteration

e dittusion acceleration method oy a source teriton aceclerator tor tadiation tanspor:
problems thiat involves the tollowing ingredients 1) Formation of an appropnate dittusion
cquation whose solution s the same as the scalar itensuy solution of the transport equation, 'y
solution =ethod tor mvertag the resultimg dittusion operiator for each frequency group, and ¢4y an
iteration method for solving the multigroup ditfusion equation For the general Lagrangan mes):
case, s notclear as yet what s the best method for addressing cach of the above aspects

Chur expenence i orthogonal mest problems suppests that we denve the DSA equations by



forming the transport balance tor the four mesh cells surrounding each venex ot the mesh W
Jdevelop our DSA equation in the non-orthogonal case 1in 4 manner analogous to

orthogona! development |

it oo
. To sketch how this proceeds we focus on the honzontal fean.oe e
in Eqn. 3. summing these terms for the four cells about vertex a-1 20 1-1 21, we have,
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To denve our diffusion operator. we expand the angular flux 1in Egn. 4 as a hinear in angle funciior
tor ¢ach cell edge. namely,
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and the A and B coetficients are tound from the detimtions in bgn 3

Thus with this particular form for the expansion of the irtensitics on the cell edges. we have
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[f we now substitute expansion (S nto bqn 4, we obtan the tollowing diftusien eroresaen
the honizontal leakage
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To proceed further, we invoke some assumptions of lineanty in Egn 6,1¢ .
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If we further assume a Fick's law between the cell centered currents and the intensities, 1e .
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then combining Eqns. 6.7 and 8. we obwain,
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Because Eqn 9 18 1n terms of cell edge quantitiss, it stull 1s not suited for efficient solution with
known methods, thus, we make a further approximation. The most strasghtforwird one 1y thae
dnalogous to diamond, 1. we set

=, (, )

Substituting this form into Egn. 9 leads to & mine point form tor the diffusion operator which is to

;0 s 1/72. s1/2 1712 +:0 <172 * 172
be expected for a general quadnlateral mesh. However. 1if our expenence trom the orthogonal case
i at all relevant, then trequently it 18 not necessary to employ such an elaborate diffusion operator
his 1s because the correction term trom the transport solution allows the DSA equanon 1o be
dccurite tor a lower order operator  That iy, it may be possible to go to a tive pomnt operiton, wis -
1s much iesy costly to solve, and sull have the accelerator be ettective in many of the cases we

cncounter in practice . A five pont form that can be approximated trom Egn 9 as,
’
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The vertical leakage terms ire derived in an analogous way, and thus our five pomnt form tor the

DSA equanon for a general quadnlateral mesh 1s written as:
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H and V' are the angle ntegrated torm of kgn 4. emploving  thesolution

to bgn 3, I’ (L N,

@ Ny . ., s, thesumof the four cell removal divided by |

Fgn 11 s used to accelerate the source iteraton of Egn. 3 and 1t s easily shown that upon
convergence. the solution of Eqn. 1118 the same ay the angle integrated solution to Egn 3 To
invert the diffusion operator of Egn. 11, we use our multignd solver already implemented tor the
orthogonal case since 1t 1y very efficient for the five point form - Thus Egn 11 serves as the bases
tor the acceleranon of the iterations required in the solution of the radiabon transport equation

As noted inret 1, the multitrequency diffusion iterations must themselves be accelerated, we e
the same grey approach outhined in that reference

[t should be oovious by now that the success of the ahove outhned transport salution method
hghhy dependent upon the representation of the diftusion acceleration equation as o five poes

operator This five pomt representiation s not an essential restriction but it certamiy does syt



the implementation of the method tor Lagrange meshes. We use the example problem presented
below 10 demonsirate the effeciveness of the DSA ay described above as well as 1o give un

indicauon of the accuracy of the Sn method itself on non-orthogonal meshes.
IV. Calculational Results

The method descnbed above for solving the temperature coupled radiation transport equation
has been encoded in a special version of the TWODANT? ¢code which we call SHORTIE. This
includes the ume step control. temperature calculation, cross section generation. and iterution
acceleration within each time step as well as the mesh ordenrg and sweeping algonthms for the
nonorthogonal mesh. All of the computationai parts are vectonzed so that the method can be run
efficiently on our CRAY XMP 48 computers. In this sectuon we address the computational time
and 1teraton efficiency from our expenence with the code so far on model type problems, and we
demonstrate the accuracy of the basic transport method on a problem in radianion flow.

On model problems, our expenence has shown that the solution time per phase space cell on an
orthogenal mesh with negative tlux fixup using an XMP 48 15 from 0.7 to 1.0 microseconds CPU
ume in TWODANT. We have benchmarked the nonorthogoral solver in SHORTIE for simula
maode! problems at from 1.2 10 3.0 microseconds per celi. The range of solution umes retlects the
tact that the solution time 15 a strong function of the number of ‘special’ cells that have 1o be
calculated: e the one and three side visible cells  The upper limit is representative of a4 highis
disordered mesh in which 30-40% of the cells are special. These time do demonstraie that the
vectornizanon of the sweeping algonthm is successful and compares tavorably with the highly
etficient TWODANT module.

Our expenence with the DSA accelerator for nonorthogonal meshes shows that 1t can pe just as
cffective as the DSA accelerator in the orthogonal case.  But 1t also suffers from the same
hmitations as the TWODANT accelerator in that its effecnveness decreases as the number o
negative flux fixups increase or as the size of the mesh in mtp ancreases. Thuy although it
ditticult to generalize, 1t can be said that for many tvpical radiation flow problems the DSA
dccelerator s as effective as the orthogonal one  For example, in the below desenibed probleni we
require on the average only two transport iterations per tme step to reduce the errorin the emission
source by an order of magnitude while the time step varied from 0 001 to 1 O ns

Our example radiation tflow problem consists of a homogeneous cyhinder, 9 cmoam radus and 9
cmomn height - The radiaung medium s modeled as polyethelene at a density of 065 goe A

anitorm weurce of radiation impinges on the bottom of the oy hinder at tme zero The source .



assumed isotropic and Planckian with a temperature of 1 KeV. The task 15 to compute the
evoluton of the maternial temperature as a function of ime and position until equilibrium is attained
(there i1s no matenal motion). We chose to solve this problem using 10 frequency groups
equilogarithmically distributed between 0.005 to 20 KeV; the material initial temperature 15 0.03
KeV. In the first (highest energy) four groups, we use an S8 quadrature (standard TWODANT)
and in the remaining groups. S4. The given spatial calculational mesh is shown in Fig. 2 where the
radius increases along the vertical axis and the z axis 1s honizontal (the source impinges on the left
side of the figure). There are 48x48 mesh intervals in this problem. As can be seen. this 18 4
highly distorted mesh that has been seen a great deal in the literature and has been used to chullenye
diffusion solvers. In order to have a reference calculation, we made a varient of this problem with
4 uniform. orthogonal mesh which turns out to be perfectly square in R-Z. geometry and hence is
nearly ideal for a benchmark.

In Figs. 3a-3d. we present contour plots of the matenial temperature at selected tirnes: the last
time, 30 ns, being the time at which the system attains equilibrium. Each plot is actually of two
sets of contours. one from the mesh of Fig.2 and the other from the orthogonal mesk  Inspection
of the plots shows that the orthogonal and nonorthogonal results match remarkably well. The
aberrations 1n the nonorthogonal results are at the positions where one would expect fixup effects to
be important. We also note that the computation times and iteration pattems are verv close to the

same confirming that the accelerator is performing equally as well in both cases.
V. Remarks and Conclusions

We hive developed a diffusion synthetic accelerated transport solver on a general quadrilatera
mesh that performs well on radiation transport problems. The development of the accelerator
follows the same kind of logic used to develop the onginal orthogonal one and seems to perform i
relatively simple radiauon flow problems equally as well. Will this be applicable to conventiond
neutral particle transport as well? There 1y no theoretical reason why not zxcept in the case o!
cigenvalue problems. Here we would need to develop some kind of diffusion correcnon scheme
order to have a compatible outer 1eration accelerator. In this case it may be possible that the tive
pomt lorm would be a severe limitation However from these results of radiation transport,

appears that 1ts worthw hile to punue a generai geometry TWODANT
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Fig. 1. Reference Quadnlateral for hte Development of the Transport Balance Equation.

Fig. 2. R-Z Mesh Arrangement for the Example Radiation Flow Problem.

Fig. 3a. Contour Plot of he Material Temperature at Time = 2.0 ns.

Fig. 3b. Contour Plot of the Material Temperature at Time = 4.0 ns.

Fig. 3c. Contour Plot of the Material Temperature at Time = 10.0 ns.

Fig. 3d. Contour Plot of the Material Temperature at Time = 30.0 ns.



Transpart

the

the Development of

for

Quadrilateral

1
1
H

YD) QU S5 Hi5 SEDGID G IS SEDID S S

R Bl R e EE R L I S R 3
b el - b - =B e b= V=& - = = -
-+ +H4-4-4-r-FF++-v-p-r - 4 T
L Ry e Ty P e = b= P =~ - —a 4 -
S S dn sk b b St 2 At sk b i S e -
- -k > - w—C—> - = -
Lol bbb Loh-b b d—h b - - =
SRS Al RO S
oA e RN A 2 -
lllll o i o ~ - —
o~ i r ey -
7 STt - - - . .rovonmamy TS
Ff A A oA S P S I e o gk oyt e ~
— e s —f A A A ot & el g NS A oy fpr > =
T A P AP A A G A gk B AT P o ¢ e e =
A= o Pt A A A A A i et kA Ve A s e A
e e A e S e M A A e p S S b et D
# vt - Ll s A Ayt 2 Ll e L ket o ey =
FF P A o A A e S A A A A A A e 4 -
TP AP A T S AR S A p e AT A s e b f o | 2
e A A A AN S e e e o e e A e ot e b e T

Y A A LA ey et . iy o i f e L e S o
Ll ey AP O A G A A A AN S SN _
A.\l\\l\h\‘n“lxl..\r\ln\r\..‘.l.(u.V. e i e - . -
Z 4 e =

el Bl L
Rl e S R Sk e T
)f.ul;lvl..llt.:llllrlrlu

RS TIeSeTNT e e N—
ES AR TSN g e vy~ - o

SEIASTAS AT O

RPN .

heo A angement

Balance Equatlon.

Reterence

Filp.

- [ * ._1 . +|

' Py b e - - - kgl ol b e

0 T ot : fret

. ‘.. v s 4 4 r o . R L T~ T

N T I D R e e I i e e

[ T T T S 1 ¢+ 1 + L B .J_.1m1vr.r1il

Lis e L O S e T S e e -

[ B A ] N R TEE SR S R L-f)TT.rllI =

X HE _— 1 . N -
~
=

I {y .



LJIJIL hL L k




Fig.

Fiw.

Tine 100 ns

TR vontour Plot o

Time —30.0 ns

Wle Contoonr Plaot

the Matertial Temperatare at Time = 10.0 ns.

1

A

. A

of  he Materfal Temperatare at Plae = W00 g,



