LEGIBILITY NOTICE

A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1



. Lf--UR - —- e e AR uy Vo .

y 7))

Los Atames Natondr a2 a2ty oy eperaled by the Unversity of Cabtorma for the Lnited States Department ab Energy uider contracd VW 24045 ElhG n

Tt COMPUTER SIMULATIONS OF EXPLOSIVE VOLCANIC ERUPTIONS

LA-UR--89-1928
DE89 014024
autnon - Kenneth He Wohletz and Grey Ao Valeatine
afera Proceodings obf the O 8th Intermational Geolopleal Survev

washington, b
Il a=1a, Ry

DISCLAIMER

TR report was poopared as an account of work sponsired hy an agency of the United States
Gavernment  Nether the United States Government nor any agency thereol, nur any of their
emphivees, mahes anv warranly. express or tiphied, or ussumes any legal liability or respunw-
hility for the accutacy, completcness, or uselulness of any information, appacatus, product, or
pricess dischined, or represents that it use would not intringe privately owned ngh.y Reler
ence herein to any specifne commeraa product, provess, or service by teade name, trademark,
manulacturer, o ntherwive dies not necessanly constitute ur smply ity emdorsement, recom-
mendavon, or favoring by the Uimited Stairn Giovernment or any agemy theieal The views
and opmons ol authurs expressed herein do not necessanily state o retlect thise of the
| 'mited Stales Governuent of any agency thereol

l (‘ " //\ H nl 77 NE Los Alamos National Laboratory
|( v o) \ (¢ {ll | <)>\" ) Los Alimos, New Moexico 87545

DISTROUI T gt v L e akgd ok Bttt D) “
~M

[} A U N


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


ABSTRACT

Today’s large, high-speed computers provide capability for
solution of the full set of two-phase, compressible Navier-Stokes
equations in two or three dimensions. We have adapted computer codes
that provide such solutiors in order to study explosive volcanic
phenomena. At present these fully nonlinear conservation equations are
cast in two-dimensional cylindrical coordinates, which with closure
equations comprise 16 equations with 16 unknown variables. Solutions
for several hundred seconds of simulated eruption time require two to
three hours of a Cray-1 computer time. Over 100 simulations have heen
run to simulate the physics of highly unsteady blasts, sustained and
steady Plinian eruptions, fountaining column eruptions, and multiphase
flow of magma in lithospheric conduits. The unsteady-flowv calculations
show resemblance to shock. tube physics with propagation of shock waves
into the atmosphere and rarefaction waves down the volcanice conduit.
Steady-flow e.uption simulations demonstrate the importance of
supersonic flow and overpressure of erupted jets of tephra and gases in
determining whether the jet will buoyantly rise or collapse back to the
earth as a fountain. ¥Flow conditions within conduits rising through
ihe lithosphere determine eruptive conditions of overpressure,
velocity, bulk density, and vent size. Such conditions within conduit
systems are thought to be linked to low frequency, sustained seismicity
known as volcanic tremor. These calculations demonstrate the validity
of some anaiytical eruption calenlations under limited conditions, In
geveral, though, the simultations shiw that consideration of
nonlinearities inherent in mnltiphase propetties, compressibility, and
multiple dimensions lead to solutions that may greatly vary firom
simple, one dimensional analytical approaches and often produce tesults

not available to intuitive reasoning,



INTRODUCTION

Computers have played an increasing role in geosciences over the last
several decades in a variety of capacities, including data bases, uigital
mapping, geophysical data inversion, statistical analysis; and modeling or
simulation of physical and chemical processes, to name a few. We discuss one
of the newer applications, simulation based upon solution of sets of
differential equations that model the fundamental physical relationships of
fluid mechanics. Historically computers, especially those now called
"supercomputers," were developed because of the vision of John Von Neumann
(Ulam, 1980; Von Neumann and Richtmeyer, 1949), who believed that ail the
necessary fundamental physical relationships of fluid mechanics could be
accurately expressed by mathematical relationships. Von Neumann realized that
the intrinsic nonlinearity of these systems of differential equations and the
large number of variables involved precluded analytical solution. He showed
that mathematical techniques ot finite differences could provide very precise
solutions to individual equations, but that to perform such calculations would
be practically impossible without utilization of machines that could rapidly
process the billions of arithmetic steps rtequired. Today we have those fast,

large-memory machines, and continued evolution of the machines promises to soon

achieve Von Neumann'’s vision.

Explosive volcanism plays an important tole in todays understanding of
geodynamic relationships. [t represents the high flux endmember of mass and
energy transportt through the earth’s lithosphere and is a major contrisutor to
the chemical budget of the atmosphere. There s a growing understanding of the
relationship of explosive volcanism to the chemical and physical character of
the lithosphere and features of mantle dyramics. ALl of these interact in a

strongly coupled system,

our present capahility of computer simulations of explosive voleanice

etuptions has developed over the Tast decade through the stimuli of research



programs at Los Alamos focussed at undersianding geothermal systems developed
in calderas, modest etforts of characrerizing and predicting volcanie hazards,
and a large eftort to bring the power of computational physics into the realm
of earth sciences. This latter effort has followed a general, whole-earth
approach in which large-scale behavior and chatacter of the earth’s core and
mantle, plate and atmospheric dynamics, and fluid migration within the
lithosphere are viewed as a coupled system. 1t is our hope that by gaining a
confident ability to simulate the visible aspects of explosive eruptions, ve
can constrain some part of the lithospheric system through which magma

migration occurs.

The following description of our explosive volcanism simulations will
briefly review some geologic phenomena we attempt co model, the modeling
approach we have adapted from other fields of computational physics, and
results of simulations for endmember types of explosive behavior, including
unsteady or "blast" eruptions, steady flows producing high standing tephra
columns, eruptive "fountains"., and finally our ongoing research into the

chavacter of flow in subsurface conduits,

Explosive Volcanic Phenomena

Explosive eruptive phenomena are highly variable, because of the large
numbet of thermodynamic, chemical, and physical behaviors of magma and solid
tocks through which it erunts,  These pheaomena have been classified by
volcanologists by overall teatures of the eruptions and according to which
type locality volcano the eruptions tedemble (MacDonald, 1972; Valker, 1973).
From physical points of view, the clasvification can be further simplified by
constderation of the general fluid dynamical flow tegime within which various

etuptions are thoupht to bhebave ey Wilhon, T9HO),



Caldera evolution sequence. Silicic calderas are generally thought to form
in volcanoes that have demonstrated highly explosive or very large mass-flux
eruptions. During their long histories of development, commonly over several
million years with evolution of upper crustal magma chambers, having volumes of
up to several thousands of cubic kilometers, eruptive behaviors range from
passive lava extrusions to short-lived explosive blasts to prolonged jetting of
large volumes of tephra and gases. Gradual chemical differentiation of such
crustal magma chambers produces a volatile-rich chamber roof (Hildreth, 1979).
During catastrophic reiease of overpressured voiatiles from the top portion of
the chamber, Smith (1979) estimates in general a 10 vo'ume-percent drawdown of
the magma reservoir, a volume which may be up to several hundreds of cubic
kilometers. Wohletz et al. (1984) simulated such an eruption and showed that
propagation of a rarefuction wave from the vent down into the chamber
pressurized to 100 MPa stimulates vesiculation and fragmentation of the magma
such that it erupts as an overpressured jet of hot pumice, ash, and gases.
Initially the flow from the vent is unsteady, producing blast conditions of
propagating shock waves in the atmospheric flow field. Graduall!y the flow
becomes steady with generation of a high standing eruption column that may
collapse in a fountain-lika manner. After the magma chamber becomes largely
depressurized, buoyant rise of viscous magma through the vent system produces

lava domes and flows.

Plinian eruption columns and their collapse. Descriptions of the A.D. 79
explosive eruptions of Vesuvius, published by Plini the Younger, have led to
specific definition of Plinian phenomena by Walker (1981), which includes high
standing (10 - 50 km) eruption columns that sustain volume fluxes in excess of
10° ms/s. These eruption cclumns are multiphase mixtures of pumice, ush, and
gases (mostly steam) that show jet-like features at their bases and rise of a
buoyant nlumes near their tops (Sparks et al., 1978; Wilson et al., 1980). The
flow is generally steady and displays considerable turbulence, which is thought

to encourage mixing of the cooler atmosphere into the column, Heating of



admixed atmosphere by hot tephra can be sufficient to cause the column to rise
buoyantly. If the atmospheric mixing is insufficient, such that the column
remains denser than the atmosphere, the column may collapse in a fountain-like
manner, spilling erupted debris and gases to the ground around the vent to

produce ground-hugging flows called "pyroclastic flows."

Vulcanian and blast-type eruptions. Named after classical eruptive
behavior of Vulcano in the Tyrrhenian Sea near Italy (Mercali and Silvestri,
1891), Vulcanian eruptions are generally described as repeated, cannon-like or
staccato bursts of tephra with relatively small volume fluxes (<< 10% m?/s)
that form both hemispherically expanding clouds of tephra and gases and
buoyantly rising plumes of several km height or less. The highly unsteady flow
regime of these eruptions is can be accompanied by propagation of atmospheric
shocks, temporal development of supersonic, overpressured jets, and development
of laterally moving density currents of erupted ash called "pyroclastic
surges." The unsteady and overpressured nature of such eruptions have

characteristics similar to phenomena initiating larger Plinian events.

Strombolian and fountaining eruptions. Stromboli, the "light-house of the
Mediterranean" is a volcano that displays short to prolonged bursts of tephra
‘n ballistic trajectories from the vent. The expelled tephra in contrast to
eruptions described above generally are not suppoited by an envelope of erupted
gases. Rapid expansion of centimeter to meter sized gas buhbles propels
tephra thiough the atmosphere. Where such activity is prolonged, a hallistic
fountain is observed. Because such behavior results in rapid segregation of
tephra from expanding gases, the expansion is nearly adiabatic in contrast tn
the Plinian and Vulcanian types in which gases remain in contact with the hot

tephta and can expand nearly iscthermally.



MODELING APPROACH

The mathematical formulation that we have used has been applied to wide
variety of dispersed, multiphase flows, and it is discussed at length in the
book by 1lshii (1975). At the heart of the formulation is the assumption that
the different materials involved in the flow field can be treated as individual
continua; these continua are superimposed on each other and are coupled
together by interphase transfer of mass, momentum, and energy. Because the
different materials are treated as individual continua, the full set of
conservation equaticns must be solved for each material (or field). The
interphase transfer of transport quantities (mass, momentum, and energy) also
requires that all equations for all fields must be solved simultaneously. It
is clear that comprehensiveness of a model rapidly approaches the limits of
modern computational speed and memory. For example, to model a two-
dimensional, time-dependent. high-speed flow of gas and particles of three
sizes would require the solution of 16 nonlinear partial differential equations
(a set of four equations for the gas and for each particle size) and 20
additional algebraic equations (equations of state and interphase coupling)
with 36 dependent variables. This example does not include mass transfer terms
and would only be capable of including turbulence effects in the form of an
eddy viscosity; =olving more realistic turbulence transport equations such as
those presented by Besnard and Harlow (1988) would at a minimum double the

number of dependent variables.

As an aside, one might ask the question ot why bother with numerical
modeling if the models are so simplified in comparison to natural phenomena?
The example described above shows how complex a numerical solution can be with
only three particle sizes, one gas, and no mass transfer, and we know that
volcanoes contain tephra particles ranging in size over several orders ol
magnitude with variable densities and shapes.  Also, there ate more than one
gas species and mass transfer, involving exsolution of volatiles from tephra

and their cubsequent phase change.  The answer to the above question is as



follows: although we can only model very crude approximations of nature, the
approximations we do obtain provide behauvioral insight that could not be
obtained by intuition alone. The reason for this "beyond intuition" probe of
natural processes derives from the intrinsic nonlinearity of the governing
equations; many nonlinear processes are too complicated for mental solution
even at an intuitive level; hence, the necessity of a sophisticated computing
machine. Overall, we believe that gaining an understanding of relatively
simple analogs to nature is prerequisite to grasping the complexities of
nature. This reasoning is also the justificaticen for laboratory
experimentation; however, numerical simulation overcomes the problems of

dynamic similarity that plague laboratory analogs.

Mathematical Formulation

Our modeling effort has focused on solving the following set of equations,
forms of the complete Navier-Stokes equations, which describe a two-phase flow

of compressible gas and incompressible solid particles:
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This formulation for two-phase flow (symbols defined in Table 1), presented by
Harlow and Amsden (1975), is very general and has been successfully applied to
a wide variety of flows from bubbly flow past an obstacle to star formation
processes (Hunter et al., 1986). An important aspect of equations (1) through
(6) is that they are cast in terms of volume-averaged quantities. The
elemental volumes over which the differential equations are solved are
necessarily much larger than the size of individual solid particles carried by

the flov in order for rhe continuum approach to be valid (Travis et al., 1973).

Equations (1) and (2) are conservation of mass for the gas and solid
phases, respectively. The left-hand side of these equations represents the sum
of temporal and spatial changes of mass contained within an elemental volume.
The right-hand sides are just the contribution to the gas phase by mass

diffusion out of the solid.

Equations (3) and (4) express momenta conservation for the gas and solid
phases, respectively. They state that the transient momentum changes within
and advected through a volume element are balanced by the sum of forces due to
the pressure gradient, interphase momentum *ransfer (drag), gravitational
acceleration, momentum exchanged by interphase mass transfer, and viscous and
turbulent stresses. Because explosive volcanic eruption columns have high
Reynolds numbers, turbulent forces greatly dominate viscous ones, such that the
last balancing term can be represented by the divergence of the strain-rate
tensor using an eddy viscosity. The two-dimensional stress tensor has the

following form, which crudely represents the Reynolds stress tensor:
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The eddy viscosity, v,, is constrained by observed eddy length scales and plays
an important role in determining the mixing of atmosphere into the eruption
column (Valentine and VWohletz, 1959). Although this description of turbulence
is very crude and a more detailed calculation is being sought (e.g. Besnard and
Harlow, 1988), we note that empirically derived turbulence representations have
direct relationship with measurable physical features of flow, and
theoretically derived ones are only poorly coupled with observation. For two-
dimensional solutions, the momentum equations must be written for both

components of velocity of the gas and solid phases.

Equations (5) and (6) are conservation of specific internal energy within a
volume element for the gas and solid phases, respectively. The temporal and
advected energy changes are equated to energy of pressure-volume work,
interphase heat transfer, heat exchanged by phase changes, and energy
dissipation by viscous stresses and turbulence. The gas phase also experiences

changes in internal energy caused by interphase drag-induced dissipation.

These equations when written in expanded form comprise a system of eight,
nonlinear, partial differential equations. Closure of the equations is
obtained by applying algebraic relations that desc-ibe the equations of state
for the materials, the relationship between volume fractions, and interphase
coupling (see Valentine and Wohletz, 1989 for a detailed presentation of these
terms). These algebraic closure equations account for the volume-averaged
effects of processes that happen on a smaller scale than the elemental volume

used for differentiation; for example, the drag of fluid on individual



particles. The very nature of this mathematical formulation requires that the
microphysics are treated in only a very general sense. Thus many small-scale
physical processes that are undoubtedly of importance in some volcanic
phenomena are not included. Examples of such microphysics include particle-
particle collisions, the particle-wvake interactions, and distributions of
bubble sizes in exsolving magmas. In principle the volume-averaged effects of
any such process are implicitly included in the governing equations. For
detailed simulation of a dense pyroclastic flow, ve can introduce a pressure
term to the equations for the particle phase that accounts for the normal
stress produced by shearing grain flows. To date our simulations have focused
on large-scale processes where most of the microphysical processes are thought

to have negligible contribution.

A source of confusion in our simulations of eruption columis has been the
role of turbulence in the governing equations, and how atmospheric entrainment
is calculated. Previous eruption column models have been limited to one-
dimensional, single-phase fluid approximations (see Woods, 1988 for a recent
review and improvement of previous model attempts). In these approximations, a
source term is required on the right-hand side of the conservation of mass
equation in order to account for relatively cool atmosphere added to the flow
by entrainment (i.e. the entrained fluid is added to the one-dimensional
system). In our calculations, the atmosphere is part of the computat.onal
domain, and its entrainment naturally occurs as a result of turbulence
diffusion in the momentum equation. In other words, the turbulent stress term
in equations (3) and (4) produces a "force" that causes fluid movement in the
same manner as any of the other terms in the momentumr balance. Thus where a
velocity gradient is present adjacent parts of the flow field will diffuse or
interpenetrate into each other; the amount of interpenetration is proportional
to the velocity gradient. Thus the gross effects of entrainment are included
in the calculations. The details of this entrainment, which involve Kelvin.
Helmholtz instability, ate not strictly calculated but are solved in an

averaged sense.
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Although equations (1) through (6) are fairly comprehensive in that they
include no restricting assumptions that might affect dynamic similarity,
caution is required in applying their solutions to nature in the sense that
they do not calculate "real" volcanoes. Because of the turbulence
simplification and microphysical assumptions discussed above, the calculations
are only valid in showing general eruption behaviors and relative variations
that result from changes in initial and boundary conditions. We do not pelieve
that 1t is realistic to directly apply numbers calculated by ou: models to
natural systems, although that is a goal that Von Neumann believed is
obtainable. Nevertheless, we can learn about the relative sensitivity of
physical parameters involved, which is valuable for interpretation of field

observations.

Computer Adaptation

Although mathematical solution techniques are available for attempting to
get analytical solutions to the above equation set, it may be exceedingly
difficult or impossible to get meaningful results after the required
simplifications are made. Hence we have applied a numerical solution technique
by finite differences (Ferziger, 1981). Ve begin by expanding the equations
above into partial derivative form, using cylindrical coordinates (r,z,8) with
azimuthal symmetry along the z-axis, centered at the vent. The difference
scheme used to discretize the partial derivatives on a constant spatially and
temporally incremented grid was chosen to balance accuracy and stability with

economy and versatility (Harlow and Amsden, 1975).

Finite difference solution scheme. A mixed, implicit explicit
solution method, developed by Harlowv and Amsden (19/75), was chosen because of
its economy and inherent numerical instabilities are easily rectified, even

though a purely implicit differencing method of temporal derivatives is
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generally more stable but more expensive. For example, the first term on the

left-hand side of the continuity equation is written:

(=]

p p - P

-~

EY U ra— ' (7)

where the approximation signifies that of the finite differencing, and the
index n represerts the time step, such that there are n = t/&t time steps of
duration 8t in a time period t. This forwvard differencing scheme explicitly
gives the new value of p, pu, pv, or pl with a truncation errcr of the order
8t. Velocities are placed at cell edges for differencing advective terms to
best model fluxes through cell edges. In order to circumvent stability
problems in using cell-edge values of vectors, a staggered grid is defined and

the advective term in the continuity equation is:

3 8z [Py 3Vige12 = Py 521V ja1,2] ! (8)

which holds for flow in the positive z direction. Such a scheme is called
"donor cell” or "upwind" differencing, which ensures that the value advected
into the a specific cell originates upstream. TIhis scheme suppresses numerical
instability, buv steep gradients tend to be smeared over several cells, and the
truncation error is kept to first order. Tor this reason, shocks in supersonic
flows are not uniquely defined, but their presence can easily be distinguished
in the <olutions. Other nontrivial finite differenves are those for stress
tensors, which are solved for cell-edyge values in the momentum equation and
cell center quantities in the energy equation (Horn, 1986). For momentum and
heat exchange terms in the conservation equations, an implicit form vas chosen,
hecause it is simple and unconditionally stable. In general the calculational
time step proceeds by obtaining advanced time values for all sealar variables
in the mesh, tollowed by a second {teration, during which nev velocities amre

caleulated, using new densities,



Because the systematics for solving the equation sets described above have
been previously developed at Los Alamos for generalized application to
hydrodynamics (e.g. Harlow and Amsden, 1975), it has been convenient to bhorrow
sections of FORTRAN programs from other codes, making adaptations necessary for
simulation of geological processes. In all cases, stability has been verified
for the difference techniques (Hirt, 1968), such that we have high confidence

for their applications over a large range of flow velocities.

Numerical output, graphical representation, and anclytical approach. In
general numerical results of each time step are dumped to disk storage for
retrieval in the next time step, restarting the calculation, and generating
tabular and graphical results. A typical calculation of 200 seconds of
eruption time produces over 20,000 pages of tabulated numbers. A post-
processor code can be applied to the dump files for various graphical outputs,
including vectov and contour plots and rovies thereof. We have found that
analysis of such volumincus results is time-consuming and difficult, such that
a detailed study of an eruption simulation with initial and boundary conditions
set to model a given volcano is analogous to a geological field study in which
numerous field locations are examined to describe eruption effects and

deposits,

It is instructive and useful to study simulation results for consistency
with laboratory analogs and predictions, based upon other analytical solutions.
As discussed below, the physics of high speed flows are known from laboratory
experiments, and our computer results can be tested for theii ability to
reproduce known experiments. Once credibility has been extablished for a
computer code, its results are considered to be “data” in that they are simply
mathematical representations of physical parameters, as are say x ray analyses
of tock chemical compositions, for which x 1tay intensities aie convertod by

mathematical tools into numbers of chemical sipnificance,



UNSTEADY DISCHARGE (BLAST--TYPE) ERUPTIONS

The concept of blast-type eruption was rc:ently given a descriptive review
by Kieffer (1982; 1984), and it includes eruptiors that show highly unsteady,
supersonic flow with notable propagations of shock waves, either as bow shocks
that precede expulsions of tephra or as standing (Mach disk) shocks, that
develop within supersonic jets of tephra and gases. Such eruptions are short-
lived and in many places produce pyroclastic surge deposits of tephra. By
analogy to large chemical or thermonuclear explosions, the presence of base
surge deposits are often an earmark of highly unsteady flow and shock
propagation (Gla <tone and Dolan, 1977). As discussaed alove such eruptive
phenomena are associated with initial phases of Plinian eruption and Vulcanian

bursts.

Voltletz et al. (1984) moaeled a large eruptive blast associated with
Plinian eruptions that occur at durirg ca'ldera-ferming events. Assuming i(hat
an overpressuted magma chamber can be nearly instantancously opened to
atmosphere by lairge scale vent rock failure, analogy to well known shock tube
physics (Mright, 176/7) is a convenient vay to predict flov phenomena and to
test the ability of omr computer code to provide solutions that emulate those
physics, which are desceriboed from considevation of mass and momentum

conservation rtecpectively wiitten for one dimensional, inviseid flow:
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substituting characteristic velocities, dx/dt = u + ¢, the conservation

equations can be algebraically rewritten as:

d 0
37 ({f » u) + (u + c) I (f + u) - 0 (11)
9 9
Ty (f —u) + (u- ¢) rm (L - uw)y =0 . (12)

Using and ideal equation of state vhere pp9 equals a constant, the solution
for f is, using the Riemann invariant tor free expansion (Courant and
Friedrichs, 1948):

:)(.o 11“ }l'.l 1)y 2q
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Now with Rankine Hugonfot expressions for mass, momentum, and energy
conservatlon acroas a shock wave (e.g. Shapiio, 1953), the flow field of a

shock tube can b tully descrihed hy the following algebraic expressions:
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for which the Mach number is M = u/cy, the limit of isentiropic expansion is n =
(v 1)/(y+1), and the y is the shock strength, p,/p,, which is a transcendental
function of the atmospherice pressure p and chamber pressure py.  The
predictions of y and subsequent f{low field variables are described in Wohletz

et al. (1984) and are summarized in Figures 1 and 2.

Ve have found that our numerical codes nicely model shock-tube physics for
two dimensions (Fig. 3). A blast-type eruption from a magma cihramber at p, =
100 MPa, T, = 1273 K, and 8.7 vt X oversaturated with vater from a vent with a
hydraulic radius of about 100 m produces a bow shock ~f 3 MPa overpressure that
exits the vent ahead of steam and tephra at about 1 km/s. Unsteady flow ltehind
the shock continues up to several minutes as a rarefaction wave propagates down
the conduit, accelerating the tephra to 300 to 500 m/s. Because the the
1arefactlon vave retlects off chamber valls, It causes suirging flow out of the
vert and development of a fluctuating Mach disk shock thet adds to the blast

phenomena. These results are shown in Figures 4 and 9.

STEADY DISCHARGE FRUPTIONS

Many explosive eruptions, especially those classified as Plinian, are
thought to invelve 1elatively long perfods of approximately steady mass
dischage once a vent has been opened (Valker, 1981).  Depending on vent flow
conditions, eruption columng may either ise as buayant plumes trom whicl,
tephra is deposited by fallout, i collapse {n a fountalnlng manner from which
tephra s emplaced by latorally tlowing density currents (Sparks et al., 19/8;
Vilson et al., 1980; Valentine and Wohletz, 1989), Within the f1omevork of ow
similations, the conditlons that determine whether an ertuption column e
buoyant or forms o tountain can be <hown as o tunetion of three dimensionless

numbers (Fig., 60).  These numbers are:



Pe - Patm pressure diving tforce

Tam = (P, - P.ca)ER, B buoyancy force (s
PV’ inertial force

Ri, - (Pn - Pacw)ER, = buoyancy force (19)
P, exit pressure

Kp = Pacn = atmospheric pressure ' (20)

for vhich Toar the thermogravitational numbec, is a function of the exit (p,)
end atmospheric (p,,.) pressures, erupted column density (p,) and atmospheric
density (p,,,), gravitational acceleration (g). and vent radius (R,); Ri_, the
Richardson numbe:r, includes the square of the exit velocity (v,); and Kp is the
pressure .atio. 1n order to arrive at the collapse criterlon in Flgure 6, we
have considered eruptions with the same exit temperature (1200 K) and particle
size (0.02 mm); a more comprehensive treatment would also include variaticn of
these parameters. Ve note that our simulations of steady-flov eruptions have
been limited to elevations of 7 km, and it is possible that that some coiumns
that rise out of out domain might collapse from higher elevations. Still, the
dimenslonless numbers given above have strong physical siguificance in
detorminirg the bebavior of erupted columns, and it is their relative influence

that has been demonstiated by the numerical experlments.

Plinlan eruption columng. The term "Plinian column,” as discussed above,
re(ers to etuptive phenomena ot high: standing, buoyant plume ot gas and tephra.
Some 1esults of an example simulation, producing and eruption column that exits
the computational domaln, are shown lu Figmie 7. As the flov inltially exits
the vent, It rapldly tlares, owing to expansion from overpressume and the
resfstance of the atmosphere.  The top of the column develops vortieity vhere
it pushes agalnst the atmosphere, and {t {s termed the "working surtace,”

analogous to featuwres seen in laboratory simulations: of supersonle jJots,  Au



time progresses, the working surface rises, and in the last snapshot, it is
buoyantly rising out of the computational domain. 1In the two late-time
snapsho:is a f{laring structure typical of laboratory overpressured, supersonic
jets (Kieffer and Sturtevant, 1984) is evident; it is a result of Prandtl-Meyer
expansion of ‘he jet as it exits the vent. Because the governing equations are
the full Navier-Stokes equations with no restrictions on compressibility and
other flow properties, the range of flow behaviors from subsonic to supersonic
naturally occur in the calculations, and although as stated abeve, shock
discontinuities (e.g. Mach disks) are numerically diffused over several cells,
their effects are observable from plots of pressure and density contours and

velocity vectors.

Eruption fountains and colump collapse. When exit conditions of an
eruption column plot below the surface shown in Figure 6, the column takes on a
fountain like character (Fig. 8) that leads to formation of pyroclastic flows.
In Figure 8 and example simulation is shown where most of the ash vises to
about 3.5 to 4.0 km and then falls to the ground, forming both inward- and
outvard moving pyroclastic flows. A low tephra concentration c¢loud
continuously 1ises off the pyroclastic flows. Figure 9 shows some ot the
properties of the pyroclastic flow at three different times during its
evolution, the carliest of which corresponds to the time when the {low first
hits the ground avay from the vent. A parameter that Is Interesting trom a
peologic pelnt of view s the dynamic pressure (Fig., 9b), which shows
complicated time cvolution. For example, based upon effects of dynamic
pressure, ve predict that some locations avay from the vent may experience a
sequence of substrate crvosion, followed by tephra deposition, while other
locations expertience the opposlite sequence.  Because the dynamie pressure can
he directly related to bottom shear stress and hence erosfon/deposition, we
intor that even a simple eruption, such an we have numer feally simolated, might
lewd to a very complex stratigraphy of tephia deposita, Eruptions with
difterent extt conditions show widely vinying dynamic pressare hlstories in

theit pyrtoeclastic (love, Indleating that the level of ~omplexity that mipht be

n



interpreted fiom stratigraphic observations is essentially unlimited {Valentine

and Wohletz, in press).

CONDUIT FLOW CALCULATIONS

The above simulations have used a wide variety of vent exit conditions. In
reality, the exit velocities are strongly coupled to gas mass fraction,
temperature, and pressure, as well as vent radius, all of which have been taken
intoe consideration by Wilson et al. (1980) in a one-dimensional solution of
flow within volcanic conduits. Because our solution technique is so very
different than the analytical approach used by Wilson et al. (1980) (e.g. we
consider two-dimensional solutions, including nonlinear and time-dependent
processes), ve feel that the actual range of exit parameters is still pooirly

constrained.

We are beginning calculations of flow through the lithosphere in
conduits. Thin research, which was initially followed in the calculations of
transient blast eruptions described avove, requires more detailed work to fully
constrain the range of possible exit parameters {or steauy eruption tvpes,
included in our calculations are tracking ot the vavefaction wave down the
conduit, vhich is folloved by a fragmentation surface where the gas phase
becomes continuous, and the eflects of volatile mass fraction and its phase
change after exsolution from the magma. Also, we arc calculating the effect of
flow shear stress upon conduit walls that are deformable, erodible, and can add

tock fragments to the flow. Figure 10 is o sketeh of the flov tield geometry

we o are solving.

A natmral extension of flov calculations in lithospheric conduits is a

study of sonrce triggers for voleanic tremor, a collabotative stud, with

19



Bernard Chouet of the U. S. Geological Survey. Chouet (1v86) describes the
frequency content of volcanic tremors as veismic waves radiating trom a fluid-

filled crack in the lithosphere. Althougli the crack need not be connected to a

volcanic conduit, there is certainly the possibility that such a crack

represents part of a conduit system. The coupling of wave propagation in the

fluid with elastic waves in tne crack walls is nonlinear and results in a very

slow vave called the "crack wave" by Chouct (1986). The source disturbance in

the fluid is not known, but preliminary consideration of two-phase flow of a
bubbly fluid and the growth and collapse of vapor bubbles in the fluid suggest
that they are strong candidates for such 1 source trigger. This possibility is

being investigated as a part of the conduit flov calculations.

SUMMARY

Ve have appiied the separated, two-phase hydrodynamic equations, including
all important physical parameters to modeling explosive volcanic eruptions.
Tvo main types of cruption flow regimes ary modeled: (1) unsteady, blast-type
flow that involves highly transient effects, such as shock/rarefaction
propagations and reflections and time-dependeat tlow within the volcanic
conduit; (2) steady discharge eruptions in which vert exit conditions determine
vhether a high-standing, buoyant plume or a collapsing fountain are produced,
the latter leading to development of pyroclastic flows. We have recently
successtul ly reproduced some of the characteristics of the Mount St. Helens May
18, 1980 eruptions (Valentine and Wohletes, in vress) and have early ti:e
caleulations that support Kiefter’'s (1981) jer model tor the blast phasce of
that eruption. Interestingly, we have found in those calculations that both a

hotizontal and a vertical jet orientation produces similar late time features,

Ther numerical simulations, being in escence experiments where the boundary

and initial conditions e set by the operstor with the tesults evolving



continuously through time, can provide much insight into various field
observations, both of the activity of explosive eruptions and the tephra
deposits that result. One example of this type of experimental observation is
the pyroclastic flow erosion and depositional history mentioned above. Other
examples include the flow dynamics that lead to depositional facies of
pyroclastic flows, such as the ground surge that is commonly found at the base
of pyroclastic flow deposits, the ash-cloud surge that is deposited over
pyroclastic flow, and lateral depositional facies, determined by tephra size
and volume concentration, such as proximal ceoignimbrite breccias. The
simulations can aid in interpretation of active eruption behavior. For
example, simulations show that the ash-cloud rising above a fountain can reach
upward speeds much greater than the actual exit velocity at the vent, and *hat
pyroclastic flow runout is affected by eruption-induced atmospheric convecticn
(Valentine and Wohletz, 1989). Although numerical simulations can never
completely substitute for observations of nature, they do have the advantage
that one can see inside the flow, whereas in nature most of the important
processes are hidden by veils of ash. Numerical simulations cannot stand
alone, but they are in our opinion absolutely necessary for understanding most

field observations of explosive volcanic activity.

An inportant lesson that we have learned from studying the multiphase
hydrodynamics of explosive eruptions is that a rich complexity of processes is
predicted by the relatively straightforvard set of governing equations (eqs. 1
-6). The diversity is a result of the inherent, nonlinear nature of these
equations; small changes in pavameters may produce very different solutions.
This complexity suggests that for a given observation there may be several or
more, equally plausible physical explanations, and that extreme caution should
be used in interpretation of field observations, such as comparison ot the

phenomen. ol ceveral different eruptions, even at the same volcano.

There are numetous dirtections that can be followed in future computet

studics of explonive eruptions,  One of these, the flow within volcanic



conduits through the lithosphere is our present track. Eventually, we vill
combine the conduit and external flow fields into one calculation, using a
variable mesh size and time step. VWe have constrained our calculations to
single particle sizes, and because the effect of multiple sizes is nonlinear,
wve have not attempted to superimpose solutions for simulations of different
sizes. However, Marty Horn has developed a code at Los Alamos to calculate
effects and trajectories of particles of various sires and densities in a
multiphase hydrodynamic calculation. Additional collaboration with Susan W.
Kieffer of the U. S. Geological Survey will tackle a study of the detailed
physics of the atmospheric flow field in a search for flow singularities and
the effects of high particle concentrations, topographic barriers, and various

column (jet) orientations.
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FIGURE CAPTIONS

1. Plot of shock strength versus magma chamber overpressure.

J.

2. Plot of velocities and temperature for analytical solution of shock-tube

physics of the Bandelier Tuff eruption.

3. Distance-time plot for computer simulation of the blast that is thougnht to

have inftiated eruption of the Bandelier Tuff. The plot is analogous to an

ideal one for a shock tube with propagation of a shock wave into the

atmosphere while a rarefaction wave propagates down and reflects within the

magma chamber and conduit. The contact surface marks the front of tephra

and steam accelerated out of the vent. Both vertical and horizontal

components are shown for these waves.

4, Schematic representation and marker particle plots at 13 seconds of

simulated blast erupticn time, showing the shock wave, ach contact, and

tarefaction wave in the vent,

>. Developmental stages of a blast eruption followed by Plinian column

collapse,  The blast wave consists of a leading bow shock and trailing

sutpes of tephra in vhich Mach dise shocks torm in response oo wide, nearly
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hemispherically flaring of the overpressured jet as it expands into the

atmosphelre.

Plot of the collapse criterion for eruption columns in forming fountains.
This piot is for a single tephra particle size and shows the control by
Tg,, Ri_,, and Kp. as defined by exit conditions. Exit conditions, plotting
above the surface, form high-standing Plinian columns, while those plotting
below the surface produce collapsing columns or fountains that lead to

pyroclastic flow phenomena.

Numerical eruption simulation of a Plinian column. Contour plots of log 6,
with u,, p, G and T, are shown for three times after initiation of
discharge (10, 80, and 110 s). The innermost log 6, contour corresponds to
a solid volume fraction of 10°', and each contour outward represents an
order of magnitude decrease in that value. Maximum flow speeds of about
400 m/s are attained in the basal 2 km of the column. The exit pressure of
this eruption is 0.69 HPa, and the initial atmospheric pressure signal is
shown in the pressure and gas-density plots at t = 10 s as a perturbation
in the ambient values. T_ contours are drawn at 100 K intervals, starting
at 1200 K at the vent, so that the outermost contour corresponds to 400 K.
Note that as with all ecalceulations, the atmosphere is initially density

stratified and isothermal av 00

Numctieal cruption simulation of collapsing column or fountain. Contowm
plots are similar to those in Figure 7/ and cre shown for simulated eruption
times of 10, 80, and 140 5. The exit pressure is atmospheric and maximum
speods are about 300 n/s at the exit plane. Note the atmospheric pressme
signal at ot 10« i< hotter tesolved than that shown in Figure 7, becaune
the lowver proescanne of this cruption alloved draving of closer pressme
contours, Hiph prescoure colle are located gt the elevation of collaptie and
where the colblapsing thov ieplopes upon the pround.  The contour plot of p

1
at ot 1an - hows how hoty relatively tow denstity pas is draggped beneath
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the relatively high-density atmosphere, producing an unstable situation
vhere the hot gas tends to rise ou: of the basal flow. This situation in
turn leads to development of an ash cloud that buoyantly 1ises above the

basal pyroclastic flow.

Simulated properties of a pyroclastic flow as functions of distance from
the vent center: (a) horizontal velocity; (b) horizontal component of
dynamic pressure; (c) temperature; and (d) particle volume fraction. Each
of these parameters is shown fcr three times after the initlation of
discharge (t = 109, 131, and 145 s), the earliest of which coincides with
the initiation of the pyroclastic flow. For this eruption the flow
conditions at the vent (200 m radius) are: velocity of 300 m/s, 0.2 mm
particle diameter, 0.1 MPa (atmospheric) gas pressure, and a mass discharge
of 9.0 x 108 kg/~.

Sketch of the {lov field for multiphase tlow in a 'ithospherlc crack, which

evolves into a flaring volcanic conduit,



Table 1. Notation.

Cq sound speed of compressed gas

»

Y gravitational acceleration

Iy gas speciflic enewgy

L, s0li1d specific energy

J mass exchange rate

Kq momentum exchange, particles to gas

K., momentum cxchange, gas to particles

K, ratio of exit pressure to atmospheric pressute
M Mach number

P pressure

My pressuie of compressed gas

R, heat exchange, particles to gas

R, heat exchange, gas to particles

I, chergy source of mass exchange and phase changoe
T, temperature of comptessed gas

Ty, Thermopgravitational paramete;

! time

Ri Kichardson numbe

! spatlal comdinate fo radial direction

»

n, pat veloelty veetol

l;,_ solid velocity veeton

v volocjty

N Tinear spatial convdinare

v chock ctrenpgth

2 cpatial coordinate fnovertical divection

TH



Table 1.

(Cont inued)

gas isenlronic exponent

gas microscoplc density

solid microscopic density
density of compressed gas
limit of Isentropic expansion
gas volume fraction

solids volume fraction

stress tensot

eddy viscosity
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