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DYNAMICSOF FISSION AND HEAVY ION REACTIONS

J. Rayford NIX and Arnold J. SIERK

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
87545, U.S.A.*

We discuss recent advances in a unif?ed macroscopic-microscopic description
of large-amplitude collective nuclear motion such as occurs in fission and
heavy ion reactions, With the goal of flnd{ng observable quantities that
depend upon the magnitude and mechanism of nuclear dissipation, we consider
one-body dissipation and two-body viscosity within the framework of a gen-
eralized Fokker-Planck equation for the time dependence of the distribution
function in phase space of collective coordinates and momenta. Proceeding in
two separate. directions, we first solve the generalized Hamilton equations of
motion for the first moments of the distribution funct~on with a new shape
parametrization and other technical innovations. This yields the mean trans-
lational fission-fragment kinetic energy and mass of a third fragment that
sometimes forms between the two et?d fragments, as well as the energy required
for fusion in ~ymmetric heavy-ion reactions and the mass transfer and capture
cross section in asymmetric heavy-ion reactions. IrI a second direction, we
specialize to an inverted-oscillator fission barrier and use Kramersl sta-
tionary solution to calculate the mean ‘.ime from the saddle point to scission
for a heavy-ion-induced fission reaction for which experimental information
is becoming available.

1. INTRODUCTION

We have already heard frcm the other speakers at this International Confer-

ence on Theoretical Approaches to Heavy Ion Reaction Mechanisms about the many

complementary aspects displayed by the atomic nucleus. With its relatively

small number of degrees of freedom, the nucleus is both microscopic and macro-

scopic on the onc hand and both quantal and classical on the other, which gl’~es

it a rich dynamical behaviour ranging from elastic vibrations of solids to

long-mean-free-path dissipative fluid flow with statistical fluctuations.

Experimental clues to this challenging many-body problem continue to be provided

by fission and heavy ios reactions. Yet our major goal of determining whether

in large-amplitude collective nuclear motion the nucleons interact primarily

through the mean field generated by the remaining nucleons, or whether two-

particle collisions play a substantial role, has proved elusive.

Our challenge Is not to explain the experimental data in terms of some model

with adjustable parameters-- since often several models with widely different

physical bases are capable of doing this equally well--but Instead to find and

calculate physical observable that depend sensitively upon the magnitude and

‘This work was supported by the U.S. Department of Energy.



mechanism of nuclear df6SipatiOtI, The difficulty arises because many of the

gross experimental features of fission and heavy ion reactions are determined

primarily by a competition between the attractive nuclear force and the repul-

sive Coi~lomb and centrifugal forces, and any theoretical approach that includes

correctly these relatively trivial forces reprod~ces the data with fair accura-

cy . Also, the final effects on observable quantities caused by dissipation are

often very similar to the final effects caused by collective degrees of freedom.

A possible starting point for a theory of nuclear dynamics is the time-depen-

dent mean-field (Hartree-Fock) approximation, in which nucleons interact only

through the mean field generated by the other nucleons, with two-particle col-

lisions neglected entirelyl, The approximate validity of this approach stems

from the Pauli exclusion principle and the details of the nucleon-nucleon inter-

action, which at low excitation eaergies lead to a nucleon msan free path that

is long compared to the nuclear radius. In this approximation, the many-body

wave ?unction for a system of A nucleons is represented at all times by a single

Slater determinant consisting of A single-particle wave functions.

However, critical comparisons of two predictions of this approach with ex-

perimental data suggest that in real nuclei the type of nuclear dynamics pre-

dicted by the time-depl?nd~.lt mean-field approximation is modified significantly

by residual interactions arising from two-particle collisions, These compari-

sons involve the experimental demonstration that nuclei do not penetrate through

each other in nearly central collisions as predicted by this approximation, and

the substantially smaller predicted energy loss at large angles in heavy ion
1)2reactions than is observed experimentally .

Some important steps have been taken to incorporate two-particle collisions
3,4into the time-dependent mean-field approximation . Although certain concep-

tual problems remain and computational difficulties have precluded comparisons

of such extended mean-field approximations with experimental results, these

studies have nevertheless shown that two-particle collisions cdnnot be neglect-

ed. This motivates us to take the opposite tack and study nuclear dynamics by

use of a mtqcroscopic-microscopic method, Our purpose is to calculate for two

radically different dissipation mechanisms observable quantities in fission and

heavy ion reactions and confront these predictions with experimental data in an

attempt to det~~mine the magnitude and mechanism of nuclear dissipation,

2. MACROSCOPIC-MICROSCOPIC METHOO

We focus from the outset on those few collective coordinates that are most

relevant to the phenomena under consideration. In particular, for a system of A

nucleons, we separate the 3A degrees ON freedom representing their center-of-

mass motion into N collective degrees of freedom that are treated explicitly and



3A - N internal degrees of freedom that are treated implicitly.

2,1. Collective coordinates

In our earlier dynamical studies we have usually described the nuclear shape

in terms of smoothly joined po~tions of tri;ee quadratic surfaces of revolution,
5-9with threQ symmetric and two independent asymmetric shape coordinates .

Although suitable for many purposes, this three-quadratic-surface parametriza-

tion breaks down in the later stages of many heavy-ion fusion calculations, is

unable to describe division into more than two fragments and leads to very

complicated expressions for the forces involved.

Because of these disadvantages, we have switched to a more suitable parame-

trization in which an axially symmetric nuclear shape is described in cylindri-

cal coordinates by means of the Legendre-polynomial expansion
10

p:(z) = R;f %Pn[(z-i)/zo] .
n=O

In this expression, z is the coordinate along the symmetry axis, p~ is the value

on the surface of the coordinate perpendicular to the symmetry axis, Z. is

one-half the distance between the two ends of the shape, ; is the value of z at

the midpoint between the two ends, R. is ‘the radius of the spherical nucleus, Pn

is a Legendre polynomial of degree n, and qn fcr n # O and 1 are N - 1 shape

coordinates, Since the nucleus is assumed to be incompressible, the quantity q.

is not independent but is instead determined by volume conservation. Also, ql

is determined by fixing the center of mass. Throughout this paper we use N =

11, corresponding to five independent symmetric and five independent asymmetric

shape coordinates. In addition, we include an angular coordinate e = ‘N+l to

describe the rotation of the nuclear symmetry axis in the reaction plane, which

leads to a total of N degrees of freedom that are considered.

2.2. Pste~tial energy

In terms of the N collective coordinates q = q2?”””\qN+~ we C31CU

potential energy of deformation V(q) as the sum of repulsivo Coulomb

tr{fugal energies and an attractive Yukawa-plus-exponential potentia

ate the

and cen-
11 , with

12
constants determined in a recent nuclear mass formula . This generalized

surface energy takes into account the reduction in energy arising from the

nonzero range of the n~lclear force in such a way that saturation is ensured when

two semi-infinite slabs are brought into contact.

2.3. Kinetic energy

Thg collective kinetic energy is given by

where the collective momenta p are related to the collective velocities i by
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In these equations and the remainder of this paper we use the convention that

repeated indices are to be summed over from 2 to N + 1. We calculate the in-

ertia tensor M(q), which is a function of the shape of the system, for a super-

position of rigid-body rotation and incon,pressible, nearly irrotational flow by

use of the Werner-Wheeler method, which determines the flow in terms of circular
5-9layers of fluid ,

2.4. Dissipation mechanisms

The coupling between the collective and internal degrees of freedom gives

rise to a dissipative force whose mean component ir, the i-th direction may be

written as

For the calculation

scribes the convers-

energy, we consider

=- llij(q) [M(q)-l]jkPk .

of the shape-dependent dissipation tensor q(q) that de-

on of collective energy into single-particle excitation

both one-body dissipation
8,9,13-15

and ordinary two-body
6,8,9viscosity , whose dissipation mechanisms represent opposite extremes. In

the former case dissipation arises from collisions of nucleons with the moving

nuclear surface and when the neck is smallel than a critical size also from the

transfer of nucleons through it, with a magnitude that is completely specified /“

by the model. In the latter case dissipation arises from collisions of nucleons

with each other, but the coefficient of two-body viscosity must be determined

from an adjustment to experimental results,

Compared to our previous calculzt~ons with one-body dissipation 8,9,13, our

present calculations incorporate two improvements, First, to describe the

transition from the wall form~la that applies to mononuclear shapes to the

wall-and-window formula that applies to dinuclear shapes we now use the smooth

interpolation

0 = sin2(~) ~wall + COS2(*) q
wall-and-window ‘

where

a = (rneck/Rmin)2
is the square of the ratio of the neck r~dius rneck to the transverse semi-axis

R of the end fragment with the smaller value.
min Second, in determining the

drift velocitie6 of the end fragments relatlve to which velocities in the wall-

and-window formula are measured, we now require the conservation of linear and

angular momentum rather th~n using the velocities of the centers of mass. How-

ever, the results calculated with both prescriptions for the drift velocity are

nearly identical.
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2.5. Generalized Fokker-Planck equation

In addltlon to the mean dissipative force, tho coupllng between the collec-

tive and Internal degrees of freedom gives rise to a residual fluctuating force.

Uhen this stochastic force Is treated with classical statistical mechanics under

the Markovian a$sumptlon that It does not depend upon the system’s previous his-

tory, we are led to the generalized Fokker-Planck equation

[

af 8V + ~ a(M-l)jk
g + (M-l)ij Pj q - .1 af

q 2 aql ‘j ‘k ~

2
=r+j (M *(pkf) + ~flij a~lt!Pj

‘I)jk apf

for the dependence upon time t of the distribution function f[q,p)t) in phase

space of collective coordinates and momenta. The last term on the right-hand

side of this equation describes the spreading of the distribution function in

phase space, with a rate that is proportional to the dissipation strength and

the nuclear temperature t, which Is measured here In energy units.

2.6. Generalized Hamilton equations

Because of the practical difficulty of so’lving the generalized Fukkwl-Planck

equation exactly except for special cases, in some of our studies we use equa-

tions for the time rate uf change of the first moments of the distribution

function, ulth the neglect of higher moments. Th(se are the generalized Hamil-

ton equations

{i = (M-l)fj Pj

and

av ~ a(M-l).k
~i=._._ Pj pk - qjj (M-~)jk pk ,aqj 2 ml

wh~ch we solve numerically for each of the N gene~alized coordln?ces and

momenta.

3. FISSION

As our first application, we consider the flsslon process, with particular

emphasis on the mean translational fission-fragment kinetic energies of nuclei

throughout the perlodlc table. Although similar to earlfer studles6’6, our

present calculations are performed, as discussed above, with a more flexible

shape parametrization, with a more reallstlc set of constants, and with two

Improvements in our treatment of one-body dlsslpatlon. Also, our initial condi-

tions

the f

at the flsslon saddle point now Incorporate the effect of d~ss{pation on

sslon dlrectlon16 and are calculated for excited nuclel with nuclear
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temperature T = 2 MeV by determining the mean veloclty Of all nuclei that pass
17

per unit time through the saddle point with positive velocity .

3.1, Dynamical trajectories

In our fission calculations we specialize to reflection-symmetric shapes and

zero angular momentum, so that only five coordinates are considered explicitly.

We then project out of this five-dimensional space the two nlost important sym-

metric degrees of freedom, which are conveniently defined in terms of the cen-

tral fnomentsG-g

r = 2<2>

and

o= 2<(2 - <2>)2>1/2
#

where the angular brackets < > denote an average over the half volume to the

right of the midplane of the reflection-symmetric shape. The moment r gives the

distance between the centers of mdss of the two halves of the dividing nucleus

and a measures the elongation of each half about its center of mass. Our calcu-

lations are performed for nuclei with atomic number Z related to mass number A
18

according to Green’s approximation to the valley of beta stability .

As shown in fig. 1, the mean dynamical trajectories for light nuclei corre-

spond to short descents from dumbbell-like saddle-point shapes to compact scis-

sion shapes, whereas those for heavy nuclei correspond to long descents from

cylinder-like saddle-point ShdpeS to elongated scission shapes. The trajec-

tories for one-body dissipation lie inside those for no dissipation and two-

E

d1,0

No dio*tiofl

one-bodyd80@tion

Wo-bdyviscosity,
p -0.02 TP 11 ~,,, ,-

——
0!0

0 6
Distanca’Batwoen2Ma88 Can;girsr (lhhofRo)

1 I 1

FIGURE 1
Effect of dissipation on mean dynamical trajectories for four fissioning nuclei.
Saddle points are indicated by solid circles and scisslon points by arrowheads,
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body viscosity for heavy nuclei, but for very llght nuclel lie out-side. In

contrast, the trajectories for two-body viscosity always lie somewhat above

those for no dissipation, leading to more elongated scission shapes. Our cal-

culations for two-body viscosity are performed with viscosity coefficient

p = 0.02 TP= 1.25 x 10-23 MeV s/fm3 ,

which as we see later is the value required to optimally reproduce experimental

mean fission-fragment kinetic energies.

3.2. Ternary division

An exciting new aspect of these dynamical calculations is the formation of a

third fragment between the two end fragments for sufficiently heavy nuclei with

either no dissipation or two-body viscosity. As shown in fig. 2, the mass of

this third fragment increases with increasing Z21A1’3 above a critical value

that is slightly lower for two-body viscosity than for no dissipation. Since no

third fragment is formed with one-body dissipation, accurate experimental in-

formation concerning sllch true ternary-fission processes should help decide the

nuclear-dissipation issue. Further theoretical aspects of this problem are
19

currently being studied at Los Alamos by Carjan .

3.3. Fission-fragment kinetic energies

In calculating the mean fission-fragment translational kinetic energy at i,~-

finity, we treat the post-scission dynamical motion in terms of two spheroids,

with initial conditions determined by !(.eeping continuous the values of r, a, ;,

161 I I I I

H ----——

0

Nodhsipation
One-body dssiiation

A

,0
,/

nvo-body Viscosily, #
●#

# -0,02 lP

i600 1600 1700 1000 1900 2ijoo
z2/~v3

FIGURE 2
Eflect of dissipation on the fnrmati~n of a third fragment between the two end
fragments,
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ana u at sclsslon. wnen a smai 1 cnlra lragment 1s rormea In a rea[lsclc situa-

tion off tbe symmetry axis andlor with some transverse velocity, it moves away

and contributes less to the kinetic energy of the two larger end fragments than

it would in our idealized calculation, where it remains stationary at Its origin.

In the presence of a third fragment, we obtain a lower limit to the fission-

fragment kinetic energy by calculating the post-scission separatim of the end

fragments in the absence of the middle fragment. Blso, we estimate an upper

limit in terms of the kinetic energy at scission of the two end fragments plus

the Coulomb interaction energy of three spherical nuclei positioned at their

respective centers of charge.

Me compare in figs. 3 and 4 our mean kinetic energies calculated in this way

with experimental values for the fission of nuclei at high excitation energy6,

where single-particle effects have uecreased in importance. As shown by the

short-dashed curves in both figures, the results calculated with no dissipation

are for heavy nuclei substantially higher than the experimental values. Dissi-

pation of either t}pe lowers the calculated kinetic energy. However, as ShOWI

by the long-dashed curve in fig. 3, one-body dissipation with a magnitude that

is specified by the theory predicts for heavy nuclei values that lle below the

experimental data. This underprediction arises because the highly dissipative

descent from the saddle point damps out much of the pre-scission kinetic energy

zso~-: ‘,’,’ I
L

200 -

150 -

100 -

50 -

r

---- FJodmpamn 1
() ~——_L——k A-1

o 600 1()(x) 1600 2000
zl,~V3

FIGuRE 3
Reduction of mean fission-fragment kinetic energies by one-body dissipation,
compared to experimental values.
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— 0.02P

n , , 1 I 1 I I , 1 , 1 I , 1 ,
“o 600 1000”

z2/~113
1600 2000

FIGURE 4
Reduction of mean fission-fragment kinetic energ’
compared to experimental values.

es by two-body viscos’ty,

and our improved parametrization leads to moderately elongated scission shapes

with lower Coulomb repulsion. We regara this discrepancy as experimentally

demonstrating that one-body dissipation as presently formulated is not the

complete dissipation mechanism in large-amplitude collective nuclear motion.

In contrast, as shown by the solid curves in fig. 4, when the two-body vis-

cosity coefficient is adjusted to the value p = 0.02 1P, the experimental data

for heavy nuclei lie between the calculated lower and upper limits and are

adequately reproduced throughout the rest of the period”lc table. For two-body

viscosity, the dynamical trajectories lead to elongated scission shapes with

less Coulomb repulslon, but this is supplemented by some pre-scission kinetic

energy. These results calculated with several improvements demonstrate that

mean fission-fragment kinetic energies are capable after all of distinguishing

between dissipation mechanisms.

4. HEAVY ION REACTIONS

Even better prospects for determing the dissipation mechaniwr reside w~th

heavy Ion reactions, where we are able to choose the total mass of the combined

system, the mass asynsnetry of the entrance channel and the bombarding energy

with foresight. This permits us to select for study those dynamically interest-

ing cases that involve large distances in deformation space.

9



4.1. Ener~ for fusion

A necessary condition for compound-nucleus formation la that the dynamical

trajectory of the fusing system pass Inside the flr+slon saddle point in a multi-

dimensional deformation space. For heavy nuclear systems and/or large impact

parameters, the fission saddle point lles inside the contact point anti tho

center-of-mass bombarding energy must exceed the maximum in thu one-dimensional

zero-angular-momentum interaction barrier by an amount M in ordor to form a

compound nucleus.

This additional energy AE has been calculated both by solving the generalized

Hamilton equations numerically with the three-quadratic-surface shape parametri-

zation and realistic forces
7,9

and approximately with the two-sphere-plus-
20,21

conical-neck shape parametrization and schematic forces . Since we have not

yet performed such calculations with our present shape parametrization and other

improvements, we use the results from ref. 9 as an illustration.

Figure 5 compares calculated and experimental values of the additional center-

of-mass bombarding energy AE as a function of a scaling variable (Z2/A)mean

defined in terms of the atomic numbers and mass numbe?s of the target and projec-

tile, Sclid symbols denote values extracted from measurements of evaporation

residues, which require the formation of true compound nuclei. Open symbols

I-10L—L--L– i. ...1. L._.L— -L...-.J. ..LJ

34 36 38 40 42 44

(Z2/A)meon

FIGURE 5
Comparison of calculate and experimental values of the additional ●nergy AE
required for compound-nuclsus formation.
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reached, belrw which some oscillations occur.

4.3. Capture cross section

In the experimental study of the Zoapb + 58 Fe reaction, a cross section Uc

corresponding to capture, or syrmretric fragmentation, was determined as the
22

average of two separate procedures . With the first procedure all mass trans-

fers greater than 40 am were included, whereas with the second procedure Gaus-

sian distributions centered at symmetry were adjusted to the data. The result-

ing experimental points, with error bars reflecting the differences between the
22

two procedures , are shown in fig. 7. In calculating a corresponding theoreti-

cal capture cross section, we use the first procedure involving mass transfers

greater than 40 amu. Other than at the lowest bombarding energy, our calculated

curve for two-body viscosity lies substantially above the experimental points,

with the deviation increasing to almost a factor of 2 at the highest bombarding

energy. We regard this important discrepancy as experimentally demonstrating

that two-body viscosity is also not the complete dissipation mechanism in large-

amplitude collective nuclear motion.

Our next step is to perform analogous calculations for one-body dissipation,

taking into account the dissipation associated with a time rate of change of the
15

mass asymmetry degree of freedom in the completed wall-and-window formula .

Like the rest of you at this Conference, we are eager to find out if one-body

dissipation can quantitatively account for experimental capture cross sections.

+

J, I 1 I , 1 I 1

220 240 260 280 300 320 340 360 380

Bombar&g Energy& (MeV)

FIGURE 7
Comparison of experimental capture cross secticns with results calculated for
two-body viscosity, with v~scosity coefficient p = 0.02 TP.
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5. SADDLE-TO-SCISSION TIME

We now proceed in a second direction and apply the generalized Fokker-Planck

equation to a one-dimensional inverted-oscillator fissfon barrier with frequency

w. The inertia with respect to the deformation coordinate q is assumed constant

with value m and the dissipation coefficient is assumed constant with value q.

It is natural to measure the dissipation strength in terms of the dimensionless

?atio y = rl/(2m), defined so that unity corresponds to critical damping in the

inverted oscillator turned upright.

Except for extremely small values of y, Kramers’ stationary solution of the

Fokker-Planck equation for the inverted oscillator can be used to derive an

analytical expression for the mean time ~ required for the system to move from

the saddle point at q = O to the scission point at q = qc. The result is
17

2 1/2
i=$[(l+y; + Y] R[(&q:#2] ,

where

[

z m

R(z) = exp(y2) dy s
exp(-xz) dx

Y

Is a readily computed function studied and tabulated by Rosser. Because of its

strong dependence upon the dissipation strength, the mean saddle-to-scission

time provides a direct method for determining the magnitude of nuclear dissipa-

tion. As an example of this pessibilit~~ , , we consider the reaction 160 + 142Nd +
158

Er at a laboratory bombarding energy E,ab = 208 kleV, which is being studied
23

experimentally by the Los Alamos-Oak Ridge collaboration . For three values of
23

angular momentum spanning the window that contributes to fission , we show our

calculated mean saddle”to-scission times in fig. 8. The constants of the in-

verted oscillator representing the fission barrier for each angular momentum are

determined by equating two f~antities calculated for a parabolic barrier to the

corresponding quantities calculated with our dynamical model described earlie~’.

The nuclear temperature T is determined from the excitation energy EN at the

saddle point by use of a Fermi-gas relationship.

Experimental dmta on the spectra of neutrons emitted in this reacti~n and on

their angular distributions wil’I be analyzed to yield the number of neutrons

emitted prior to scission and the number of neutrons emitted from the fission

fragments23. These quantities may in turn be related by means of a statistical

model to the sum of the time required to build up the quasi-stationary probabil-

ity flow over the fission barrier
24 and the mean saddle-to-scission time. The

former is currently being calculated for this reaction by Grangd and Weiden-

mUller25. When fully completed and analyzed, this experiment should set strin-

gent limits on the magnitude ot nuclear dissipation.

13



I I I

/
#-

‘@+%j+%r /“
0

~ = 208 MN
/0/.=

///0////
/

0 ---- L_65fi

-- — 00
—— 72

0.6 1.0 1.5 2.0

Dissipation Strength 7

FIGURE 8
Increase of the mean saddle-to-scission time with dissipation strength.

6. OUTLOOK

We are entering a new era in fission and heavy ion reactions. Up to now

theoretical approaches with vastly different pictures of the underlying nuclear

dynamics have reproduced many of the gross experimental features of fission and

heavy ion reactions because they include correctly the dominant nuclear, Coulomb

and centrifugal forces. However, calculations are now being designed specifi-

cally to test the dissipation mechanism. When compared with mean fission-frag-

ment kinetic energies, these calculations demonstrate that one-body dissipation

is not the complete dissipation mechanism. Also, when compared with capture

cross sections, they demonstrate that two-body dissipation Is not the complete

dissipatio~ mechanism.

We are led experimentally to the suggestion that dissipation in large-ampli-

tude collective nuclear motion Is intermediat~ between these two extremes,

arising from both mean-field effects and two-particle collisions. Further

compar~sons of the type made here, together with forthcoming experimental infor-

mation on true ternary fission and the mean saddle-to-sclsslon time, offer the

exciting prospect of finally determining the magnitude and mechhnism of nucl~ar

dissipation.
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