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THREE-DIMENSIONAL, FREE-LAGRANGE HYDRODYNAMICS

HAROLD TREASE
LOS ALAMOS NATIONAL LABORATORY

1, INTRODUCTION:

The need to model high speed fluid flow that involves gross material
deformation and (local) high shear flow regions is kecoming a requirement
for computational flow models.. These reguirement.s dictate the use.af
robust, accurate numerical methods to model such fluid flow problems.
Problems of this type have brought about the development of a new numerical
technique called the FLM (Free-Lagrange Method). The two-dimensiocnal
devalopment of this technique Las been pioneered by Crowley [1l] and
Fritts(2). Thelr work has led to further cevelopment by Clark([5] and
Trease(4]. The first international cnnference on the FLM (5] was held
in 1985,

This paper descr.bes the algorithms that make up a 3-D version of the
FLM (the 2-D version is described in [(4]). The basic method involves the
explicit integration of the fluid flow equations over control volumes formed
by Voronoi cells. A Voronol cell is an arbitrary, convex polyhedron that
has plane polygon faces. The "nearest" nelghbors of any given mass point
are identified by noting the mass point that lies on the opposite side of a
given Voronoi face. The nearest neighbors of a mass point are allowed to
change in response to the (Lagrange) motion of the mass points. This
implies that the mesh reorganizes itself as the mass points move with the
fluid motion.

As will be desgcribed later the Voronoi meshing technique has several
"nice" features abcut it that impac- the robustness and accuracy of the
solution of the equations that are solved on this type of mesh. The
following 18 a Zuick - -cumrary of some of thess nlce features: -

1) A convex polyhedron gu.arantees that the control volumes are

not distorted or reentrant.



2) Each face of the polyhedra is described by arbitrary polygons
sucn that each face intersects the line between twc mass points
as a perpendicular bisection plane. This implies that when
forming the difference operators for any of the equations
that (locally) the mesh spacing is always "uniform",.

3) The space defined by an arbitrary distribution of mass vpoints
plus any external boundaries is tessellated completely and
uniquely by a set of Voronoi polyhedra. Thils tessella’ion is
guaranteed to give.reciprocity of connections,

4) The maintenance of the (Voronoi) <onnectivity matrix as the
Lagranglan mass points follcw the fluid motion is a matter
of applying the Voronol "rules" for (re)defining the nearest
neighbors o a point. This leads to an erfficient and systematic
algorithms for mairtaining the global connectivity matrix.

S) During the reconnection of thu mesh, where mass points change
nearest neighbors, the integration control volumes for each
mass point (i.e., the Voronol polyhedra) do not change their
topological form., This means that during the redefinition
of the nearest neighbcrs of a mass point there 1s no need
to "flux" mesh quantities because of the reconnections.

6) The distribution of mass points used to describe the geometry
of a problem (and used as the basis of the discretization
method) can be locally refinad to resolve fo. '.ures of a
problem. Since a connectivity matrix 18 constructed from
the mass point distribution, and subsequertly mairntained
by a mesh optimization phase, we can add regolution as
a problem evolves or we can remove russ>lution Lif the need
arises fe.g., an example would be a time-step crash caused
bv two maas points that come "too close").

In the reratrder of th.s paper I will ‘the describe~Lhe major ctepsw

and solution algorithms that are used to solve an example 3-dimensgional
{Lvid flow problem. Alsw, I will present the results of this problem

(NOTE: This problem is a standard strong shock, test problem, calledl



the Noh problem [6]. This test problem represents 3just one >f the o2 i~
verification prcblems in our overall quality/assurance procedure). The
-definition of the example problem to be used t> describe the FLM is
shown in Fig. 1. Here we have a infinite strength shock moving into an
undisturbed fluid. The problem is solved in plane geosmetry for the
purposes of the this paper, but cylindrical and spherical versions are

also used for code verification.

2. MESH GENERATION:
This step includes the iniltial definition of a problem. The setup of
a problem’s geometry requires the following:

1) A distribution of mass points over the region ot space.

2) The definition of any external boundaries.

3) The types of materials in each material region along with

initial material densities, temperatures, etc.

An example distribution of points and the resulting Voronoci mesh
is shown in Fig. 2 (This is actually A self-generated distribution of
points from a set of "seed" surface points and an automatic mesh
refinement algorithm). This figure shows an arbitrary set of mass
points and the corresponding Voronoi polygons that are constructed
from the algorithm described by Trease [5].

The mesh that I will use in my example calculation(s) 1s shown in
Fiqure 3a~-c, Figure 3a shows the geometry of 1-D version of the
problem. Figure 3b shows the 2-D definition of the problem and figure
3c shows the 3-D setup for the same problem.

The main features to note about the tessellation method is that
the entire space is mapped by a set of norn-overlapping convex polyhedra,
where aach mass point (located at the center of the cells) i3 separated
from its nearest nelghbors by perpendicular bisecting, plane polygon

face=s.



3. INTEGRATION METHOD:

To solve our example hydrodynamics problem, we must solve the
fluid flow equations by using the specified initial conditions and
bourdarv conditions. The solution method that I choose to use
involves the explicit time integration of the (discretized) fluid flow
equations over a set of control volumes represented by the Voronoi
control volumes.

The differential form of the fluid flow equations that represent the
conservation of mass, momentum, and internal enerqgy are given by:

1) Conservation of Mass (continuity equation);
7
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2) Conservation of Momentum;

3} Conservation of Internal energy:
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These equations are spatially integrated uver 2 control volume,
where we transform (on the right-hand side of the equations) the
volume integrals to surface 'ntegrals. These three egquations now
take on the integral form:

1) Conservation of Mass (continuity equation):;
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2) Conservation of Momentum;
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3) Conservation of Intaernal energy:
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These equations are now written in difference form as follows:
1) Conservation of Mass (continuity equation):
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3) Conservation of Internal energy:
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There are several things to note about these equations.

1) Local gradients are represented by the difference
of a given quantity between two nearest neighbors.

2) Since we are solving strong shockwave dominated problems
we must define an artificial viscosity [7). This is
done in a tensor form by using the fluid stress tensor
as an artificial viscosity tensor, where the fluid viscosity
is replaced by an artificial viscosity (8]. This implies
that artificial fluiﬂsstress tensor in cartesian coordinates

has the form, where I is the unit tensor:
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3) Each pair of mass points are separcted be a perpendicular
bisecting plane. This means that locally the mesh looks
like an equally spaced mesh. This fact enhances the (spatial)
accuracy of the differencing method, as can be shown by a
Taylor series expansion abovt one of the points.
For completensss, we note that in orxrder for the sclution method of the
three equations described above to be closed, we must have an equation-
of-state.which ralates thr pressgsura 2f a.material to the .density and

internal energy (or temperature) of a mcterial, For our example problem

we use an ldeal gas relation of the form: P: \'.fa'-/) Jf
oA = sorm EPS LAW
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4. MESH OPTIMIZATION:

As our computational model follows the evolution of a fluid flow
pronlem, the discrete Lagrangian mass points move with with fluid motion.
This process ordinarily results in a (hopelessly) tangled computational mesh.
The power of the FLM is that the mesh can be reorganized by a reconnection
algorithm to avoid this mesh tangling problem. The method that I use
to reconnect the mesh is the same one used to tesselate the mesh
in the generation phase. The "new" set of nearest neighbors are (re)defined
by the construction of the Voronoili cell by using the "old" nearest neighbors
and the nearest neighbors of the "old" nearest neighbors. This set of
"possible" nearest neighbors is guaranteed to be complete due to the
explicit (Courant time-step limited) nature of the time integration method
(1.e., any single mass point cannot move out of its sphere of nearest
neighbors in one computational cycle).

One of the most important features of using the Voronoi mesh to define
the computational control volumes becomey apparent when a nearest neighbor
reconnection occurs. The topology of the mesh doesn’t change as a result
of the reconnection. This implies that during this step the fluid
volumes associated with the control volumes will not change. Thus, none
of the physical quantities assoclated with a given mass point (or Voronoi cell)
need be fluxed between cells. Therefore, the numerical diffusion ordinarily
associated with fluxing of conserved quantities is not a problem with a

Voronoi mesh based version of the FLM.

5. RESULTS OF SOME CALCULATIONS:

The example calculation that I will use to demonstrate the utility
of the FLM is based on what we call the Bill Noh problem [6]. This
problem involves the generation of an infinite strength shock by a piston
pushing intu an undisturbed gas. The initial conditions and boundary
conditions are showi in Flg. 1. Figures 3a-z shows the Voronoi mesh

for three variations of the Noh problem. Fig. 3a ig just the mesh
-l=



fgr a 1-D version of the problem. Fig. 3b is the mesh for a 2-D versiocn
.of the problem. For the 2-D run, I have intentionally introduced a mesh
perturbation into the problem. The problem is still made of a uniform
undisturbed gas, but the mesh is not uniform. This will test the code’s
ability to pass a 1-D shock wave through a non- uniform mesh. The

result should be a 1-D solution. Fig. 3c shows the final version of
this problem where we run the same problem on a fully 3-dimensional mesh.
The results for the 3-D case should be the same as for the 2-D case (i.e.,
the plane shock wave that is generated should remain 1-D even though

the mesh has been perturbed. It should be noted that all of these
problems were run on the same code. Only the pcint distributions were
modified.

-

The results of the 1-D case are shown in Figures 4-7. The analytic
solution to this problem gives the ;onditions of the shocked fluid as:

1) Shocked fluid density = 4,0

2) Shocked fluid pressure = 1,33333333

3) Shocked fluild (specific internal) energy = 0.5

4) Shocked fluid velocity = 0.0

The multidimensional results show a similar state of the shocked fluid
behind the shock front. Figure 8 shows the 3-D time=0 Voronoi mesh.
Figures 8-10 show the results of the 3-D calculation. Here the moving
piston boundary moved from right to left. The effect of the mesh
perturbation on the solution (indicated by the straightness and
magnitude of the contour lines) is minimal as the density contour

plcts show.

6. CONCLUSIONS:

In this paper I have given a brief outline of the Free-Lagrange Method
as applied in three dimensinns, where the computational control volumes
are Voronol cells. I have described elsewhere how a Voronoi mesh can
be generated from an arbitrary distribution of mass points [5] so I did
not repeat that discussion. The results of a (simple) strong shock

problem was presented showing the results in 1 and 3-dimensions. The



results all look goed, but this is a relatively easy problem to model.

The main idea that should be gleaned from this paper is that the FLM
1s an extremely robust, accurate method for modelling fluid dynamics
problems. Any geometry can be described, since the Voronoi mesh algorithm
generates the connectivity matrix needed to define the nearest neighbors
of the points. Also, the method allows for adding or removing resolution
based on the local mesh refinement conditions. Lastly, the method
preserves it’s accuracy, independent of the fluid distortions, due to the

local reconnection algorithm.

7. FUTURE WORK:

The future of the FLM looks very bright for solving highly distorted
hydrodynamic problems. As discussed at the last conference on the FLM [5]
there are currently twe distinct, but related, approaches to using the
Voronoi mesh as the basis for a code. First, the Voronoi mesh can be
used to define both the nearest neighbor connectivity matrix and the
topology of the computational control volumes. Second, the Voronoi mesh
can be used to define the nearest neighbors but the control volume could
be different from the Voronoi control volume. A good example of an
alternative is to use the Median mesh to define the control volumes. A
second alternative is to use the mesh that Pat Crowley describes in his
paper for this same conference publication.

As I have described in this paper a code based completely on the Voronoi
mesh is possible and produces good results for distorted flow problems,
The major problem with the method is the computational speed of the resulting
code. The 3-D code, described in this paper, consumes vast amounts of
computer time on our largest computers here at Los Alamos. Therefore,
the 3-D code team has embarked on a project whereby we will rewrite the
code to improve the speed of the aljorithms, but still retain the
Free-lagrange spirt.

The rewriting of the coda is in progress as I write this paper. To
improve the speed of the code we have made the following changes:

1) The basic topological element of the mesh is now a tetrahedron



rather than a polvhedron. Each tetrahedron represents one
element of the Delaunay mesh (Note: The Delaunay mesh is the
dual to the Voronoi mesh.)
2) The nearest neighbor generation and maintenance algorithms
work with tetrahedrons. The resulting nearest neighbors
are still the Voronoi nearest neighbors.
3) The integration of the hydrodynamic equations is perf .rmed
with a predictor-corrector time stepping algorithm and
over control volumes defined by the Median mesh (but using
the Voronoi nearest neighbor connectivity).
The prognosis for the new algorithm is that it is significantly faster
than the old one, but the results are comparable. Future publications
will detail the results of detaliled comparison between the Median and

Voronoi algorithms.
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FIGURE CAPTIONS:

Figure 1: A description

of the Noh problem in plane geometry.

Figure 2: Four views associated with the generation of a Voronoi mesh.
- Upper left is the inital point distribution.
- Upper right is the Voronoi mesh.
- Lower left is a rotated view of the Voronoi mesh.
- Lower right is the Delaunay mesh (dual of the Voronol).

Figure 3: The Voronoi meshes showing the 1-D, 2-D and 3-D setups.

Figures 4-7: The results for the 1-D Noh problem.

Figure 4:
Figure 5:
Figure 6:

Figure 7:

Density versus distance for the 1-D Noh problem
at time=0.6.
Energy versus distance for the 1-D Nch problem
at time=0.6.

Pressure versus distance for the 1-D Noh problem

at time=0.6.

Velocity versus distance for the 1-D Noh problem

at time=0.6.

Figures 8-10: The results for the 3-D Noh problem.

Figure 8:

Figure 9:

Figure 10:

The time=0.0 setup for the 3-D Noh problem
with a mesh perturbation imbedded in the
problem,
The time=0.38 results of the 2-D Nuh problem
that shows the position of the shock from in
relation to the mesh.
The time=0.38 results of the 3-D Noh problem
that shows the position of the shock from in
relation to the mesh. The positiorn of the
shock front is indicated by the leading edge
(moving right to left) straight contours.
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agsociatad with the generation of a Voronoi mesh.
left is the inital point distribution.

right is the Voronoi mesh.

left is 4 rotated view of the Voronoi mesh.

right is the Delaunay mesh (dual of the Voronoi).
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