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A COMPUTATIONAL MCTHGC FOR FREE SURFACE HYDRODYNAMICS
C. W. Hirt and B. D. Nichols
Theoretical Division, Group T-3
University of California
Los Alamos Scientific Laboratory
Los Alamos, NM 87545
ARSTRACT
There are numerous flow phenomena in pressure vessel and oiping sys-
tems that involve the dynamics of free fluid surfaces. For example, fluid
interfaces must be considered during the draining or filling of tanks, in
the formation and collapse of vapor bubbles, and in seismically shaken ves-
sels that are partially filled. To &id in the analysis of these types of
flow phenomena, a new techrique has been developed for the computation of
complicated free-surface motions. This technigue is based on the concept
of a local average volume of fluid (VOF) and is embodied in a computer pro-
gram for two-dimensional, transient fluid flow called SOLA-VOF. The bhasic
approach used in the VOF technique is briefly described, and compared to
other free-surface methods. Specific capabilities of the SCLA-VOF program

are 1llustrated by generic examples of bubble growth and collapse, flows of

immiscible fluid mixtures, and the confinement of spilied liquids.



I. INTRODUCTION

Numerical simulations of fluid flows undergoing large deformations are
most easily performed using Eulerian representations for the flow vari-
ables. That is, the flow is computed relative to a grid of small control
volumes that remain fixed in space. However, where free surfaces or nther
free boundaries are present, special techniques must be devised to track
these surfaces in the Eulerian grid. The need for a special treatment can
be readily understond from the following argument. After one time step of
calculation all fluid elements that find themselves in a given cell of the
grid must he averaged together to define cell values needed for the next
time step. This averaging procedure introduces a smoothing of all varia-
tions in the flow variables. In particular, surfaces of discontinuity such
as free surfaces can be smoothed to the point of being unrecognizable.

To overcome the numerical smooth#ng of interfaces a special interface
tracking method is needed that satisfies three basic requirements. First,
1t must provide a numerical description oY the location and shape of the
boundary. Second, there must be an algorithm for advancing the boundary
description in time. Finally, a scheme must be provided for imposing the
desired boundary conditions on fluid in the surrounding computational grid.

A variety of interface tracking methods satisfying the above require-
ments are available, but most have limitations of one sort or another. For
example, the definition of a surface by its height above some reference
level (y = h(x,t) in two dimensions) 1s a simple definition requiring a min-

irum of stored information, but it is limited to single-valued surfaces.



Lagrangian marker particles linked together by straight line segments can
be use:’ to define (in two dimensions) arbitrary surfaces. The disadvan-
tage of this method is that the intersection of surfaces becomes a diffi-
cult computational problem and such intersections are usually allowed only
with special, problem dependent, logic statements. Alternatively, marker
particles can be used to mark all fluid-occupied regions rather than the
boundaries of the regions. In this way the intersection of surfaces is no
problem. Unfortunately, this method needs considerably more storage and
computational time than the other methods because it requires several mark-
er particles in each cell occupied by fluid and each particle must be moved
every time step. To determine where a boundary is located also requires
keeping track of all particles in a cell so that an average surface loca-
tion can be computed.

In this paper anotier methed is described that is simple and yet in-
corporates all the desirable features of the other methods. This new meth-
od, referred to as the volume of fluid (VOF) method, is based on a functinn
whose vaiue is unity at any point occupied by fluid and zero elsewhere.

The average value of this function, F, in « grid cell then represents the
fractional volume of the cell occupied by fluid. Thus, a unit value of F
indicates the cell ic full of fluid, whiie a zero value indicates an empty
cell. Cells with F values between zero and one must then contain a bound-
ary. Computer storage for the VOF method 1s a minimum at one word per
cell, which 1s equivalent to the storago requirement for all other flow
variables. Because it follows fluid regionc rather than surfaces it aiso

worhs for arbitrarily intersecting surfaces. In addition, the F distribu-



tion used in the VOF method has all the remaining properties desired of an
interface tracking scheme. Surface locations, slopes, and curvatures are
easily computed for the setting of boundary conditions, and the F distribu-
tion can be advanced in time by advection through the Eulerian grid. How-
ever, to avoid the type of numerical smoothing noted earlier it is neces-
sary to use special advection algorithms. In the SOLA-VOF program, de-
scribed in the next section, a type of donor-acceptor fluxing is used to
comnute the advection of F. This technique is simple and works quite well
for most applications.

The VOF-based program, SOLA-VOF, that is described in Sec. 11l is a
general purpose solution algorithm for a wide class of fluid dynamics prob-
lems. Originally the program was developed to solve time-dependent prob-
lems involving an incompressible Navier-Stokes fluid containing free sur-
faces. In its present form, however, SOLA-VOF is also applicable to prob-
lems involving two immiscible fluids. Additionally, it has an option for
including surface tensfon with wall adhesion, an option for limited com-
pressibility effects, and it has an internal obstacle capabiility. SOLA-VOF
1s an easy to use program because of numerous automatic features. For ex-
ample, it has a flexible grid yenerator, built-in time step controls, and
some self-testing features that automatically detect numerical stability
problems and correct them,

A variety of sample calculations illustrating the power and usefulness
of the SOLA-VOF program are presented in Sec. III. These examples cover a
wide range of fluid phenomena associated with pressure vesscls and piping

systems.



JI. THE SOLA-VOF PROGRAM
The governing differential equations are the Navier-Stokes momentum

equations [1],
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Fluid pressure is here denoted by p. Velocity components (u,v) are in the
Cartesian ccordinate directions (x,y) or axisymmetric coordinate directions

(r,z2). The choice of coordinate system is controlled by the value of £,

where £ = 0 corresponds to Cartesian and £ = 1 to axisymmetric geometry.
Body accelerations are denoted by (gx.gy), v is the coefficien. of kine-
matic viscosity, and p is the fluid density.

If the fluid is to have limited compressibility the appropriate mass

continuity equation is [2]
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where C is the adiabatic speed of sound in the fluic. For incompressible
fluids 1/C2 is set to zero. In the limited compressibility model density
changes are assumed to be small (say less than 10%) and the p appearing in
the rressure gradient terms in Eq. (1) can be treated as constant. [When
two immscible fluids are present Lhis p is an appropriate lccal mixture of

the constant p values feor each fluid.]



Equations (1) and (2) are discretized with respect to an Eulerian grid
of fixed rectangular cells. Grid cells may have variable sizes, say 6x ;
for the ith column and 6y1 for the jth row, as shown schematically in Fig.
1. Dependent variables are located at the staggered grid locations indi-
cated for a typical cell in Fig. 2.

The basic procedure for advancing a solution through one increment in
tim2, t, consists of three steps:

(1) Explicit finite difference approximations of Eq. (1) are used to
compute first guesses for the new time-level velocities. In this step the
initial dependent variable values, c¢r the values from the previous time-lev-
el, are used to evaluate all advective, pressure, and viscous accelera-
tions.

(2) To satisfy the continuity equation, Eq. (2), pressures are iter-
atively adjusted in each cell. As each pressure value is changed the ve-
locities dependent on this pressure are also changed, This pressure itera-
tion is continued until Eq. (2) 1s satisfied to a prespecified level of ac-
curacy.

(3) Finally, the F function defining fluid roaions is updated to give
the new fluid configuretion. After all necessary bonkkeeping adjustments
are completed, including data output, this three-step process can be re-
started for the next time-level calculation. At each step, of course,
suitable boundary conditions must be imposed at all boundaries.

The actual finite difference approximations used in SOLA-VOF for Egs.
(1) and (2) are not a crucial part of the algorithm, That is, various ap-

proximations could be used without affecting the hasic solution procedure.



The reader is referred to Refs. [3,4] for the particular approximations
use ' in the present program. This flexibility does not apply, however, to
the way in which the F distribution is advanced in time. Because F is a
scalar quantity Tixed in the fluid i1ts evolution is governed by pure advec-
tion,

where r = x when £ = 1 and r = 1 when £ = 0. This equation 1s strictly
valid only for incompressible flow, but is also acceptable for the Timited
compressibility approximation. Numerical approximations to Eq. (3) must be
constructed with special care to avoid numerical smoothing of the ¢ distri-
bution. There are several ways to do this. SOLA-VOF employs a type of do-
nor-acceptor fluxing using the fact that F values should be either one or
zero. The basic idea can be grasped by considering the amount of F to be
fluxed across the right boundary of a cell during one time step. The total
volume of both fluid and void crossing the boundary, per unit cross-sec-
tional area, is V = udt, where u is the normal velocity at the boundary.
The sign of u determines which cell 15 losing F (the donor) and whizh is
gaining F (the acceptor). The amount of F crossing the boundary depends on
how F is distributed in the donor cell. When the flux is primarily 1n the
direction normal to the F surface the fractional area of the flux boundary
across which F is flowirs is determined by the acceptor cell F value. When
the flux 1s primarily tangent to the surface the donor cell F value is
used. In both cases the amount of F fluxed is computed as the product of

the cross-sectional area of the flux boundary times oF where,



F = MIN {FAD|v| + CF , FD GxD }
and where

CF = MAX { (1.0 - Fyo)|V] - /i.0 - Fp) &xy , 0.0} . (4)

D ]

Subscripts denote acceptor (A) and donor (D) ceil values. The double sub-
script (AD) is equal to A when the flux is normal to the free boundary and
equal to D otherwise. The MIN feature in Eq. (4) prevents more F being ,
fluxed than is available in the donor cell. The MAX feature accounts for
an additional flux of F if more than the amount of void volume available in
the donor cell is f.uxed. Figure 3 illustrates these features for several
typical cases. The fluid is assumed distributed in the donor and acceptor
cells as shown depending on the orientation of the surface normal with re-
spect to the flux direction. In Fig. 3a the donor cell, acceptor cell, and
the flux volume are defined. Then Fig. 3b illustrates a situation in which
the donor cell value of F is used to define the fractional area of the flux
boundary open for fluxing F. In case c of Fig. 3 the acceptor cell value
of F has been used to define the fractional area. 1In this case all the F
region in the donor cell is fluxed, but 1t is less than the total flux pos-
sible, which il1lustrates the use of the MIN test in Eq. (4). Finally, in
Fig. 3d, more F than the amount determined by the acceptor cell defined
area must be fluxed. The extra flux contribution to F is the quantity CF

defined in Eq. (4).



The choice of the acceptor or donor cell F value to define a flux
area, which depends on the orientation of the free boundary, is a feature
not used in other schemes of this type. It is essential to do this, how-
ever, otherwise boundaries advecting mnre or less parallel to themselves
will develop step irregularities.

Additional details of the SOLA-VOF program relating to boundary condi-
tions, numerical stability requirements, etc., can be found in Refs. [3,4].

The best way tn assess the strengths and weaknesses of the SOLA-VOF
algorithm is to examine the calculations it can perform. This is done in
the next section, where several applications are used to illustrate its
power for a wide variety of difficult problems.

I11. SAMPLE APPLICATICNS

Pressure vessels and piping systems are subject to many kinds of com-
plex flow phenomena. The following examples have been chosen to illustrate
how some of these phenomena can be addressed with the new SOLA-VOF proqram.
These ex-.ples cover problems involving the growth and collapse of vapor
bubbles, problems associated with mixtures of immiscible fluids. and prob-
lems involving extreme deformations of free surface dominated flows.

A. Bubble Lynamics

in pressurized systems for liquid transport it is snmetimes possible
for vapor bubbles to form. Under most circumstances bubbles are undesira-
ble as their growth or collapse can result in significant pressure fluctua-
tions and local material damage. The theoretical prediction of bubble dy-
namics is complicated by the generally large free surface deformations in-

volved. This, then, is an excellent area where the capabilities of the
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SOLA-VOF program can be put to use. For purposes of jllustration we shall
consider what happens when steam is forced through a pipe submerged in a
pou: of water. Tihe pipe is located axisymmetrically in a cylindrical ves-
sel approximately half filled with water (see Fig. 3). Experimental stud-
ies [5 ] indicate that when sufficient steam 1s injected into the pipe bub-
bles may repeatedly form and collapse at the end of the pipe causing large
pressure transients to be generated in the water pool. Presumably the in-
crease in 1iquid surface area and stirring associated with the formation of
a bubble increases the condensation of steam to the point where i1t can no
longer support the bubble. When this happens the bubble collapses and wa-
ter rushes back into the pipe until sufficient steam pressure is again
built up to generate a new bubLle.

To simplify the problem we shall not attempt to model all the process-
es associated with actual steam condensation, but shall use a simple pre-
scribed pressurc history for the steam. In particular, the steam pressure
is approximately linearly increased until a bubble has been gencrated then
it is rapidly reduced to the saturation pressure of the water in the pool.
A one millisacond time interval was arbitrarily chosen for the depressuri-
zation time. The time at which the depressurization is started determines
the size of the bubble transient. This crude model approximates what would
happen with a more detailed condensation model ir which condensation pro-
ceeds more rapidiy than the inertial response time for the bubble. In any
case, it 1s sufficient to 1llustrate how the SOLA-VOF program can be used
to study the complete history of bubble birth and death.
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Starting from an initial vapor pressure of 1.1 psia in the pipe
(0.146 ft 1.D.) the pressure is increased to about 3.16 psia over a period
of 190 ms then is ramped down in 1 ms to 0.38 psia. A sequence of computed
velocity plots and fluid configurations are shown in Fig. 4. The earliest
time shown corresponds to the time at which the vapor pressure is ramped
down to the liquid saturation pressure. Because of inertia in the liquid
the bubble continues to arow /Fig. 4c). When the bubble begins to collapse
it does so asymmetrically, pulling liquid in from the top of the pool.
This causes a detached bubble to form shortly after Fig. 4d, which then
disappears some time between Figs. d4e and 4f. Weter is seen to be moving
rapidly up the pipe in the final frame.

Pressures computed at the center of the vessel floor are shown in Fig.
5. The initial rapid increase in floor pressure occurs shortly after the
pipe has been cleared of water. At 0.19 s the pressure drops because of
the decrease in vapor pressure at that time. A relatively violent pressure
transient develops when water reenters the pipe end and the detached bubble
collapses. This transient, denoted by the dashed line in Fig. 5. is shown
in an expanded scale in Fig. 6. To obtain this result the fluid must be
treated as a compressible medium because the pressure transients have char-
acteristic times short compared to the time nseded for acoustic waves to
travel across the pool. Except for this short, violent transient the water
can be treated as incompressible, but to correctly estimate the pressure
pulse generated by the final bubble collapse requires compressibility. The
Timited compressibility model available in the SOLA-VOF program provides
this capability.
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B. Trmiscible Fluids

" mixture of 011 and water provides an excellent example of a two-
fluid system often encountered in practical situations. Because of their
slightly differing densities and the action of interfacial surface tension
forces the mixture behaves dynamically quite different than either fluid
separately.

Using the two fluid and surface tension options in the SOLA-VOF pro-
gram a variety of interesting mixture problems can be investigated. To 11-
lustrate, Fig. 7 presents results from a calculation of the passage of a
liquid drop through a constriction in a tube. The drop has a density equal
to 9/10 o7 the density of the surrocunding fiuid. Surface tensicn at the
interface between the two fluids is such that the Weber number (pVZF/G) is
equal to 0.192, based on the drop radius and average flow rate through the
tube. This means that surface tensior forces are more significant than
thoso of inertia. In thic example viscous fories are also relatively
strong for the Reynolds number (Vr/v) was chosen to be 1.25, and i1t was as-
sumed that both fluids have the same kinematic viscosity. Flow entering
the flow channel 1s uniform, implying that the constriction is near the
channel entrance where boundary layers have had 1ittle time to develop. If
this were an oil-water mixture, it would correspond to a small oil drop
(r=3x 10'4 cm) forced rapidly (V = 46.1 cm/s) through a hole 1in 3 thin
plate.

To force the drop through the constriction requir~s extra work to de-
form the drop against its surface tension forces, Figs. 7a-7c. Much of
this work, however, is recovered as the drop emerges frnm the constriction,

Figs. 7d-7f.
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C. Large Distortion Dynamics

The advantage of formulating SOLA-VOF in terms of an Euleriar repre-
sentation is its ability to treat flows undergoing ex:reme deformations.

To illustrate this capability consider what happens when a tank containing
fluid collapses. Suppase a dike is to te constructed around the tank to
contain the spilled fluid. The problem is how high to build the dike. A
specific example is illustrated in Fig. 8. The fluid is initially a circu-
lar column having a height equal to its diameter. The dike is a low ax-
isymmetric wail whose radius has been arbitrarily chosen to be 2 column
radii. As the column collapses fluid rushes radially outward along the
grouynd. Upon striking the dike the leading euge of the fluid is deflected
upward, but if the dike isn't high enough it retains sufficient radial mo-
mentum to splash down outside the dike. This is seen to be the situation
in Fig. 8 where a significant amount of fluid has been lost from the dike
region. When the dike he.ght is increased to approximately 2 times the
height shown in Fig. 8, additional calculations indicate that virtually all
the fluid is contained within the dike.

Although this 1s a conceptually simple problem, it is obviously one
that involves highly complicated free surface dynamics. Nevertheless, the
SOLA-VOF program does a remarkable job in representing the fluw. Other
variations involving different initial fluid and obstacle configurations
are easily imagined. Of course, SOLA-VOF could also be used for similar
problems involving two immiscible fluids with or without interfacial sur-
face tension. !t is this flexibility, in fact, that makes the SOLA-vOF
program such a powerful tool. With thoughtful use it provides a means of
investigating many, previously intractable prublems associated with pressur-

ized fluid systems.
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Fig. 3. Schematic of steam injection apparatus used by SRI International.
Plus signs in (a) indicate mesh cell centers that initially con-
tain fluid. Dimensions of apparatus are shown in (b).
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F1g. 8. Collapse of a cylindrical column of fluid and its partial con-
finement by a low dike. Cylindrical axis is at left edge of fig-
ures.



