 APDIICATIONS

AUTHOR(S): Claude R. Phipps, Ir., David E. Watkins, and Scott J. Thomas MASTER

SUBMITTED TO: Lasers ' 79 Conference, Orlando, Fl., Dec. 15-20, 1979

```
O. D. Phipps, J%., .f. J. mhomas and n. s. ivatkins
```

University of California
Los Alamos Sciontific taboratory
Los Alamos. NM 97544

Abstract

The far-fiejd brightness loss due to r ilinear refraction of a jaser beam of finite transuerse extent is limitation for phase conjugation. We present exact calculations, supported by measurements, for these effects in gaussian beams.

Introduction

Nonlinear refraction is a famiflar consideration in the optical design of most highpower, short-pujse laser systema. practical jaser beams must be apodized in some fashion, and the apodization leads to intensity-dependent iensing in material media which can seriousjy degrade the far-field patern which the system would otherwise produce. Funn in high-power gas lasers, where the nonjinear susceptibility of the laser medium is ordinarijy quite small, brightnens lose can be significant in a single window.

Such effects have been largely ignored in the initiaj treatments of phame confugation via degenneste four-wave wixing (DFWM) ajthough one of the mafor present applications is to phase and pointing correction in high-power ?asers. In one ciasa of such proposals ${ }^{2}$, a large third-order optical nonlinearity identical to that which causes self-focusing is relled upon to produce the conjugate wave efficientiy, while the schemes which avoid relying solely upon ? arge reaj nonlinat susceptiblity ${ }^{3}$ are apt to be limited by the same effects in their practical application.

This limitation arises from the fact that the product of pumpoboam intensity and optical path length requirer for efflcient phase conjugation is similar to that which can, in sertain instances, cause sufficient pump wavefront distortion to degrade :sconstructed wave quality.

In order to lilustrate this point, consider the relationship between the coupling coefficient K, which Etgures in phase-confugate refjectivity,

$$
\begin{equation*}
R=\tan ^{2}(K L) \tag{1}
\end{equation*}
$$

and the phese change which occurs due to the propejation of one of the pumps at the intensity required to produce given ret?ectivity. for the sake of simplicity, issume an isotropic josel ram material of langer L with nonilinear index n_{2}. The refractive index change is

$$
\begin{equation*}
\left.n(z)-n_{0} \cdot \Delta n(z) \cdot n_{2}<z^{2}(z, t)\right\rangle_{t} \tag{2}
\end{equation*}
$$

and the corresponiting phase retardation is given by

$$
\begin{equation*}
\text { - } \int_{0}^{L_{0}} d z k_{0} \Delta n(z) \tag{3}
\end{equation*}
$$

(where k_{0} ew/c) for given ipetric ifejd distribution. For aingle wave with amplitude Ei, Eq. 2 gives $\Delta n-1 / 2 n_{2} \sum^{2}$. Rowever, in the Eate corresponding to DFWM, two counterpropagating, moneshromatic, intinite piane waves of equal amplitude El together pruduce a standing ceiractive Index grating, $\Delta n(z)$ 2ngz, con ${ }^{2}\left(k_{0} n_{0} z\right)$. From Eq. 3, the phase change seen by each wave in this cas is twike as greite on the average as that tor one wave ajone.

$$
\begin{equation*}
\lambda * K_{0} M_{2} E_{1} \quad L=K L \tag{4}
\end{equation*}
$$

and ia equal to the products KL .
From Eq. 1 , the conditione neceseary to givi a sot confugate retiectivity will also a!ter the phase of each pump wave by $0.62 \geqslant \mathrm{~m} / 5 \mathrm{rad} \mathrm{an}$ on pasing through the ampla.

[^0]


```
4escribed in the jreceding sim'ple anajysig. once significant wavefront jlgtor=ion iam
sccurged, we ray estimate a ilgtortion of Ehe conjugate mavefront eqLal vo 2g v J.4t
-adiane ''g'5 in free gpacel arising from nonlinear Eetreceion of the pumpe when k is
totally =eaj and R a 50, .
One reason tor lgnoring this effect has been the lack of simple analytical and erperimentaj models for determining the dependence of wavafront diatortion on intengity tor epecific agodizations. It is the purpose of this paper to report an extencion of earlier mork?, giving a complete desciption of the far-field intenaley distribution which eefijes from nonlinear cefraction occuring in the near-tiejd of a general ryporgauselan protile rean. The torm of this ceaule is ufficientiy simple to permit eacy numer ical integration over time, ridiua or both in the tar field, and theraby give तirect comparimone with meanurenenti of encirejed power or energy. These relationahipis ara empeially easy to uee when the Intencity profile in that of a normal Gauselan, eten
```


We will first develop the general hypergausaian solution, then apecjalize to the Gaugian case and give experimental examples which ara wall deacribed by theae results. Ne wil show that, In many cases, the far-field brighenesr losi is an extremely sensitivg way of measuring the nonlinear Index.

Far-pield pateern of a Rypargaugaian Bean in a Thin, uptically Nonlinear window

Ma asama an axisymetric electia-field amplitude diatribution of the forms

$$
\begin{equation*}
E(r, 0-) / E_{0}=\exp \left[-\Delta r^{P}\right), P \geq 2, E(1 / 11)^{n} \tag{5}
\end{equation*}
$$

Incidant on a tilis anti-retlection coated, tranaparent window of leotrople nonlinear material with thicknesa L. If the uindow is ufficientiy thin, it will impart only a phate distribution to the exit beam, 0 that

$$
\begin{equation*}
E(r, L+) / E_{0} \in \exp \left[-a r^{P}+1 \theta \exp \left(-2 a r^{P}\right)\right] . \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\text { B. } k_{0} n_{2} E_{1}^{2} L / 2-k_{0} n_{2} E_{0}^{2} L / 2 n \tag{7}
\end{equation*}
$$

B Ia the phage ahlfe produced In the center of the beam by nonl!near refraction, and ia
 (p/Cm²). wo write

$$
\begin{equation*}
\text { B - } k_{0} \hat{R}_{2} J_{0}^{L /} n_{0} \text {, } \tag{7a}
\end{equation*}
$$

The wincow la ufficiently thln for the appronimationa involvad in Eq. 6 to be valif when the typicad change in ray direction within the gample, $\left\{\operatorname{lB/2\pi }\left(\lambda_{g} / n\right) / w\right.$ da much 'ees than w/i, or the Fresene: number

$$
\begin{equation*}
n w^{2} / L t_{0} \gg B / 2 \pi \quad . \tag{8}
\end{equation*}
$$

 Lers90 cm.

The llmitaticn at by the growth of amall-ocale inatabilitien in the beam profile ia a more furloue one even for CO_{2} wavelengtha. The quantitien of interent here are thw Eransverte apacial trequency x_{m} - $2 \pi / 1$ for the ripplef with largeat groweh rate, and the melai gain qm_{m} experienced by thelf ripples. The predictione of the llnearized p'ane-wave theory for thin problema can be expreaned in the formi

$$
\begin{equation*}
g_{m}=B / L, K_{m}=\sqrt{k_{o} q_{m}} . \tag{9}
\end{equation*}
$$

```
Ea. ? ghowg =hat 3maj:-acale instabljity growth poses a !imitation on 3 =ather than f.
Al:nough we rould mxpect that thig theory would only appi'i for \mp@subsup{}}{T}{\prime}>>/w in the pregent
```


Thin Slab of Opilcally Nonllinear Material

Figure 1. Conceptual Arrangement for studyirg the Far-field Pattern
The fle? at tho ?ens focal plane la the axieymmetin apacial fourier rianaform (Hanke' Trarisform) of the fleld produced by the window. In rerma of the flejd of Eq. 6 , ($(5)=E(r, L+) / E_{\text {g }}$ and the normajized focal plane egdiaj coordinate

$$
\begin{equation*}
g(\hat{f})=2 \pi \int_{0}^{\infty} d r x f(r) J_{0}(r f)=h|f(r)| . \tag{10}
\end{equation*}
$$

To flind the fanke] Tranaform of oach one of the hypergauasian e? emente of the cerice expansion of Eq. 6, we employ the moment theorem to Eind

$$
\begin{align*}
& b\left\{e^{-\operatorname{mar}}{ }^{p}\right\}-3 \pi \sum_{a=0}^{\infty} \frac{(-1)^{n} m_{2 n+i^{2}} \sum^{2 n}}{(n!)^{2} 2^{2 n}} \\
& \omega_{a}-\int_{0}^{\infty} d r r^{a} e^{-m a r^{p}}=\frac{1}{p}(m)^{-(n+1) / p} \Gamma\left(\frac{n+1}{p}\right) \\
& h\left\{\operatorname{m}^{-\pi a r^{p}}\right\}-\frac{2 \pi}{p} \sum_{n=0}^{\infty} \frac{(-1)^{n} \hat{r}^{2 n} \Gamma\left(\frac{2 n+2}{p}\right)}{2^{2 n}(a 1)^{2}(m a)^{(5 n+2) / p}} \tag{11}
\end{align*}
$$

Yow from Eq. 5, wieh a (1/wp,

$$
\begin{equation*}
t_{p}(r)=\sum_{k=0}^{\infty} \frac{(1 p)^{k}}{k i} e^{-(2 k+1)(r / w)^{p}} \tag{L2}
\end{equation*}
$$

 term by term, we have:

$$
\begin{equation*}
g_{p}(\hat{r})=\frac{2 \pi w^{2}}{p} \sum_{k=0}^{\infty} \frac{(1, B)^{k}}{k} \sum_{n=0}^{\infty} \frac{(-1)^{n} u^{2 n} \Gamma\left(\frac{2 n+2}{p}\right)}{(n \mid)^{2}(2 k+1)^{(2 n+2) / p}} \tag{13}
\end{equation*}
$$

Flnal'y, to form the intenalty $q_{p}(\hat{r}) g_{p}(\hat{f})$ we une the relationshipll

$$
\sum_{k=0}^{\infty} a_{k} x^{k} \sum_{k=0}^{\infty} b_{k} x^{k}=\sum_{k=0}^{\infty} x^{k} \sum_{m=0}^{k} a_{m} b_{k-m}
$$

repeatedly to find:

$$
\begin{align*}
& \left.i g_{p}(\tilde{r})\right|^{2}=c \left\lvert\, \sum_{k=0}^{\infty}\left(-B^{2}\right)^{k} \sum_{m=1}^{2 k} \frac{(-1)^{m}}{m!(2 k-m)!(4 k-2 m+1)^{2 / p}(2 m+1)^{2 / p}}\right. \tag{14}\\
& * \sum_{i=0}^{\infty}\left(-u^{2}\right)^{\ell} \sum_{s=0}^{\ell} \frac{\left[\left[\frac{2}{p}(s+1)\right] \Gamma\left[\frac{2}{p}(\ell-s+1)\right]\right.}{r^{2}(s+1) r^{2}(i,-\theta+1)\left[(4 k-2 m+1)^{2 / p}\right](\ell-s)}\left[(2 m+1)^{2 / P]^{s}}\right\}
\end{align*}
$$

The constant $C=1 / r^{2}(2 / p)$ is chosen so that $\quad \lim _{B \rightarrow 0}\left|g_{p}(0)\right|^{2}=1$.
A. ternatively, Eq. 34 may be written in eimpler form that ajso jeads to more convenient numerical computation when explicit radial integration is not required. This is:

$$
\begin{align*}
\left|g_{p}(\hat{r})\right|^{2} & =c\left\{\left[\sum_{k=0}^{\infty} \frac{\left(-B^{2}\right)^{k}}{(2 k)!} \sum_{m=0}^{\infty} \frac{\left(-u^{2}\right)^{m} \Gamma\left[\frac{2}{p}(m+1)\right]}{(m 1)^{2}(4 k+1)^{(2 / p)(m+1)}}\right]^{2}\right. \tag{14a}\\
& \left.+\left[B \sum_{k=0}^{\infty} \frac{\left(-B^{2}\right)^{k}}{(2 k+1)!} \sum_{m=0}^{\infty} \frac{\left(-u^{2}\right)^{m} \Gamma\left[\frac{2}{p}(m+1)\right]}{(m!)^{2}(x+3)^{(2 / p)(m+1)}}\right]^{2}\right\}
\end{align*}
$$

Specialization to the Normal Gauseian

When p=2, Eqe. 14 take on much simpler form, given by

$$
\begin{equation*}
\left|g_{2}(\hat{r})\right|^{2}-\sum_{k=0}^{\infty}\left(-B^{2}\right) k \sum_{m=0}^{\infty} \frac{(-1)^{m} \exp \left\{-\left[-\frac{2(2 k+1)}{(2 m+m) \mid(4 k-2 m+1)(2 m+1)}\right] u^{2}\right\}}{(4 k-2 m+1)} \tag{15}
\end{equation*}
$$

and

$$
\left\lvert\, g_{2}(\hat{r})^{2}=\left\{\left[\sum_{k=0}^{\infty} \frac{\left(-B^{2}\right)^{k}}{(4 k+1)(2 k)!}--u^{2} /(4 k+1)\right]^{2}+\left[\sum_{k=c}^{\infty} \frac{\left(-s^{2}\right)^{2}}{(4 k+3)(2 k+1)!} e^{\left.\left.-u^{2} /(4 k+3)\right]^{2}\right)(2 j a)}\right.\right.\right.
$$

on axic,

$$
\begin{align*}
\left|E_{2}(0)\right|^{2} & =\left[\sum_{k=0}^{\infty} \frac{\left(-B^{2}\right)^{k}}{(4 k+1)(2 k) \mid}\right]^{2}+\left[B \sum_{k=0}^{1} \frac{\left(-B^{2}\right)^{k}}{\left(4 k^{2}+3\right)(2 k+1) T}\right]^{2} \\
& =\frac{\pi}{2 B}\left[C_{2}^{2}(B)+s_{2}^{2}(B)\right]
\end{align*}
$$

where C_{2} end s_{2} are the Fremen integrale,

$$
C_{2}(2) \cdot \frac{1}{\sqrt{2 \pi}} \int_{0}^{2} \frac{\cos t}{\sqrt{t}} d t \quad s_{2}\left(2 ;-\frac{2}{\sqrt{2 \pi}} \int_{0}^{2} \frac{\sin t}{\sqrt{t}} d t \cdot(7)\right.
$$

Er. (17) was presented earlier by Marburger.

Relationship to the Airy nigtribution

In the 1 imit $: 3-\infty, 3$ - 0

$$
\begin{equation*}
!g_{p}(r)!^{2}\left[\sum_{m=0}^{\infty} \frac{\left(-u^{2}\right)^{m}}{(m+1)(m!)^{2}}\right]^{2}=\left[\frac{2 J_{1}(2 u)}{(2 u)}\right]^{2}=\left[\frac{2 J_{1}(r w)}{\left(m_{m}\right)}\right]^{2} \tag{18}
\end{equation*}
$$

which is the appropryately normalized Airy distribution we would expect to find in the focal plane in the absence of nonlinear optical effects, due to a uniformiy il:uminatec ?ens pupil of diameter $2 w$.

Enctrcled Energy or Power

Eq. 14 was presented to provide a mears for explicitiy forming the radial integral to some 1 imit u_{0} in order to determine the fraction of total energy or power encircled by a focal-plane iris of given radius. It is clear that this can be done, at least numericaliy, since Eq. 14 is a singje series in powers of the iptensity (B) and of the radius (u), permitting temporaj and/or radiay integration. Fowever, the explictt form of chese fntegrals for general p is not especially instructive.

However, when pe2, the Gaussian beam solution given by Eq. 15 may be Integrated directly to give:

Eor the fraction of total \{ocal plane energy contained within the mormajized radius "u-
Temporcj Integration of Eq:. 14,15 or 19 , 15 geadily performed. we note that alnce these relationships, as wellas Eq. 6, are dimansionjess (tranamission-jike), it is necessary to multiply the quantity by an additionaj porier cefintensity prior to time-averaging. If a - Bof(t), for example.

$$
\begin{equation*}
<\left.\operatorname{s}_{p}(\hat{r}, t)\right|^{2}>_{t}\left(\frac{\int_{-\infty}^{\infty} d t \quad\left|g_{p}(\hat{r}, t)\right|^{2}}{} \quad B(t)\right\} \tag{20}
\end{equation*}
$$

In every case, then, time averaving comea down to replacing $\mathrm{g}^{2 k}$ in the particular sum by $B \delta^{(2 k+1)} \int_{\infty}^{\infty} E^{(2 k+1)}(t) d t$, and renormalizing by the quantity $\left[B_{0} \int_{-\infty}^{\infty} f(t) d t\right]$. As an example, $t f f(t)=2^{-(t / \tau)^{2}}$
then

$$
\mathrm{B}^{2 k}-\frac{\mathrm{B}_{0}^{2 k}}{\sqrt{2 k+1}}
$$

In EqS. 14, 15 or 19 is equivilent to performing the time average of that expersion over a Jaser puse with Gausian time variation.

The Importance of Beam Profiles

Because the set of hypergausian function amoothly epane the fenge from a simple Gausian radiel dietribution to "hard-apertured" beam via adfumement of aingle index, 1t is useful in the preaent context for aneseing tre impact of nonlinear refraction on the far-fieju pattern of practical laser devicen.

Figure 2．Rypergausian Intensity Distributions for $p=2, \pi, 8,20$ and 50
Using the preceding relationships，it is easy to show that the near－field distrjbutions of fig． 2 are markediy different in regard to the senaitivity of their corresponding far－field distributions to increasing B．For example，Fig． 3 and 4 show the normalizen far－ijeld radiaj distributions calculated for $p=2$ and $p=20$ ，respectively， as B varies from 1 to 10．In beth figures，the normalization described in connection with Eq． 14 is used，$f 0$ ：unit on－axis intensity in the absence of nonjinear effects．

NORMRLIIZED FOCAL－PLANE COORDINATE U
Figure 3．Calculated Far－Field Distributione for ，Gausian Beam ac 8 Varles from 1 to 10.

NORMALIEED FOCRL－PLANE COORDINRTE Uo
Figure 4．Far－Fieid Distributiors as in Fig．3，but for pwio．

The strehl ratiol2，by which the eentrej intenslty in the far－fiejd diatifoution is relatef to that which would enjat in tha aheence of aberrations，is better than 501 in the second case，even for belo，but 3 s reduced neariy six－fold for a simple Gausian beam under the same concitions．In some cases，e．g．．p e and a e s．is，a rero streht ratic is obtzinef．Furthar details regarilng on－axis intensisies are provifor in Ref． 13.

Altheugh it is convenfent for many experimental purposer to employ beam with ar accurately Gausian transverse profila，thin shape $!$ a vary nearly a wo at case for nonlinear refractiva ofiects in the far aleld．The implications of these results depenc upon whether it is destred te maximize or minimize these effocts．In the remainder of
this discussion, it is assumed that we wish to finc experimental conditions that sensitively indjcate non'inear refraction, in order to provide a means of measuring nonlinear index, and that the foregoing discussion will be used to show how to minimize their impact in laser systems.

The Effect of Time- and Space-Averagirg

The quantities we are most often interested in studying are seldom peak temporal or spacial intensities, but rather time- or space-averages, as, for example, the total energy encircled by far-fiejd aperture of given size during a laser puise. Having picked a Gaussian profile beam as the most easily reajized profile which provides good sensitivity to nonlinear index, and assuming also a Gaussian-shaped pulse, Fig. 5 compares the sensitivity of four djfferent permutations of time-averaging or instantaneous detection methods and on-axis or radially-averaged focal-piane quantities. using the geometry of Fig. 1 .

Figure 5. Calculations showing that, zor Gassian apacetime beam, the most sensitive meamurement acheme among the four studied involves recording the peak power tranemitted by focal plane fris with diameter ecuaj to the beam walat of the ilnear optical distribution, while calorimetric measurements on axis are the lempt senaltive.

Experimentaj Applications of the analysis

Figure 6 how the generic experimental eetup wemployed in demonstrating agreement between experiment and theory, and in using thit agreement to determine the nonilneax index of some materials, by using n_{2} as the only free parameter. The fig. l geometry If jocated to the right of the ampje in the figure. calibrated attenuators were optically flat and wedge-free plates of CaF_{2}. The CO_{2} lajer source has benn described jewhere. ${ }^{14}$

In particular, the beam in the experiment reaion de itself derived from the central part of the far-field distribution produced by the jaser, so that its transverse profile
 typical near-field beams, and easentlaljy diffraction-ilmited in ita own far fiejd.

In ald mencurements, a 33-cm focal length, anti-refjection coated znse lens was used to produce a focal plane distribution with $300-\mu m$ mali-igigna! $1 / e^{2}$ diameter. A centrally-igented ifit of the sme slze was used to obtaln radialyaveragen fignals, whlle intensity-dependent sereh! measurements were made with much smailer aperture wirhln whish the smallagnal radiaj intenslty variation wat only +154.

The detection system constated of pyroejectric detector and a LASL-bui': channe?-piatogintensisiec oscilloscops. The detection system iectricaj bandwidth is about 3 GHz , ${ }^{\prime}$ glving a cucection risetime at least 10 times fager than that of the 2-ns EWHM laser pulsen enjuoyed.

When time-averaging of the detected signals was required, this was accomplished by numerica!ly integrating the detected signals, rather than via the calorimeters shown, for best experimenta accuracy. The calorimeters were used to monitor sample transmission ${ }^{2}$, in the relationship $L_{\text {eff }}=(1-T) / a$, where a is the measured absorption coefficient.

Figure 6. Experimental Setup
To test the a solute agreement between this and more fundanental methods of measuring nonlineer fndex, two anti-reflection coated, monocrystalline, intrinsic fe boules were used. One of these was the same boule employed in reference 16 , where the $10 \rightarrow 1 \mathrm{~m}$ nonjinear sugceptibility wes first measured vis elifuge rotation. The spmples were oriented so as to give an n2 determination which would correspond to xilil. for the greatest totaj sampje jength employed, the Eq. 8 inequailty was satisfied in the ratio $66: 1$, while B values greater than 7.5 were not employed. In this case the time-averaged intensity-dependent streh] was measured.

It will be seen from Fig. 7 that the agreement obtained between the data and the mode] is extremety good, and that mutual agreement was obtained between the two sets of data, for sample lengthe covering a $3: 1$ range. This was the greatest range we could ise without undu?y attenuatigg the beam at one extreme, or reaching the plama formation threshold at the other. 74 The result of this one-free-parameter study gave absolute agreement with the reference 16 measurement, to within a factor of two.

Figure 7. Measurec time averase rejative brightness osg in the centrag zone of the ar

 of nj usetinithis case was o.0026 cma/gw, which cortispond

To demonstrate the relative effects of space- and time-averaging experimentally, we used a different boule of the same material, 14.2 cm in fength. As shown in fig. 8 , a different crystal orientation produced a somewhat smaljer nonlinear index. In this case the threshold for (reversible) plasma formation was deliberate?y exceeded on the last three laser shots. Here, the most sensitive measurement configuration shown in fig. 5 was studied, and compared to the time-average of that data. In the former, the power transmitted by the $300-u m$ focal plane iris at a time corresponding to the input pulse peak is recorded for increasing vallies of B_{0}.

Figure 8. Measured power transmited by $u_{0}=1$ focal plane izis at input pulse peak (o) and transmitted pulse energy $\left(^{\circ}\right)$ vs B_{0} for 14.2 cm Ge boule. The same nonjinear index was used to fit the data in both cases, $n_{2}=0.0017$ $\mathrm{cm}^{2} / \mathrm{GW}$. The plasma formation threshold is exceedec for the last three ghots on the right, causing divergence from the model.

While reviewing this data, it became clear that the tempora? shape of the output pulse obtained in this configuration is probably the mose sensitive indicator of smali changes in nonlinear findex. Pigure 9 illustrates this point by showing the dramatic changes in

TIME IN HWHM UNITS
Ploure 9. Calculated pulse shapes tansmitted by uol focal plane tris for a Gassian input pulae time variation, for severa! values of B_{C}. In this instance, he normalization reflects true output power, re? attve to the peak of the B_{c}. pulse in the absence of nonitnearities.
the power pulse through the $u_{0}=1$ iris calculated for several values of peak incident intensity when the incident pulse has a Gaussian time variation.

These predictions can be studied experimental? y by comparing an observed power pulse shape transmitted by the iris to that predicred from the time-resolver iaser pulse shape incident on the sample, with suitable propagation delay adjustments. This is done by letting the digitized input pulse shape drive the radial averaging calculations. Such a comparison is presented in fig. 10 which shows the exceljent agreement between the observed and predicted pulse shapes obtained with the same n 2 value used in Fig. 8 , as well as the distinctly different result predicted with a 40% jarger nonlinear index. In fact, 10% resolution is easily obtained with this fitting technique.

TIME, NANOSECONDS
Figare 10. Predicted (dashed jine) and observed (solid line) output powis pulses for the conditions described in Fig. 8 when the peak incident intensity was 160 MW/Cm ${ }^{2}$ using $n_{2}=0.0019 \mathrm{~cm}^{2} / G W$, compared to the predicted shape for $n_{2}=0.0027 \mathrm{~cm}^{2} / \mathrm{cw}$ (dotted jine).
minimum sensftivity of, this techntque can be estimated from fig. 5 as $n_{2}=3 \times 10-11$ esu in Ge, or $\mathrm{n}_{2}=3 \times 10^{-13}$ esu in NaCl, at CO_{2} wavejengths.

Conclusions

We have reported exact analytic expressions for determining the far-fiejd intersity distribution produced by a general hypergaussian beam in a suitably thin, transparent, opelcally non! inear window. These expressiona also permit anaiytic radiaj- and/or time-averaging of far-fiejd intensities. sufficient agreement in demonstrated between experiment and clieory to tustify using far-ffeld power measurements as an adequate meane of derermining the nonjinear index of materfals in some circumstances. Factor-of-two absojute accuracy is claimed, with jos resolution in noninmar index value. Sensjtjuity of the technique is moderately good.

References

1. An excel lent review of the theory of non? inear refraction is contained in J. H. Marburger, Prog. Quant. Electr., \mathbb{Z}^{\prime}, $35(1975)$.
2. R. W. Hellwarth, J. Opt. Soc. Am.. 67, 1 (1977).
3. R. L. Abrams and R. C. Lind, Opt. Lett: 2 , 94 if978) and 3. 205 (9978).
4. This relationship is, of course, independent of whether one writes
$E=\operatorname{Re}\left\{E_{1} \exp [i(k z-w t)]\right\}$ or $E=1 / 2\left\{E_{1} \exp [i(k z-w t)]+c . \cdots i\right.$
In ejther case, $<\mathrm{E}^{2}(z, t)>_{t}=1 / 2 \mathrm{E}_{1}{ }^{2}$. See, for example, C. C. Wang, phys, Rev., 152. 249 (1966).
5. A. Yariv and D. M. Pepper, Opt. Lett. 1 , 16 (1977).
6. See, for example. H. M. Smith, Principles of Holography, Wijey, New York (1975).
7. C. R. Phipps, Jr. and S. J. Thomas, I.E.E.E./O.S.A. Topical Conference on Inertiaj Confinement Fusion, San Diego, Feb. 26-28, 1980, paper WEIO.
8. V. I. Bespajov and V. I. Talanov, JETP Lett. 3, 307 (1966).
9. A. Papoulis, Systems and Transforms with Applications in Optics, McGraw-Rili, New York (1968).
10. $\dot{\text {. }} \boldsymbol{\pi}$. Goodman, Introduction to Pourier Optics, MeGraw-Fill, New Yerk (1968).
11. I. S. Gradsinteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic, New York (1965).
12. W. J. Smith, Modern Optical Engineering, McGraw-Hilj, New York (1966).
13. A. J. Campilio, R. A. Pisher, R. C. Ryer and S. L. Shapirs, Appl. Phys. Lett., I, 408 (1974).
14. C. R. Phipps, Jr., and S. J. Thomas, Opt. Lett. I, 93 (1977).
15. E. McLellan, S. Stotlar, J. Webb and A. Gibbs, paper C. 4 , this conference.

J6. D. E. Watkins, C. R. Phipps, Jr. and S. J. Thomas, Opt. Lett., to be publishes.
17. C. R. Phipps, Jr. and S. J. Thomas, IEEE/OSA Topica: Conference on Inertial Continement Fusion, San Diego, Feb. 26-28, 1980, paper TuBio.

[^0]: Work poriormed under the auspsces of the U. S. Department of snergy.

