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EFFECT OF THE NUCLEAR EQUATION OF STATE ON HIGH-ENERGY HEAVY-ION COLLISIONS

J. R. Nix, A, J. Sierk, and D. Strottman
Theoretical Division, Los Alamos Scientific Laboratory

Los Alamos, New Mexico 87545

ABSTRACT

On the basis of conventional nuclear fluid dynamics,
we study in two separate ways the effect of the nuclear
equation of state on high-energy heavy-ion collisions.
Our equation of state, which sometimes contains a density
isomcr, has the property that the speed of sound approaches
the speed of light in the 1imit of infinite compression.
In the first way, we solve nonrelativistic equations of
motion for various values of the nuclear compressibility
coefficient for the expansion of spherically symmetric
nuclear matter. The matter is initially compressed and
excited in head-on collisions of equal targets and pro-
jectiles at a iaboratory bombarding energy per nucleon of
250 MeV. When the matter expands to a freezeout density,
the remaining thermal energy is superimposed in terms of @
Maxwell-Boltzmann distribution with appropriate nuclear
temperature. The resulting enerygy distributions for
difterent valuey of the compressibility coefficient are
similar to one another, but they are significantly dit-
forent from a Maxwell-Boltzmann distribution corvesponding

to entirely thermal energy and are moderately different



from the energy distribution corresponding to the
Siemens-Rasmussen approximation. In the second way, we
solve relativistic equations of motion numerically in
three spatial dimensions for the reaction 2UNe + 238y at a
laboratory bombarding energv per nucleon of 393 MeV, both
with and without a density isomer. By integrating over
the appropriate ranges of impact parameter, we compute the
double-difterential cross section d“u/dEdQ corresponding
both to all impact parameters and to central collisions
constituting 15% of the total cross section. To within
numerical uncertainties, the results for the various
equations of state are very similar to one anotner except
for central collisions at laboratory angle 0 = 30° and for
both central collisions and all impact parameters at

O = 150°. In these cases, over certain ranges of energy,
d“o/dEd is larger tor the density isomer than for con-

ventional equations of state.



I. INTRCDUCTION

High-energy heavy-ion collisions provide a unique opportunity to explore
what happens when heavy nuclei become highly compressed and excited. As part
of the recent surge of interest in this area, several calculations of high-
energy heavy-ion collisions have been performed on the basis of nuclear fluid
d_ynamic:‘.,l-10 where the fundamental input is the nuclear equation of state.
It is of crucial importance to know the sensitivity of the calculated results
to the input equation of state.

Alcthough some two-dimensional and three-dimensional calculations have

5-8 the fairly large numerical

been performed fo~ difierent equations of state,
errors that are present have precluded an accurate assessment of this sensi-
tivity. We uwnerefore attack this problem in two separate ways. In the first
way, we perform a simple one-dimensional nonrelativisitc calculation for which
an accurate numerical solutinn is possible, studying the sensitivity of the
energy distribution of expanding cpherically symmetric nuclear matter to the
nuclear compressibilily coefficient. 1In the second way, we solve the equa-
tions of relativistic nuclear fluid dynamics numerically in three spatial
dimep=ions by use of a particle-‘n-cell finite-difterence computing method.2
both with and without a densily isomer. We use an improved treatment of
exterior cells tnat doos ot require setting their rest-frame density equal to
normal nuclear density.

All of our considerations arc hased on conventional nuclear fluid dynamics,
which negiects any interpenctration that Lhe target and proJécLile may exper-
fence upon contact. Although this interpenetration can be taken into account

by means ot two=fluid dynamics.l]

in which coupted relativistic equations of
mot.ion are solved tor separate targel and projectile nuclear fluids, the

eftect of the equation of state in such a model huis not been explored.



IT. NUCLZAR s AT ION O A

The nuclear equation of state, Hicn specitieos Dow the pressure depeosds
upon density and therma:! energs. can be written 35 the sum of 3 contribut oo
from the compressional energy and a contribution from the thermal encrys.
This is seen most clearly by recalling that the total internal energy per
nucleon is given by4

E(n,T) = Eo(n) + 1 ,

where (O(n) is the ground-stiate energy peor nucleon atlnucleon number density n

and 1 is the thermal energy per nucleon. The pressure g is then obtained from

the fundamental relation4

. dl . (n) .
p = n2 d[§n|72 - n2 0 + n2 gl ‘
an < dn dnS

with differentiation at constant entropy per nucleon §.

For the ground-state energy per nucleon to(n) we use a new functional
form which has the property that the speed of sound approaches the speed of
iight in the iimit of infinite compression. 1his is achieved by taking
Lo(n) for n greater than one or more crtical values to be a parabola in the
square ro.t of the density, so that in the limit of infinite compression it
increases linearly with density. The value of lo(n) al normal nuclear density
r, is taken to be -R MeV Lo simulate the effects of surface and Coulomb cner-
gin . for finite nuclei., In the limit of zero density, fo(n) is taken Lo be
t~e difference hetween a specified term proportional to nZ/3 that represents
tre Finetic encrgy of noninteracting nucleons and o term proportional to n
whose coefficient is adjusted so that the two forms join smoothly with con-

tinuous value and first derivative,



For the case in which there is no density isomer,

the resulting ground-

state energy Eo(n) is shown in Fig. 1 for five values of the nuclear com-

pressibility coefficient K ranging from 0 to 400 MeV.

and 400 Me\ are shown again in Fig. 2, where we expand
show more clearly the density isomer in the dot-dashed
taken to occur at a density that is three times normal

an energy 2 MeV higher than that at normal density and

The curves for K = 200
the vertical scale to
curve. The isomer is

nuclear density, with

with tl.e same curvature.

For the thermal contribution to the pressure we use the nonrelativistic

1
Fermi-gas model, which yields"
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Unlike what is often implied, this is a general result

for the nonrelativistic

Fermi-gas model that is valid to all orders in the temperature.

1.
A. Fluid-dynamical stage

We consider 11 this cection the head-on collision

NONRELATIVISTIC SPHERICALLY SYMMLTRIC EXPANSION

of an equal target and

projectile with laburatory bombarding energy per nucleon of 250 MeV, which

corresponds relativistically to a center-of-mass energy per nuc'eon of 60.53 MeV.

We make the drastic geometrical assumption that during

the collision the

nuclear matter is uniformly compressed and excited into a sphere at rest .n

the center-of-mass system, with initial values of the density, compressional

energy. and thermal energy determined by relativistic Rankine-Hugoniot rela-

tions.4

These relations are obtained by integrating the relativistic equa-

tions of fluid dynamics over an infinitesimal volume near the contact point in

a head-on collision.

trated in iy, 1.

The solutions for the cases considered here are illus-

With increasing compressibility coefficient, the initial



compressional energy per nucleon increases, whereas the initial density and
thermal energy per nuclecn decrease.

These quantities serve as initial conditions tor the spherically sym-
metric exparsion of the matter, which is treated nonrelativisticaily in two
stages. In the first stage, corresponding to densities greater than a freeze-

out density,lz-14

we integrate numerically in one dimension nenrelativistic equa-
tions of fluid dynamics.15 Relativistic effects are negligible for the 60.53-MeV
center-of-mass initial energy per nucleon considered here. These equations
express the conservation of nucleon number, momentum, and energy, for a par-
ticular nuclear equation of state. We neglect the surface energy, Coulomb
energy, nuclear viscosity, thermal conductivity, and single-particle effects,
as well as the production of additional particles and the associated radiative
loss of energy from the system.

To integrate the equations of motion we use a Lag-angian techniqgue, with
the radial coordinate r divided into 200 points that are initially equally
spaced but that move as the matter expands. The time step is taken Lo be
about 3 + 107" s tor nonzero values ot the compressibility coefficient and
about. 1 « 107%% s foy zero compressibility coefficient. corresponding to a
pevfect gas.

ihe essential features of the solution are illustrated in Fig. 3 tor a
comprescibility coet!icient equal to 200 MeV  for small values of time, the
radial expansion of the matter near the surface is accompanied by a rare-
faction wave thatl propagates inwards through the matter that is initially
unaffected. This is similar to the one-dimensional expansion of a semi-
infinite comnressad perfect gas, for whicn an anaiytic solution is possiblv.lb
However, it is Lo be contrasted with the analytic solution obtained by Bondort

16

et al., " where Lhe density profile vemainy rectangular in shape, with a

6



constant decrease in value and expansion of radius. The reason for this is
that in the calculations of Bondorf et al.16 the interior thermal energy is
not constant but is instead assumed to decrease parabolically with increacing
radial distance. For larger values of time, our calculated density profile
develops a shallow minimum at the center of the nucleus.

The fluid-dynamical calculation is continued until the fluid reaches a

freezeout density,12-14

which is taken to be the point at which either the
total pressure becomes zero or the compressional contribution to the pressure
reaches its maximum negative value. For our equation of stale, the latter
criterion occurs at a nucleon number density n that is 9/16 of the equilibrium
density Ny With our initial conditions, this criterion governs the freezeout
for K = 100 and 200 MeV. However, for K = 400 MeV, freezeout occurs when
n=20.75 o because the total pressure becomes zero at that point.

As shown in Fig. 4, the resulting energy distribution of the expanding
matter at freezeout depends slightly upon the compressibility coefficient. In
particular, with increasing compressibility coefficient, the energy distribu-
tion becomes slightly higher and narrower. The discontinuities in slope at
the high-energy portions of the spectra arise from numerical inaccuracies in

the treatment of the outermost cell.

B. Thermal {olding

At the freezeout point,lz'14

the expanding matter still contains some
thermal energy that contributes to the fipnal energy distribution. To simulate
the approximately 8-McV loss in binding energy per nucleon corresponding to
breakup into neutrons and protons rather than composite particles, we measure
the remaining thermal energy relative to zerv energy rather than relative to

the minimum energy at saturation density. This thermal energy is then super-

imposed in terms of a nonrelativistic Maxwell=Boltzmann distribution, with



temperature equal to 2/3 of the thermal energy per nucleon.

After thermal folding, the energy distributions corresponding to K = 100,
20C, and 400 MeV are indistinguishable from one another to within graphical
accuracy, as shown by the solid curve in Fig. 5. However, this common resuilt
for nonzero compressibility coefficient peaks at a slightly lower energy anc
has a longer tail than the dashed curve calculated for zero compressibility
coefficient, corresponding to the fluid-dynamical expansion of & perfect gas.
In order that the average energy per nucleon is the same, this result for
K = 0 is calculated for initial conditions corresponding tc an energy per
nucleon of 52.53 MeV, which is 8 MeV less than the amount illustrated in
Fig. 1. Upon comparing with Fig. 4, we see that prior to thermal folding, the
energy distributions for nonzero compressibility coefficient are significantly
higher and narrower than the distribution for K = 0. However, after thermal
folding, the results for zero and nonzero compressibility coefficient are only
slightly different from each other.

As shown by the aotted line in Fig. 5, the Maxwell-Boltzmann distribution
corresponding to entirely thermal energy, which is used in fireball and fire-

14,17,18

streak models, peaks at a significantly lower energy and has a longer

tail than our calculated solid curve. Finally, the dot-dashed curve in Fig. 5

19 .
which assumes that

is calculated with the Siemens-Rasmussen approximation,
one-half the initial energy per nucleon appears as cohstant kinetic energy,
with the other half superimposed in terms of a Maxwell-Boltzmann distribution
with appropriate nuclear temperature. Although this result is shified from

the pure Maxwell-Boltzmann curve in the correct direction, it stil)l peaks at 4

lower energy 2nd has a longer tail than our calculated solid curve.



IV. RELATIVISTIZ THREE-DIMENSIONAL SOLUTION
A. Particle-in-cel]l computational technique
For a given nuclear equation of state and given initial conditions, we
solve the equations of relativistic nuclear fluid dytamics numerically in
three spatial dimensions by use of a particle-in-cell finite-difference

computing method.2

This technique is applicable to supersonic flow and
combines some of the advantages of both Eulerian and Lagrangian methods. To
facilitate comparisuns with experimental results, the calculations are per-
formed in the laboratory reference frame.

As in previous calculations with this technique, the computational mesh
consiste of fixed cubical Eulerian cells approximately 1.2 fm in length. The
fluid, which moves through this mesh, is represented by about 26,000 discrete
Lagrangian particles, corresponding to 33 = 27 particles per cell for nuclear
matter at equilibrium density. This is about three times the number of compu-
tational particles used previously.

Another improvement in the present calculation concerns our treatment of
exterior cells, where the volume occupied by the fluid is in general Tless than
the volume of the cell. In previous calculations, the rest-frame density of
all exterior cells was simply set equal to equilibrium nuclear density.2
Although this procedure is adequate during the early stages of the collision,
it becomes increasingly worse during tne later expansion stage. We therefore
determine the rest-frame density of edge cells by averaging the rest-frame
dencitites of adjacent interior cells. For exterior cells that are not
adjacent to interior cells, we compute the density by assuming that the entire

cell volume is occupied by fluid.



B. Cross section d?0/dEd for outgoing charged particles

We consider the reaction 2°Ne + 238U at a laboratory bombarding energy
per nucleon of 393 MeV, for which thcre exist experimental data on the cross
section d®o/dEdQ for outgoing charged par't.icles.z0 For each of the three
equaticns of state illustrated in Fig. 2, we solve the equations of motioin for
five different impact parameters. We continue calculating the fluid-dynamical
expansion to relatively small densities, where the thermal energy per nucleon
is negligible, rather than perform a thermal folding after freezeout as we did
for the spherically symmetric expansion.

By integrating over the appropriate ranges of impact parameter, we
compute the double-differential cross section corresponding both to all impact
parameters and to central collisions constituting 15% of the total cross
section. The cross section for the outgring matter distribution is then
converted into the crnss section d“o/dEdQ for outgoing charged particles under
the assumption of uniform charge density.

The results calculated for a conventional nuclear equation of state with
compressibility coefficient K = 200 MeV are shown in Fig. 6 in the form of
energy spectra at four laboratory angles ranging from 30° to 150°. Some
measure of the numerical inaccuracies inherent in the calculations can be
determined from the fluctuations in the histograms, which are obtained using
angular bins of 10° width.

The results calculated for all impact parameters, ygiven in the left-hand
side of Fig. £. are rampured with the experimental data of Sandoval et al.20
for outgoing charged particles, which include contributions from protons,
deuterons, tritons, %He particles, and ‘He particles. Because of our neglect
of binding, at low energy the calculated results at all angles are higher than

the experimental results. At higher energy the calculations reproduce, to

10



within numerical uncertainties, the experimental data at ali angles except
150°, where the calculated results are somewhat below the experimental
results.

The results calculated for central collisions constituting 15% of the
total cross section are given in the righi-hand side of Fig. 6. At low energy
and all angles these results are significantly below those for all impact
parameters. Al laboratory angle 6 = 30° the result for central collisions
decreases much more rapidly with increasing energy than the result for all
impact parameters. However, at 6 = 150° the result for central collisions is
at higher energy very similar to that for all impact parameters. We are
unable to compare our calculations for central ~<ollisions with experimental
data because the data for central collisions do not vet include contributions
from composite narticles but instead include only protons.21

As shown in Fig. 7, the results calculated for a conventional nuclear
equation of state with K = 400 MeV are very similar, to within numerical
uncertainties, to those calculated with K = Z00 MeV. Varying the compress-
ibility coefficient alone in a conventional equation ¢ state has little
effect on the sinyle-particle-inclusive cross section d*o/dEd¢ for eicher all
impact parameters or central collisicns.

We show finally in Fig. 8 the results calculated for our equation of
state with a density isomer. At most energies and angles these results are
very similar, to within numerical uncertainties, to those calculated for
conventional equations of state. However, for central collisions at & = 30°
the results calculated for a density isomer decrease more slowly with in-
creasing energy than those calculated for conventional equations of state.
Also, for both central collisions and all impact parameters at 8 = 150° the

results caicutated for the density isomer are higher than those calculated for

11



conventional equations of state. These differences arise because at this bom-
barding energy the softer density-isomer equation of state leads to higher
initial density and thermal energy per nucleon, which increases the thermal
contribution to the cross section in regions where it would otherwise te

small.

V. OUTLOOK

On tha basis of conventional nuclear fluid dynamics, both in one dimen-
sion for the spherically symmetric expansior. of nuclear matter and in three
dimensions for the single-particle-inclusive cross section d2c/dEdQ for all
impact parameters and for central collisions, we have shown that the cal-
culated results depend very little on the nuclear compressibility coefficient.
Thermal folding after freezeout reduces the small differences that are present
even further.

A strcng density isomer increases the cross section d2o0/dEd? for central
collisions at 6 = 30° and for bhoth central collisions and all impact par-
ameters at 6 = 150°, but numerical uncertainties are comparanle to tre effect.
Furthermore, the inclusion of transparancy in a more realistic model that goes
beyond conventional nuclear fluid dynamics would also increase d4o/dEdq for
central collisions at ¢ = 309, which complicates the interpretation of exper-
imental data.

Although current experimental data on relativistic heavy-ion collisions
can be understood on the basis of conventional ideas, the work done thus far
provides a necessary background for the identification of any new phenomena
that .ay result from high compression and excitation of nuclear matter,
Possible directions for the future include studies of excitation functions,

two-particle correlations, impact-parameter dependences, particle-multiplicity

1?



distributiuns, the deuteron/proton ratio, and the Coulomb distortion of

charged-pion spectra.

We are grateful to> J. I. Kapusta and J. W. Negele for stimuiating

discussions. This work was supported by the U. S. Department of Energy.
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FIGURE CAPTIONS

Fig. 1. Compressional contribution to our conventional nuclear equation
of state, for five values of the compressibility coefficieni. K. The arrows
denote the thermal energy per nucieon I and the nucleon number density n
achieved in the head-on collision of an equal target and nrojectile with
laboratory bombarding energy per nucleon of 250 MeV.

Fig. 2. Compressional contribution to our conventional nuclear equation
of state, for two values of the compressibility coefficient K, and tu our
equation of state with a density isomer.

Fig. 3. Time evolution of the density profile for the sphericaliy
symmetric expansion of matter that is initially compressed and excited in the
head-on collision of an equ ! target and projectile with a laboratory bom-
barding energy per nucleon of 250 MeV. The nuclear compressibility coeffi-
cient K is 200 MeV.

tig. 4. Distribution of kinetic energy per nucleon at the freezeout
point, for three values of the nuclear compressibility coefficient K, and tor
the expansion of a perfect gas that is initially compressed and excited with a
center-of=-macs energy per nucleon ot 52.53 MeV,

Fig. 5. Distribution of kinetic energy per nucleon after superimposing
the thermal energy at treezeout in terms of a nonrelativisitc Maxwell-Boltzmann
d:stribution. [Ihe results for threc values of the nuclear compressibility
coeflicient K are indistinguishable from one another to within graphical
accuracy and are shown by the solid curve, which is comvared to three other

distributions with the same averaye energy per nucleon,

15



Fig. 6. Charged-particle energy spectrum d?o0/dEd: calculated for our
conventional nuclear equation of state with compressibility coefficient
K = 200 MeV. The histograms calculated for all impact parameters are compared
in the left-hand side of the figure with the experimental data of Sandoval
et a1.20
Fig. 7. Charged-particle energy spectrum d“o/dEdQ calculated for our
conventional nuclear equation of state with compressibility coefficient
K = 400 MeV. The histograms calculated for all impact parameters are compared
in the left-hand side of the figure with the experimental data of Sandoval
et a1.20
Fig. 8. Charged-particle cnergy spectrum d*u/dEdi calculated for our
ruclear equation of state with a density isomer. The histograms calculated
for all impact parameters are compared in the left-hand side of the figure

with the experimental data of Sandoval et a1.20

10
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