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DIFFUSIIN SYNTHETIC ACCELERATION METHODS FOR THE
DIAMOND-DIFFERENCED DISCRETE-ORDINATES EQUATIONS*

R. E. Alcouffe
Theoretical Division
University of California
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

We Investigate a class of acceleration schemes that resemble the
conventional synthetic method ;n that they utillze the difrusion operator
in the transport iteration schemes. The accelerated iteration involves
alternate diflusion and transport solutions where coupling between the
equations 1s achieved using a correction term applied to either (1) the
diffusion coefficient, (2) the removal cross-sectlon, or (3) the source
of the diffusion equation. The methods involving the modification of
the diffusion coefficient and of the removal term yield nonlinear ac-
celeration schemes and are used in keff calculations, while the source
term modification approach is linear at- least hefore discretization, and
used fur inhomogeneous source problems. A careful analysis shows that
there is a preferred differencing method which eliminates the previously
observed instability of the conventional synthetic method. Using this
preferred difference scheme results in an acceleration method which is
at the same time stable and efficient. Thils preferred difference approach

renders the source correction schema, which is linear in its continuous

*
Work performed under the auspices of the U. S. Energy Research and
Development Administration,
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form, nonlinear in its differenced form. An additional feature of these
approaches 1s that they may be used as schemes for obtaining improved
diffusion solutions for approximately twice the cost of a diffusion
calculation.

Numerical experimentation on a wide range of problems in one- and
tvo-dimensions indicates that improvement from a factor of two to ten
over rebalance or Chebyshev acceleration is obtained. The improvement
is most pronounced in problems with large regions of scattering material

where the unaccelerated transport solutions converge very slowly.

I. INTRODUCTTON

The most widely used methods for accelerating the iterative schemes
used in discrete-ordinates neutron transport computer codesl—a are the
rebalance method2 and the Chebychev acceleration method.1 The rebalance
method, often applied to a mesh more coarse than the probliem mesh, is
very effective in reducing the number of iterations. However, for that
class of problems where the spatial mesh length is large compared to a
mean-free path and where the scattering ratio is close to one, the coarse-~
mesh rebalance method may yield an unstable algorithm.5 The Chebychev
method, has not proven to be as effective as the rebalance approach in
multidimensional transport codes, and hence, has nct ggined wide acceptance,
at least in acceleration of the within-group scattering source.

Several authors have investigated another approach to acceleratiag
transport iterations referred to as the diffusion synthetic met:hod.s_11

However, previous results have indicated that this scheme also suffers
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from instability problems although when stable the zlgorithm is generally
more effective than the rebalance approach.5 In tﬁls paper, we develop

a class of diffusion synthetic acceleration schemes chat are stable and
effective when applied to discrete-ordinates iterations. We show that
the key to stabllity lies in the scheme used to spatially difference the
equations.

In Sec. II, we develop three variants of the diffusion synthetic
acceleration method aud apiply them to the iterative process used in
transport codes. We introduce spatial and angular Jiscretization and
develop a stable iteration algorithm. We give an explanation as to why
earlier approaches to differencing the equations led to unstable
algorithms. In Sec. III, we provide numerical results while Sec. IV

is devoted to conclusions and recommendations.

TI. THEORY

In this secticn we develop three diffusion synthetic acceleration
approaches using both analytic and discretized expressions and assuming
a multigroup encrgy formulation throughcut. We emphasize spatial dif-
‘ferencing since convergence of the methods depend upon the selected
differencing scheme. Most of our detailed explanations are given in
slab geometry for ease in understanding. All results apply equally
well to all other generally used coordinate systems. We do not dwell
on boundary conditions used with the transport and diffusion equations

as they are the standard vacuum, reflective and periodic conditions.



A. Diffusicu Synthetic Acceleration Methods

Discrete-ordinates neutron transport codes use a cual strategy

12,13 The two nested iterations

for solving the transport equation.
are referred to as outer and inner iterations. The outer iteration
represents a sweep through all the energy groups while the inner
iteration 1s performed within each energy group. In this section,

we present, in their continuous form, three different forms of the
diffusion synthetic acceleration method as approaches to accelerating
these iteration processes. One of the acceleration schemes, the source
correction scheme, is linear in its continuous form and is used for
inhomogeneous source problems. The other two are nonlinear and used

for eigenvalue problems.

1. Source Correction Scheme

To display the diffusion synthetilc method used for irnhomo-

geneous source problems, we first consider the inner iteration
29, + o (@Y = o, (0@ + . )
—T BT~ 8~ g~ — Sgrg g - g~

In Eq. (1), w: is the éngular flux for group g at the 2th inner
iteration calculated using a scalar flux, ¢§—1, assumed to be known

at each step of the iteration. The group source, QQg’ contains
scattering and fission contributions to the group as well as the
inhomogeneous source. This source is computed from the wultigroup
flux of the previous outer iteration and 1s assumed known. We have
assumed 1sotropic scattering and sources for simplicity. This scheme,

as well as the related approaches discussed below, alsu apply to the



more general anisotropic problem. In the diffusion synthetic method
we employ a corrected diffusion equation using wg’ in order to deter-
mine the scalar flux, ¢g' needed for the next iteration. For the

source correction scheme, this equation is

. 2 - - rY
VD (D95 (2) + o, (MXD) = Q@ (©) - RI(®) (2)

where

Dg(_:;) = 1/30 (D), O, (L) = og(;) - osg+g(£),

and the correction term is

Rg(z) = 1-12(5) + E-Dg(z)wé@- (3)
In Eq. (3),

3 (o) = ﬁw‘p’;@_,@ (42)
and

P = _/;5@2(5,8)- ) (4b)

% 8

Note that we use a tilda to indicate quantities calculated using the
angular flux, ﬁi, while the scalar flux calculated from the corrected
diffusion equation is without the tilda.

The source correction scheme for the inner itcration proceeds
as follows: using ¢§_l, known from :he previous iteration, we solve
Eq. (1) for w:. In present day discrete-ordinates codes, this involves

one sweep through the space-angle mesh. The correction term, Rg, is
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then calculated using Eqs. (3) and (4) and, in turn used in Eq. (2)
to calculate ¢: completing one cycle of the ‘terat’ . The steps are
repeated until some convergence criterion is satisfied. Note that
for £ = o, a logical first guess is obtained by setting R: to zero
and solving the diffusion equation for ¢§.

It is easy to show that if the iteration converges, it converges
to the transport equation solution. Namely, drop all § superscripts
and set the transport scalar flux equal to the corrected diffusion

flux, ¢g = @g. Then, substituting Eq. (3) into Eq. (2) ylelds

veJ (x) + oRg(L)ég(z) = QQg

3,
which is the converged transport balance equation, also obtained by
integrating Eq. (1) over all Q. The question of convergence of the
method is discussed in Sec. II.C.3 and Sec. III.

We now discuss an outer iteration procedure which is consistent
with the above outlined inner iteration. The outer iteration consists
of one pass through each of the groups using Eqs. (1), (2), and (3) to
obtain the group converged correction terms R:(g), and then to solve
the multigroup corrected diffusion equation. A new multigroup source
for the inner iteratioqs is then obtéined from the corrected diffus.ion

solution. That 1s, we solve the following multigroup diffusion equation

’ G
k1 k+1 - _ ok (kL
-v Dg(r)deg (r) + oRg(£)¢g (r) Qg(g) Rg(z) + Xg vrfg.(£)¢g, (x)

F N
'

g =1

k+1
- Oggrog@gr () (5)



Hence ti.e solution procedure for the multigroup transport equation

1s to first solve Eq. (5) with RB(E) = 0 for all groups obtaining the
diffusion equation solution as the initial flux guess. We then eval-
uate QQg for k = 1 and cycle through the inner iteration [Eqs. (1),
(2), and (3)] obtaining an estimate of R:. We use this in the multi-
group diffusion equation to obtaiu a new value of ¢:+1 from which we
start the procedure over. We continue this iteration cvele uctil

all convergence criteria have been satisfied. We have found that
for all problems requiring outer iterations that we have solved, we
need take only one inner iteration per group until the multigroup

+
source is converged, |QQ: 1

- QQE| < £, and then we cenverge the
group flux as required by increasing the inner iteration count. This
usually requires only one additional outer iteration. The procedure
outlined here with one outer per inner can be viewed as using the
diffusion equation to perform the outer iteration of the transport
equation and only invoking the transport equation to obtain the
necessary correctilons.

As will be discussed in detail in Sec. IT.C.3 and Sec. III, this
outer and inner iteratlon process does converge, and in fact, is more
efficient than existing methods in one- and two-dimensional problems
if one is careful in the spatial differencing process. The general
idea of a source correction scheme for the inner iteration is a

result of simultaneous, and at times, joint work of Alcouffe,7_8

7-
Lewls, 9 and Miller.9 The latter two authors have shown that in

the analytic form, at least in slab geometry, this approach is

equivalent to the traditional synthetic met:hod.s_6
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The above method of inner and o:ter iteration accel:ration
depends upon the problem being one with an extraneous source, i.e.,
subcritical system. 1In order to be able to extend the method to
handle eigenvalue problems, we have to recast the acceleration
equations as discussed in the following.

2. Diffusion Coefficient Connection Scheme

In order to implement the iteration acceleration procedure
outlined in Sec. 1, above, for eigenvalue problems we require that
Eq. (5) be homogenecous. In our definition of Rg(r) of Eq. (3), we see

that if we redefine the diffusion coefficient such that

———— = - _.g_i__-_ = ]
Dg(;) {Dg(_r_)‘ . V.5 (O 1 » 2, 3, (6)

where i designates one of the orthogonal coordinate directions and

IDgL designates diagonal tersor of rank 2, then Rg(z) = 0 for all
i

r and g. Therefore, when Qg(E) = 0, Eq. (5) has the required homo-
geneous foim. With this expression for the diffusion coefficient, we

then transform the inner iteration diffusion equation into
2~ L L
0P - 0¥ (@) 4o, (M) = (). . 7
D (2o (£) +op (Do () = QQ (r
and the multigroup diffusion Eq. (5) becomes

[ O 5 | K, . _ Xg I+l
v Qg(g) V¢g (x) + chg(g):bg (0 k_re i VOgo (£)¢g. ()
g =1

< k+1
+ L osg.+g(1:_)¢g. (x) (8)
g'#s
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where ke is the multiplication factor for the system. We then

ff
follow precisely the same iterations procedure outlined for the source

method using Eqs. (1), (6), (7), and (8) instead. The initial solution
for the scalar flux is found from Eq. (8) by setting ‘Dg(_x_'_)li1 = Dg(r)
for 1 =1, 2, 3. Equations (1), (6;, and (7) then Fcfine the inner
iterations with the final resultant diffusion coefficient 2:(5) used

in Eq. (8).

Although this is a nonlinear iteration procedure [due to Eq. (6)],
we have observed numerically that it converges as readily as does the
source correction scheme if properly spatially differenced. This
scheme is due to Alcouffes'extending his earlier work on diffusion
correction schemes.la Painter10 and Reedll have also done work, taking
a differcat approach, in extension of the Alcouffe method.14

The diffusion coefficlent correction scheme has the disadvantage
that it is possible to compute 1infinite and negative diffusion coef-
ficicats [see Eq. (6)] rending Eq. (7) impossible to solve numerically
using current techniques. 1In order to overccme this difficulty, we
introduce another method, used in conjunction with the diffusion
correction scheme, for eigenvalue problems.

3. Removal Correction Scheme

An alternative way of making Eq. (5) homogeneous is to move

the correction term into the removal terms defining a new removal term

LR

~k B k k
oRg(E) = cRg(E) + Rg(E)/¢g(£)' (9)
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Thus the diffusion synthetic acceleration method is altered and Eq.

(2) becomes
. 2 ~9.- 2’ =
VD, (DVOL(ED) + G DN = Q@ (10)

and Eq. (5) becomes

G
o, k+1 Lk k+l, . _Xg Z . K+l
v Dg(g)chg () + chg(_l_'_)qbg (x) K er vofg.(z)qag, (x)
g'=1
+ 2 Usg|+g(£)¢:-:-1(£)- (11)

8'#8

This iteration procedure 1s now entirely analogous to the diffusion
coefficlent method using Eqs. (1), (9), (10), and (11) instead, and
again, 1f it converges, 1t converges to the transport balance equation
solution. Although nonlinear, we have numerically observed that this
method too 1s as convergent as the source correction scheme. The
basic 1dea of the removal scheme is due to Cahalan15 and AJ.couffe8
working independently.

In practice for eigenvalue problems we use the ditfusion coef-
ficient method in conjunction with the removal term method when
negative ciffusion coz2fficients are computed.

C. The Discretized Trangport Equation for One-Dimensional Cases

1. Genaral
Now that w2 have presented, analyzed, and compared the three
forms of the diffuslon synthetic method, it 1is important that we

cousider the angularly and sparially discretized equations. This



-11-

is necessary in order to show that a convergent diffusion accelierated
iteration depends upon the selected difference method. We will show
tihat Reed5 obtained divergent results for some problems using the
source correction scheme because of hils selected difference procedure.
We present a difference scheme yielding a stable, efficient iteration
algorithm. The procedure can be completely described with the inner
iteration and, hence we restrict ourselves to the one-group problem.
We consider in this section only the one-dimensional case leaving
considerations of imporiance in two dimensions to Sec. II.E. The
angular derivative term appearing in the neutron transport equation
also adds interesting complications to the procedure presented below.
The steps taken in resolution of these difficultles however, are
somewhat tedious. Accordingly, we refer the reader to Ref. 18 for
a detailed presentation of the implementation of the diffusion
synthetic acceleration method in curvilinear geowetry. The 1luportant
points can be made 1n slab geometry with 1sotropic scattering and
sources and, therefore, we restrict ourselves to this simple case.

We begin by applying the discrete-ordinates approximation to
the directional variables and the diamond-difference approximation
to the spatial variables of the transport equation to obtain from

Eq. (1),

) 2 2-1
Mo Wi, = Vpga) o ¥y = o hol " + Qb

m=1, 2, ..., M,

i=41, 2, ..., I. (12)
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The m is the directional subscript, i is the spatial subsecript, and

we define the angular moments by

M
¢ni=sz(ﬁ)w, n=1,2, ..., N,

mn m

m=1 1=1, 2, ..., 1. (13)

with the set ﬁnm} as the weights of a selected quadrature set normalized
S0 that_}?ivwm = 1. To derive Eq. (12), we have imposed a spatial mesh
in whichm:he mesh centers are given by the whole number indices (e.g.,
i-1, 1, 1+1), the mesh boundaries arr given by half integral indices

(t'His i+3/z, --.), and

hi = xi+k - xi_%.
17
In addition to Eq. (12), we assume the diamond scheme

1
mfﬁini(mil**-w:li—!i)’ me=1, 2’ ooy M,

i=1, 2, ..., 1L, (14)
Other relationships needed in the ensuing ﬁnalysis are obtaineg by

operating on Eq. (12) with the operators n; meo(um) and Elmel(um)
m=
[{.e., taking the zero and first-order discrete moments of Fq. (12)]'.to

respectively obtain

' -1
e5’1‘1#:. - 5%1-‘: tohd,y = °s1h14’9c;1 +QQhy (15)

and

1 ) 2,8 g
T@o1ats = B * 3@ppp, - 8500 tohd, =0

i=1, 2, ..., I (16)
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2. Difference Equations for the Source Correction Scheme

To implement the source correction method, we must now
select a differencing scheme for thz diffusion equation and correction
term [see Eqs. (17) and (18)]. The heretofore used nethod” 1s to

difference R as

L _ R ') L
i 1i#g 1li-y4 i#s 1 . i-% 1
20y F i) 7(Myy + By
i=1,2, ..., 1, a7
h,D, + h, .D
where D -1 14 i+l ¥} .  Equation (17) results from integrating
iy 2 hi+l

R(x) over a spatial mesh interval (x X ), the same procedure used

i34’ iy
to derive Eq. (12). Using this scheme to djfference Eq. (2), w. obtain

% 2 LR
@141 ~ 901’ (@1 = $01-1 %
-p,, ,—ot¥ ‘ol ., +a..h,o
20 T 2 TRy
= - R’ =
qq,h, - &Y, i=1,2, ..., I. (18)

Equations (17) and (18) are compatible in that assuming convergence,

~f, R - - _
(¢oi 00t and 511 ¢li), we obtain the discretized transport balance

equation

i " $raa ORIy T Qs =L 2, s I (19

The numerical form of the source correction method that has commonly
been utilized5 is that expressed by Eq. (17) and (18); and as shown 1in

Ref. 5, this form does not yleld a stable algorithm for all problems.
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The ncenconvergent problems are those which have optically thick regions
in which, the scattering ratio ¢ = GS/U, 1s close to one and the mesh
spacing is greater than a mean-free path. These same problems are,
however, very well approximated by diffusion theory and we expect

that the converged Ri of Eq. (17) would be small in these cases and

in the limit (of a very large region) approach zero. However, in a
homogeneous region where D

= 1/301, R, does not go to zero

i+; = Di-k i
using Eq. (17) unless the mesh spacing h, goes to zero. This is
clear since setting the second moment terms in Eq. (16) to zero (the
diffusion limit), a relationship for the first moment at the cell
centers results, while Eq. (17) utilizes the first moment at the
cell boundaries. Thus for diffusion-type roblems, the differencing
scheme does not adequately account for the physical situation and
this is the likely source of the instabllity of the algorithm as the
spatial mesh width 1ncreases.

We now use the fact that Ri should go to zero in the diffusion
limit to select another difference scheme. In formulating this
scheme we realize that in order for the solution of the accelerated
equation to converge to the diamond-differenced transport solution,
Eqs. (17) and (18) must reduce to a diamond-differenced transport
balance equation upon convergence. To obtain a more appropriate
balance equation, we add to the standard transport balance equation
[Eq. (19)] for the ith cell chis same equation for the i+l cell and

use the relatiecnship resulting from taking the first angular moment

of Eq. (14) to obtain
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$

1 1
+ = - =
2414100141 ¥ TryPyBos) = 2€QQhy + Q0410

1i+1 E‘511
i- 1, 2, ..., I. (20)
It is clear from its derivation that this 1s another form of the

diamond differenced balance equation. Solving the converged form of

Eq. (16) for ¢, and ¢y and substituting the result in Eq. (20)

yields
-p' Peits/s _¢oit5 + D fgj ~%o1-
i+1 h1+1 i h1
. 1
-_o' = —
+ 2[ Ri+lhi cboi+1) + URihi(¢oi)] 2(QQ1h1 + QQ1+1h1+1), (21)
i=1,2, ..., I-1,
where
D, = 1+ 2 e IR RN
i 30 ¢ -¢ )
Ri oi+s ol-%

Equation (21) has the form of the diffusion equation with a general
expression for the diffusion coefficilents. For the case that ¢21 =0
(diffusion limit) for all {, Eq. (21) is in fact, the conventional
diffusion equation differenced so that the fluxes are evaluated on

the mesh boundaries. We conclude, then, that 1if, in lieu ox Eq. (17),
we use the following difference scheme for R,

& $§1+:/z - 6§i+5»-n $£i+kf_ $§t-a
h

L ) -
Ry = % - ¢, +D
1 11+1 14 1+1 by 1 1

i=1, 2, ..., I. (22)

We then obtain the desired result that Ri = 0 in the diffusion theory
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limit. 1In conclusion we find that we must difference the corrected

diffusion equation as

% L L L
1 - ¢ ) @ .y =0 )
-D ol+a/2 oibs Lids ol-s ~ ') L
i+1 -+ D + (5.h)
by 1 hy IR 130014
2‘ =
= (QQh)y, * K] 1=1,2, ..., 1, (23)
where
~ R - 1 Ly /x8%
Gy = 20 m1%oinr * OriMiB0) Bo iy (23a)
and
1
QQR) 44y, = QA + QQyhyy)- (23b)

From Eqs. (22) and (23) we see that the balance Eq. (20) is attained

upon convergence. Note that to achieve this objective, we are forced

to introduce a nonlinearity into the iteration scheme [Eq. (23a)].
Because Eq. (20) is a valid neutron balance equation for the traasport
scalar flux, the solution to the accelerated diamond-differenced equa-
tion will be the solution to the diamond-differenced transport equation
itself. Since we have formulated this differancing method to be compatl-
ble with the diffusion limit, we expect the instability problems of the
synthetic acceleration method to be mitigated and this is shown to be

the case for a wide c¢'ass of numerical examples in Sec. III.

3. Demonstration of Unconditional Convcrgence for the Source
Correction Scheme

As previously mentioned in his. work on diffusion synthetic

acceleration, Reed5 used a difference scheme that resulted in an
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iteration algorithm that dces not behave properly in the diffusion
limit. Using a model problem Reed demonstrates that convergence with
his scheme depends upon the spatial mesh spacing. 1In the following,
we follow Reed's development and show that with the difference scheme
developed above, convergence is unconditional for that model problem.
In slab geometry with isotropic scattering, constant mesh spacing h,
and constant cross sections, we express the differenced source

correction scheme, [Eqs. (12), (22), and (23)] as

o
1 1 % -1
Hn L h ni * mei - C0¢oi + QQi' m=1.2, ..., M (24)
D5 ) ) U } '
- h2(¢01+3f2 2¢01+% + ¢oi—’»s) + 0R¢oi+k QQi Ri' (25)
and

HOPORE

g _ %141 "%, b0 ) %
Ry = h @iy T W t Boi)- (26)

h 1=1,2, ...,1

Note that with constant mesh intervals and cross sections, combining
Eqs. (13), (14), and (23a) yields

(chh)i = oRh
and the iteration Is linear.

Taking the first Legendrc moment of Eq. (24) and using the results

in Eq. (26) yields

L 20,2 2 £ :
Ry = - ;5(52“;/2 2T R PTRE (27
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Using Eq. (27) we can write Eq. (25) in matrix form as

R+ Q- o gl = 215" (28)

vhere D is the diffusion operator and $§ 1s the second Legendre flux
moment vector, and we have set the source to zero. Ve wiil show

that for an infinite medium
30 e
$, = No_, (29)

where E 1s a matrix to be determined.

We first combine Eqs. (28) and (29), yielding the iteration

procedure
2+1 -1 L
¥ a2+ a - gl N
Thus the diffusion synthetic iteration matrix is

M= 2[D+ (1 - c)g]_lgg. (30)

The matrix elements of N are fourd in a manner completely analogous

to that developed by Reed.5 We quote the result here as

ch(um)rm 2

A L
Sy = } (Po1-1 * Pog4ar2)

ch(um)rm ¢E .
1+ r ol+

2
(1L + rm)

L
l (¢§i-3/2 + ¢51+5/2) toeee

i=1,2, ..., 1

+lch(um)rm(l - rm)

Q + rm)3

where
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M
_ _ _Ch
{fm)-— }E w fm’ Tt iﬂ:;ﬁ .
m=1

and P2 is the Legendre Polynomalal of order 2. This is in the form
of Eq. (29). Now in order to find the spectral radius of Es we must
determine the eigenvalues of the matrices N and D. Reed has shown5

that the appropriate eigenfunctions fcr each operator are
cos (i+'s)w _
¢k= k ) ik_llz)
We find that the eigenvalues for N are

m

(31)

r P, () l

2
r + T

ERGMERS

k

where

_ 1 - cos n/k
'k T 1+ cos wlk ’ (32)

and for 2 are
2D
n, = (1 - cosn/k). (33)
h

FromEqs. (31), (32), and (33), we write the eigenvalues of Es as

anhk
+ (1 - c)o’

D

M

From Eq. (5) it is clear that

2 2 2 2 2
Ak . c Efmum < "m < 3¢ "n'm
2 .2 T2 ]2 2 1.2
rm + Tk rm + Tk rm + Tk
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for Ak # 0 since it is clear that

2
‘m
> o .
7, 0, for Tk#
“m Tk
From its definition, the minimum Ty is zero for k = ». Thus
r2 2
A(_.:i_c__mu—m___ =<,
k 2 2 2
r + 7
m o

It is easily seen from Eq. (32) cthat

o
o

N €

=
N

Thus

c

0. < (34)
« 1+ (1 - c)QhE
4D

Since Eq. (34) 1s a strict inequality, it is seen that the spectral
2

radius is always less than unity, independeut of the value of %%;,

since 0 < ¢ ¢ 1. Thus the method is unconditionally convergent for

this model problem.

4, Difference Equations for the Diffusion Coefficient and Removal
Correction Schemes

The diffusion coefficient and removal correction schemes are
both nonlinear schemes even for this model problem and, hence analyses
such ag that 1in Sec. II.D.3 are much more complicated. Numerical
experimentation has ﬁerified, however, that with these nonlinear
schemes, spatial differencing analogous to Eqs. (22) and (23) are
required for stability. Namely, the two differenced acceleration

equations for the diffusion coefficient correction scheme are:
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For the removal correction scheme, the corresponding equations are
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With these selections, both methods behave correctly in the diffusion
limit and converge tn the balance equation, Eq. (20).

3. Implementation in the Production Computer Code, ONETRAN-DA

1he diffusion synthetic acceleration method has been implemented
in a computer coldz derived from ONETRAN, entitled, ONETRAN—D/‘..18 This
latter code uses diamond differencing in the spatial variablass and

operates in all thrce one-dimensional geometries; slab, spherical and
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cylindrical. The source correction scheme is used to accelerate the
inner and outer iterations for inhomogeneous source problems while

the diffusion coefficient correction scheme is used for eigenvalue
programs, again for both inner and outer iterations. The removal
correction scheme is used i1f either negative or inordinately large
diffusion coefficients are calculated. Thus, the diffusion coefficient
or removal correction schemes may be alternatively selected on a mesh
cell-by-mesh cell basis. We also use the coupled, inner-outer 1itera-
tion scheme described in Sec. II.1.

It should be pointed out that one may use the diffusion synthetirc
method as a diffusion improvement scheme in lieu of an approach to
accelerating transport iterations. For example, with the source
correction scheme of Sec. ITI.B.1 after one transport sweep and associated
calculation of the correction term, R, a corrected diffusion flux can be
calculated. The solution procedure can stop at that polnt and the results
used as an improved diffusion solution. The cost of this result is
approximately twice the cost of one diffusion calculation and our
experience indicaces that the results are normally significantly more
accurate than diffusion results. ONETRAN-DA has an improved diffusion
solution option and can also be used simply as a diffusion theory code.

D. Two-Dimensional Diffusion Synthetic Acceleration Method

To develop the two-dimensional diffusion synthetic acceleration
method in a finite differenced form, we follow the same procedure as
used In Sec. C. The essential features of the development can be

displayed using the x-y geometry case with isotropic scattering and
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sources. For that case, the diamond-differenced discrete-ordinates

equations are

L T T Ynij- F943Vig¥m;

[0}
= + . =
0ci3Viftori ¥ CnijVis m=1,2, ..., M,
= 1) 2) . ] ]
j=1,2, ..., J. (35)
with
i T B T Xy,
h = _
IR PR B
i3 = My
and the diamond equations
1 1
] = = + = — + .
Yuij = 2 Ynin g T Vnicory) T 2%migen t Yimig-y) (36)

We now seek the form of the diffcrenced two-dimensional source corrected
diffusion equation such that, in the diffusion limit, the correction
term Rij + 0 independent of the mesh cpening and at the same time in
compatible with the transport balance equation (see Sec., TI.D.).

We define the flux moments

M

q ~ q
¢pij - z YinYp (um'nm)‘pmlj ’
m=1

with the spherical harmonics polynomials defined by

(2 - qu)(:, - !

q _ q
Yp (u,n) Pp(u) cos q9,

(p + q!
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The Pg are assoclated Legendre polynomials, related to the Legendre
daqap

polynomials by Pg(u) = (1 -y )q/Z-—-EE (1). As a preclude to deriving
du
a diffusion equation from the SV equation, we take three dlscrete
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Rearranging Eqs. (38) and (39) results in the following expressions

for the i direction and j direction currents.

D
o _ __4j,.0 _ .0 . o 1
d115 = " T, Potngg T Poray’ * F20):
and
D
1 _ _ _ij..0 _,0 2 1
¢145 ~ h, @oig4, ~ Porgny) T C05007)
where Dij = 301 and F and G are functions of the second-order moments

ij
whose forms are obtainable from Eqs. (38) and (39). In the diffusion

theory limit (problem for which the dif"usion equation provides the
exact solution in the absence of truncation error), F aad G go to
zero.

We now seek a balance equation analogous to the one-dimensional
case of Eq. (20), to which the corrected diffusion equation will
converge., This is obtained by adding to Eq. (35) the corresponding
equations for the (i+l,j), (i,j+1), and (i+1,3+1) mesh cells and

using Eq. (36), yilelding

1 o] o 1 o o
70010019 Myt T 2 M %00t Ry ®isge)
1, .1 1 1, 1 1
300 g Y M fige) T M0yt Py
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* Opst1 341 V141 41 %0141 441
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where we have used the diamond difference relationship to combine
some of the terms. We now substitute Eq. (40) into Eq. (41) and

wve derive the following diffusion equatiou,
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In deriving Eq. (42) from Eqs. (40) and (41) we have used the fact that

(o] (0]
WDy Yotrssay * LSRR T L PR L TP

o 2
¢C)i"'a/z jHi + O(hj)'

The corresponding equations for the diffusion coefficient and removal
correction schemes can be deduced from the above and the one-dimensional
equations.

Notice that in order to generate the correction term, the flux
moments must be evaluated on the spatial mesh cell corrers. To implement
the scheme, we have altered the TWOTRAN-II2 code so that it determines
the corner angular fluxes and calculates the required moments. This
test version of TWOTRAN-II {is operable in three two-dimensional geom-
etries (x-y, r-z, and r-9) and follows the same outer/inner iteration
procedure and the same scheme for selection of source, diffusion coef-

ficlent, or removal methods as described in Seec. I11.D.5.

IIT. CALCULATIONAL RESULTS

In order to demonstrate the effectiveness of the synthetic diffusion
acceleration method, we present some one- and two-dimensional calcula-
tions of typical systems for which trangport calculations are frequently

used, Unless stated otherwise, all of the problems are converged to a
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pointwise criterion on the scalar flux of 0.000 1 and are in cylincrical
geometry. The one-dimensional problems e£re labeled as follows:
1. LMFBR A configuration typical of current
| Liquid Metal Fast Breeder Reactor
(LMFBR) designs with two core regions,
a blanket region, and a structure or
reflector region (28 groups, 84).
2. HTIGR A configuration typical of current
High Temperature Gas Cooled Reactor
(HTGR) designs with a homogeneous
core or graphite and 235U fuel and
a graphite reflector. This is an
upscatter problem with 9 groups, SA'

3. and 4. TREAT 1 and 2 A fast, filtered experiment situated
in the TREAT thermal rcactor. Number
1 Is a 20-group formulation with no
upscatter groups, and 2 is a 44-group
formulation with 20 upscatter groups
(34' P-1).

5. CTR A shield coupled neutronlcs-gamma
transport problem for a representative
fusion rcactor configuratlon (46 groups,
S-6, P-3).

6. SPHERE A coupled neutron-gamma transport

adjolnt source problem in spherical
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geometry (42 groups) (converged to

0.001 for the point fluxes)(S-8,P-3).
Not all the possible iteration methods were empleyed with all of these
problems because of the excessive computing time involved. Displayed
in Tables I are the total numbers of iterations required for flux
convergence for each of the acceleration methods tested. The abbrevia-
tions used are:

1. FMS fine-mesh rebalance

2. CMR coarse-mesh rebalance
3. DSsA difiusion synthetic acceleration
4. CY Chebychev acceleration

5. NONE no acceleration.
Also displayed is the ratio of the iteration time calculated as the
synthetic diffusion acceleration method time divided by the iteration
time of the best performer of the other methods used. In running thz
problems, the preferred iteration strategy for the synthetic diffusion
method was used in that one inner iteration was used until the fission
and upscatter sources were converged and then the point flux was
converged to its convergence criterion by incrcasing the allowed inner
iterations. Because the same strategy does not work for the other
methods, the inuer iteration limit was chosen at 5 per outer until
source convergence and then increased to 10-20 depending on the problem.
The NON-DSA calculations were performed using a diamond differenced
form of ONETRAN.1

As outlined in Sec. II.A, the base formulation of the synthetic
diffusion method for eigenvalue problems is the diffusion coefficient
method with 1 swlitch to the removal term method negative diffusion

~-—€findanrn ara enmnutad at a mesh Interval. Very iunfrequently this
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switch also results in a removal term for that mesh point wkich may be
sufficiently negative to lead to the calculation of negative diffusion
fluxes. When this situation arises (as it does in problem 6), the
synthetic acceleration is abandoned and no acceleration is employed

for that group.

Examining the results in Table I, one sees that the synthetic
diffusion method converges for ali of the problms. We see a substantial
reduction in the number of iteraiions needed for convergence particularly
for the eigenvalue problems (1-4).

We stated in Sec. I1 that the diffusion synthetic acceleration
method can be used as a diffusion improvement scheme. We illustratce
this in Table II whevre we display the keff iteration sequence for the
TREAT 1 problem., The first column labels the outer iteration with
the first entry being the conventfonal diffusion calculation. 1In the
third column we post the elapsed iteration tim~ for this problem and
in the fourth column we give the percent error in the eigenvalue. In
outer iterations 1 and 2 only 1 inner iteration per group was uged
and in the third the flux was iterated to convergence. It 1s seen
that the first outer iteration ylelds a very satisfactory improvement
over Jdiffusion theory and we see this behavior in many of the elgenvalue
problems we have performed.

We present some numerical results in Tables III1 and TV -using the
two-dimensional diffusion synthetic acceleration method, Table III
depicts results for a homogeneous square comprised of a purely

scattering material wlth a 5 x 5 mesh, reflective boundary conditions
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on the left and bottom boundarles, and a flat source. By altering the
total cross section, one mesh interval is varied from 1 to 15 mean-free
paths. The results demonstrate the stability of DSA with increasing
mesh size. In Table IV we solve a series of simple eigenvalue problems.
The first two problems are for the homogeneous square problem of Table
ITY with 1and 2 energy groups. The 9-group problem is a cylindrical
reactor with a plutonium core having radius 7.62 cm and half-helght of
1.966 cm surrounded by a 7,62 cm depleted uranium reflector. The cross
sections are tabulated elsewhere.19 In these small systems, the inner
iteration acceleration is of very little value and the factors of two
in itcrations over FMR arc due to the outer acceleration. We have not
posted comparative running times for the two-dimensional problems
because the diffusion equation solver in 1TWOTRAN is presently very
incfficient. However, previous experienc016 has shown that the dif-
fusion calculated time 1is less than 107 of the total time; therefore,
we cxpect the iteration tlme to be proportional to the reduction in the

number of iterations for large problems.

IV. CONCLUSIONS AND RLECOMMENDATIOWS

In conclusilon, we have presented the diffusion synthetic method
and demonstrated its effectiveness. In two-dimensional geometries,
however, some development Is still necessary. In inplementation of
the diamond cquations, negative fluxes can be calculated.2 TWOTRAN
uses a negative flux fixup scheme that violates the diamond equations

by which negative fluxes are sct to zero. For this case, the compatible
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diffusion and transport difference equations that we labored so carefully
to construct are no longer compatible. We are testing various schemes

to efficiently restore this compatibility. Upon correction of this
deficiency, the diffusion synthetic acceleration will no doubt serve

as a new generation in transport acceleration schemes.
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TABLE 1
ONE-DIMENSIONAL DIFFUSION SYNTHETIC ACCELERATION RESULTS

COMPARED WITH OTHER METHODS

Problem NE cY CMR FMR DSA Time Ratio
1 LMFBR 1 114 2 382 3133 * 154 0.18

2 HTIGR —-—- 12 000 6 400 * 124  0.08

3 TREAT 1 --- 5> 047 * * 188 0.06

4 TREAT 2 --- -—- -— --- 663 ---

5 CTR - 1 204 -—- --- 329 0.26

6 SPHERE 1879 -~--- * --- 456 0.33

* divergence

-- results not available

TABLE II
EIGENVALUE CONVERGENCE AS A FUNCTION OF

THE OUTER ITERATION

OUTER kcff TIME (seconds) error (%)
diffusion 1.234 6 4.3 -0.83

1 1.245 1 5.5 0.01

2 1.244 9 8.5 ~-0.005

3 1.245 0 13.0 0.0



TABLE III
TOTAL ITERATIONS USING TWO-DIMENSIONAL

DIFFUSION SYNTHETIC ACCELERATION FOR VARYING MESH SIZE

Mesh (mfp) FMR DSA
1 12 5
5 112 6
15 293 6
TABLE IV

TOTAL ITERATIONS USING TWO-DIMENSIONAL DIFFUSION SYNTHETIC

ACCELERATION FOR EIGENVALUE PROBLEMS

Problem FMR CMR DSA
1 48 -— 17
2 143 -— 24

3 149 369 80



