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ABSTRACT

The: effectiveness of the ecnergy dependent finite element method
(EDFEM) as applied to two-dimensional multigroup diffusion problems
is investigated. The EDFEM couples the finite element method (FEM)
formalism with the energy dependent element size scheme. The EDFEM
allows the elcements to straddle material interfaces if certain condi-
tions are satisfled; this makes this method especially suitable for
heterogeneous rcactor calculatlons. Comaprisons of the results obtained
by the EDFEM, the FEM, and the finite difference method for-a ZION-I
PWR model are presented. A signlficant reduction of the total number
of unknowns involved in the problem is accomplished using the EDFEM

which ylelds a reduction of the computing time by 30%.

%
Work performed under the auspices of the U. S. Energy Research and
Development Adminsitration.



I. INTRODUCTION

The numerical solution of the neutron diffusion equation is
frequently required for reactor analysis. Consequently, there are
continuirg efforts to reduce the computer running time required for
these solutions while maintaining the degree of accuracy needed in
nuclear reactor analysis. Specifically, finite element methods
(FEM) have bteen investigated as a potential method for reducing
computation time.l—5 Since the FEM has been pbaerved to yield a
high order of convergence for practical mesh ;izes, the FEM is ideally
suited for coarse-mesh calculations.

Energy dependent spatial mesh sch.mes have also been investigated
as a method for reducing computing time.6_8 In these schemes, fine-
mesh arrangements are used in the lower energy neutron groups while
relatively coarse meshes are used in the fast groups. This scaling
is used because the neutron diffusion length, a characteristic scale
length, is generally smallest in the lower cnergy groups and largest
in rhe fast groups. In this fashion the ratio of mesh size to group
diffusion length may be maintained roughly constant from group to
group. Energy depcndent spatial mesh schemes using either the FEMB’9
or the finite difference method (FDM)6’7 have been developed for one-
dimensional diffusion problcms. Results obtained using tne energy
dependent finite element method (EDFFM) as applied to one-dimensional
problems in Refs. 8 and 9 demonstrated that reduced computing times
could be obhtained without sacrificing accuracy using this new method.

This paper reports the results obtained by applying the method to a
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pair of two-dimensicnal problems. The two-group equations are solved

using Lagrange plecewise biquadratic functions as a basis.

JI. MATHEMATICAL FORMULATION
The FEM is an extension of Rayleigh-Ritz-Galerkin methods for ap-

proximation solutions to problems involving differential equations.
Instead of solving the differential equaticn directly this method casts
the equation in a variational or weak form. The functional for a given
equation is not unique. The determination of the associated functional
for a given problem is the first step is generating the soiution. The
basic formalism of the EDFEM is identical to that of the FFM.

Considered the generalized matrix representation of the multigroup
diffusion equations,

XSTb

VeING + 50 = —— (1)

and of the multigroup adjoint equation

veove + rTol = g Te! (2)
for G groups where,
1.2 G
$ = col(@ ,0", veey ) direct neutron flux
¢+= col (¢11, ¢+2, cens ¢+G) adjoint neutron flux
D = diag (Dl,Dz, ey DG) the diffusion coefficients
I = diag (21.22, veasy ZG) group removal and scattering
cross sections
1 2 G
X = col (X"3X 'y sess X ) the prompt neutron spectrum



A

1 2
S=c¢ol (8§, 8, ..., SG) the product of fission cross
section and number of neutron
per fission
k neutron multiplication constant.

The Dirichlet condition is

o' (r),6(c) = 0 for reaq,

where ane is the external boundary of domain Q.

The associated functional is

+
J =/[¢'T(Z - xST/k)d> + votT.pvs Jda,
!

or
2@ - b6 o) /K = 3.

The functional, Eq. (4),1is not a quadratic functional but a billnear

functional. The bilinear forms are

a@'T,0) = f wo'-Tove + ¢ Txe)a,
Q

b T,0) = / o Ty oda
Q

(3)

(4)

(5)

(6)

(7

The weak form of the problem is now an eigenvalue problem. Both ¢

; 1 1
and ¢' have the same propertics._¢+and ¢eid, where H = HO(Q) X HO(Q) x
x'Hi(Q) G times, Hiis the Sobolev space of functiens which vanlish on
o2 and whose first derivatives are square integrible in Q.

AN

in terms of trial functions ¢.¢t Eq. (5) 1is rewritten

a(¢*T,¢) - b(@tT¢)/k = J,

(8)



where
N
o = z 6, (9)
it1
N
P z?uj . (10)
=1

The ui are the basis functions often called the eclement functions and

the expansion functions ¢i are the noial values of the fluxes.

The variation of J with respect to ¢+T is required to vanish. Then
a(uj¢) - b(uiw)/k = 0, i=1, 2, ..., N, (11)

Thercfore the function which minimizes the functionmal, Eq. (4) is also
a solution of the weak form, Eq. (11). After the discretization

procedurc is performed, Eq. (1) yields the matzix equation

AP = P (12)

for each cnergy group g where AB ig given by N x N matrix Q in an N x 1
matrix; and ¢g is a column vector for N space point unknowns.

Each element A?i of Ag is obtained from

5 - o . ) = 4 31,
Aij fn Vu, Vujd.. +/Zauiuj(ls?. j =i, i¥s, 121; (13)

and Q1 from

G
& A
Qi’ = xic_ 2 vhzl;fthhu_.ldﬂ. (14)
h=1
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The rationale behind the EDFEM is to keep the size of A minimal
as an alternative method of reducing the computing time. In the
steady state problem, the coefficient matrix A for each energy group
needs be assembled and inverted only once. However, for time
dependent cases, the computing time required to assemble and invert
A(t) for each time step becomes a major concern.

The characteristic features of matrix A are that it is symmetric,
positive defirite, diagonally dominant, and highly banded. Any one
or more of these characteristics can be used advantageously to speed
up the numerical computation. The Choleski direct Iinversion method
is used here.

Conventionally, the FEM malntains the element sizes the same in
all energy groups so that the spatial arrangemeut of nodal points is
identical for all groups. Elements are refined uniformly through all
energy groups. The philosophy of the EDFEM is to refinec only those
energy groups whose characteristic diffusion length are small compared
with the diffusion length of other energy groups. Since tha EDFEM
requires inner products of element functions whose supports Qi and
Qj are not equal, the larger element edge size is alweys an integer
multiple of the smaller one for simplicity.

The solution 1s obtained by first solving the fast-group equatlon
on its coarse mesh. The thermal group term in the fast source 1s handled
in a straight forward manner. The fast-group flux is representcd by
biquadratic polynomials in each eclement, and therefore quadratlic
interpolation can be used to obtain fast group fluxes at spatial points

corresponding to the finer thermal mesh nodes. These values are then
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used to generate new fast elements having the same support as the thermal
clements. This representation is used for fast group fluxes which appear
in the thermal group source.

The treatment of element sizes is clearly an important difference
between FEM and the EDFEM. The EDFE also allows eclement boundaries to
cross more material interfaces than does the FEM. However, element
boundaries must lic on the materlal iInterfaces when adjacent diffusion
coefficients differ drastically. In the fast groups, jumps in the
diffusion coefficient are generally smaller from regioa to region while
in the thermal groups this is not the case. Since an energy dependent
mesh is used, the coarse fast clements may encompass several materi:l
interfaces while the finer thermal elements do not. The solution then
does not possess a continuous first derivative inside the coarse fast
element.

Assume that a finite element subspace S?:H of degree k -~ 1 is used
with the forms a(u,v;, b(u,v) given in Eq. (11). If the coefficients

in the multigroup Eq. (1) are smooth, then10

k-s
[e - ¢l <ch

and

h2k-2

- <
(k - k) € c, .

Since the smoothness condition is violated in heterogeneous elements,

these estimates for order of convergence do not hold.
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When the fast element is inhomogeneous, the diffusfion coefficients
and other cross sections differ within the clement, errors are intro-
duced .nto the computed fast flux. Since the multigroup equations
are coupled this error propogates into all other group fluxes. It
is expected however, that the accuracy of the solution will not be
severely degraded when the discontinuities are small. Therefore, the
placement of fast group elements requires a careful study of problem

configuration.

ITI. RESULTS AND DTSCUSSION

The two thermal reactor problems investigated are (i) a simple two
regioa model consisting of a core and reflector,and (1i) an inhomogencous
model of the ZION-I PWR core. Quadratic Tagrange polynomials are selected
for basis functions., The EDF¥ computer propgram was used for numerical
experimentation on the Burroughs 6700 computer.

The basic data for the first problem is piven in Table I. This
reactor configuration was examined in the x-y domain shown in Fig. 1.
This problem is a two-dimensional extension of the problem discussed
in Ref. 8. Notice the existence of a singular point, a so called "corner
singularity".

The L/N 1-1 designation refers to the case in which the fast and
thermal group clement edges are of equal length. The L/N 1-2 case is the
refinement applied only to the thermal group whose element edges are

one half the size of those in the fast group.
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An important observation can be made from Figs. 2a and 2b. The L/4

l-2 thermal flux distribution agrees well with the L/8 1-1 thermal flux
distribution. 1In addition, the L/4 1-2 flux profile exhibits better
agreement with the L/8 1-1 flux profile than does the L/6 1-1 profile.
It is important to rccognize the total number of unknowns involved in
these runs. There are 320 unknowns involved in the L/4 1-2 computation
whereas 518 unknowns are involved in the L/8 1-1 computation; accordingly,
this reduction of nearly 38% in the total number of unknowns leads to
a reduction of approximately 33% computing time required to set up the
problem by the EDFE program. Eigenvalue results are Indicated in Table TTT.
The ZION-1 PWR model represents a more strirngent numerlcal test if
the EDFEM beccuse of 1ts heterogenelty which is expected to dictate the
slow/fast mesh rario rather than a simple, ratio of diffusion lengths.
The model contains several eore reflector corners winich introduce "strong'
singularities in the flux. 1In all cases fast group elements include
several fuel reglons. The model conflguration is indicated in Fig. 3,
and the cross sections appear in Table IIIL.
The thermal neutron tflux along the core center line is shown in
Fig. 4. The L/4 1-1 case consists of a 4 x 4 element arrangement in
both groups. Here L 1s the half width of the reactor. The intervals
on the abscissa correspond to fuel enrichment zones with the exception
of the last interval which is the water reflector. The near perfect
agreement between the thermal flux shapes of the L/4 1-2 run and

L/8 1-1 run is evident in Fig. 4. The value of ke corresponding to

ff
the L/8 1-1 run is 1.275 02; the L/4 1-2 valve is 1.274 53, and the

L/4 1-1 value 1s 1.275 29, These can be compared to a benchmark value
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of 1.275 08 resuiting from a fine mesh Citation run with 5 624 unknowns/
group.
The fast flux shapes obtained with the L/4 1-1, L/4 1-2, and L/8
1-1 runs are observed to be "smooth", as compared to the thermal flux,
and in zZood agreement with one another, This indicates that the L/4
refinement is sufficient for the fast group. The L/4 1-1 thermal group
flux plot of Fig. 4 indicates that the refinement is not sufficiently
fine for the thermal group. Notice that even though the flux eigen-
function of the L/4 1-1 run is not highly accurate the value of keff
is. This 1s a result of the variational principal embodicd in the FEM.
For the L/8 1-1 run there are 256 unknowns in each group whille
for the L/4 1-2 run there are 256 unknowns in the thermal group and
64 in the fast group. It is observed that a reductlon in total cx-
ecution time of 35% is achieved in the EDFE L/4 1-2 run as compared
to the conventional L/8 1-1 run. These comments refer to the use of
direct inversion. When inner iteratiuns are used, as they are for
problems with a large number of unknowns, the time savings will be

even greater.
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TABLE I

Two-Group Macroscopic Cross Sections
Fast Group
Thermal Group

Fuel Reflector
1.5 1.2
D 0.4 0.15
- 0.0623 0.101
Ly 0.2 0.02
vz 0.0 [ ]
£ 0.218 0.0
2iaa 0.06 2.1

v1=l.0 X 108 cm/sec
v2=2.2 X 105 cm/sec



TABLE 11

Eigenvalues llxe£f= Two=-Dirensional, Two-Region, Two-Group Problem.
(Benchmark 1/K_;.~1.1140943 for m=2, Ax=L/6)*

Ax _ Quadratic

r/2
L/4
/6
L/8

L/20

1.09230613
1.10852172
1.21225374
1.11331751

Quadratic Quadratic Linear* Cubic* Finite®*
Lacrange(l-1) Lagrarce(l-2) Lagrance(l-4) Eermite(m=l) Hermitz(m=2) Difference
1.1175211¢ 1.12232815 1.0802150 2.1082321 1.0782013
1.11360767 - 1.0962251 1.1134916 1.0797120
1.11359092 - 1.1040456 1.1140943 1.0895577
- - - - 1.11050221

*Sce Ref. 2.



TABLE III

Macroscopic Cross Sections
Grcup 1
Group 2

1

Corposition D(cm) Zt(cm- ) . v!f(cm-l) ts(cm'lj (k+k+1) Comments

3 1.02139 0.03322 0.0 0.0 Zion I (Core
0.33548 0.14596 0.0 . Baffle)

11 1.431760 0.02597  0.00536 0.01742 Zien I
0.37335 0.06669 0.1C433 ald (2.25%)

12 1.41970 0.92576 0.0U5%1 0 0.694' Zion T
0.37373 0.0760356 0.12472 < U4 (2.33)

13 1.42650 0.02560 0.30653 Zion I
0.374z4  0.05359 0.14120 0.01658 (3.3%)

15 1.45540 0.02950 0.0 - Zion I
0.28994  0.00949 0.0 0.02903 (Water)



¢=0

L
Refiector
dac, -9
a:—':— L/2 ~ —_— .:,:0
el
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0. L/2 L=40.0cm
c— X

Fig. 1. Raactor Configuration:
Two-Dimensional, Twec-Roagion, Two-Group Problemn.
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Fig. 2. Reletive Thermal Fluxes (a) at y=0.0cm and (b) at y=20.0cm:

meso-Dimensional, Two-Regicn, Two-Group Problem.
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