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ABSTRACT

The c¢ritical mastes and fisslion and explosive cnergy re-

PuO, - U0

leases of Pu0 U0., and UO3 assembllies have been

2’ 2 2’ 2

calculated. The cholce of parameters used in the model are
conservative and were chosen after review of approprlate
plants that have been and are proposed for construction in
the future. The resulting data envelopes are intended to
include any conceilvable set of circumstances that could ul-
timately lead to a nuclear incldent. All energy release an-

alysls was performed for initlal fission spikes only; recrit-

icality mechanisms were not considered.
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Fission and Ezplosive Lnergy Releeses of Puoa, Pqu-er, uo

2 2
and U0 Assemblies. J. J. Koelling, G. E. Hansen, C. C. Byers,

University of California, Los Alarog Secientific Laboratory,
Los Alaros, MNew lexico 87545,
For the purpose cf determining off-site cffects of
criticality accidents it has becn normal practice to
postulate accidents in various configurations ana media
within a plant.(1’2’3) These potential accidents then
assist in determinirg much of the plant and process design.
For these accldents the off-site ¢ffects are dominated by
the release cf gascous iodine and noble gases through the
ventilation system, out the stack, and to the exclusion
boundary via apprcpriate dilution and decay factors. For
any speciflc proposed accident it is the fission enerpy
estimate that ultimately determines the dose at the Loundary
since a2ll other factors, i.e., fission product ylelds, decay
rates, dilutior. effect, breathing rates, plateouc, etc.,
involved in the dose estimate are relatively well understood.
The f*esion and explosive energy releasc from criticality
incidents involving liquid and metal assemblies(u'5’6'7’8)
has been well established from both accidents and experimental
induced excursion data; however, to date very little work has
been performed in the dry powder or near dry powder assem-
blies. With the possible advent of plutonium recycle, it has

become increasinpgly apparent that the upper limits of cnergy

release for Puoz, UO2 and ruoz-uoz assemblies similar to that



found in nitrate to oxide conversion plants and mixed oxide
fucl fabrication plan%s should be established. In addition,

it was declded to investigate UO, commonly found in UF6 plants.

3
This study focuscd on the following four types of assem-

blies:

a) PuO2 assemblles: Light water reactor recycle pluto-
nium in oxide form with approximately 80% fissile and 207 non-
fissile plutonium isotopes. Water content was varled frem O
to 105 by wecight.

b) Puoz-UO2 (1°0).) asserblies: A mixture of recycle
plutonium with natural uranium, both in oxide form. The
mixture contained a maximum of 6% Pu02. Water content was
varied from 5 to 10% by welght.

c) UO2 assemblies: Uranium oxide with a maximui uranium
enrichment of 5%. Water content was varied from 2.5 to 10f%
wy welght.

d) UO3 assemblies: Uranium oxide with a maximum uranium
enrichment of 5%. VWater content was varied rrom 2.5 to 7.5% by
welight.

The density (oxide density) of all assemblies was maintained
at 5 um/cm3. Reactivity insertion rates vere varied from $1 to
$100/s. A nominal concrete composition was chosen for fully
reflected critical masses. Spherical geometry was chosen for
ease of modeling and for minimal critical masses. A Doppler

cocfficient % dk s -0.02 was chosen for all uranium cases.

All energy release analysis was performed for 1ir.itilal fission



spikes only; recriticality mechanisms, e.g., recompaction
under the influence of gravity, were not considered,

The fission and explosive energy releases were deter-
mined with the Pajarito Dynamics Code (PAD)(g) that has been
used by LASL personnel in estimating low order disassembllies
which might cccur during a reactor or critical assembly
accident. PAD 1s a one-dimensional coupled hydrodynamic-
neutronic code with Lagrangian hydrodynamics and the dis-
crete ordinates neutron transport code DTF—IV.(lo) Neutron
multiplication and period calculations were also performed
with the aid of DTF-IV. Hansen-Roach cross sections were
utilized in both the DTF-IV and PAD calculations.

For the PAD calculations, a two material option was
used whereby the fission energy 1s deposited in the fuel
and then transferred to the water (if present) via a pre-
determined energy transfer rate. If no water was present
the energy remainecd in the fuel and ultimately changed the
state of the media to a vapor phase,

Figures 1 through U4 show the ecritical masses of Pu02,

Pu02-U02, UO2 and UQ_, for various water concentratilons.

3

For Pu02. the critical mass 1s flnice with no water, whereuas

with MOX and both U02 and UO3 the "minimum" water content

was 5 and 2.5% by weight, respectively. The upper linlt for
investigation was e2stablished when the water content fillled
Y UO2 and MOX
this water content was approximately 10% by welght but for

up the vold space left by the oxide. For Pu0O



UO3 (at the same oxide density) this value was 7.5% by
weight. Above these water levels, solutlon assembly data
exist in the literature.

Figure 5 shows the energy relcacse expected for PuO2
assemblies for varlious water contents. At lcw ramp rates,
water vaporizes and inltlates disasscmbly. At high ramp
rates fuel vaporization follows the water vaporization. For
0% water, air that fills the vold spaces initiates dis-
assembly and may or ray not be followed by fuel vaporiza-
tion depending on the ramp insertion. Gas viscosity and
smail particle size assure equal veloclities in vapor and
condensed states.

In the cases studlied, the total energy release becomes
greater than what 1s normally considered acceptable in
acclident analyses only for high reactivity insertlon rates
(>>31/s). These rates are much greater than thcse obtained
by marimum estimated material transfer rates (<<$1/s) achiev-
able in conversion and fabrication facllities. 1In addition
to tbe unlikelihcod of achleving these insertion rates, the
neutron emisslon rate from spontaneous fission and the

(11)

Pu(a,n)o2 reaction as shown in Figure 6 constitutes a

formidable neutron source that is easlly detected while an

assembly 1s still far subcritical. For example, at keff =

0.9, or more than $U40 subcritical, the neutron source strength

is approximately 107

n/s-kg or 109 r/s for a 100 kg assembly.
Figures 7 through 9 show the energy releases expected

for MOX (Puo2 + U02), UO2 and UO3 for various wat=r contents.



Except for the inhercnt Pud, source strongth ( & of the

2

values stated for the Pu0O, assemblies) in FOX, all of these

2
low enriched oxides indicate approximately the same level
of energy rclease per kg oxidc. The higher releasc levels
of these low quality fuel asserblles are due mainly to the
extremely large critical masses in comparlson to the re~
latively small critical masses of PuO2 assemrblies. The
large masses imply small neutron leakage probabllities and
thus require larger dilations per unit reactivity reduc-
tion.

Table I lists maximum kinetic energy (an index of
"explosive" energy) as & function of assembly composition
anc reactivity insertion rate.

Summary :

In all of the cases considered, water vapor pressure
constitutes the basic dlsassembly mechanlism even in the
case of extremely small amounts (0.1% by weight for the
PuO2 study). The water content and subsequent vapor
pressures resulting from the water will thus ultimately
determine the fission yield durlng an excursion for a given
reactivity 1nsertion rate. For zero water content as in the
case for Pu02, the alr in the vold spaces supplies enough
energy to start disassembly. If vaporization of the fuel
18 necessary to complete disassembly as 1n the case of very

high ramp rates, very large energy relecases can be realized.

Of course the calculated energy releases are academic if the

-5 -



nececsary matci-lal to achicve a critical mass cannot be pre-
sept or 1f a strong inherent neutron source such as seen in
Pu02 cr PuO,d-UO2 assemblics will preclude accumulation of
critical masses by prcper detection.

As indicated earlier, the chouice of parameters used in
this investligation are conservatlive and were determlned only
after review of appropriate plants. The resulting data
envelopes are thus intended to includc any concelivable set
of circumstances that could ultimately lead t¢o a nuclear

incident.
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Table I. Maximum Kinetlc Energy in Megajoules as a Functilon
of Powder Composition and Ramp Reactivity Insertion.

(Metric tons

Compositlon/ramp($/sec) 5 20 100 per dollar)
Puo? 0.00 1.6 4.6 0.001
Pu02+0.1 w/0 H2O 0.01 0.02 1.6 0.001
Pu02+2.5 w/0 H20 0.02 0.19 0.47 0.0008
Pu02+10 w/0o H2O 0.00 0.07 0.45 0.0005
MOX+5.0 w/0 H20 Yy 50 700 32
MOX+7.5 w/0 HZO 0.5 7 120 2.7
MOX+10 w/o H20 0.1 2 4o 0.3
U02+2.5 w/o H20 , 15 120 650 9.1
U0,+5.0 w/o H,0 1 10 80 3.4
U0,+10 w/0o H20 0.1 1.5 15 0.03
U03+2.5 w/o H20 15 150 700 8.5
U03+5.0 w/0 H2O 1l 10 80 3.0
U03+7.5 w/o H20 0.5 5 35 0.1
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