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1. Introduction and Background fron Mechanics.

We investigate an abstract class of bifurcation

problems from the essential spectrum of the asscciat.ed

Fre”chetderivative. This class is a very general framework

for the theory of one-dimensional, steadv profile traveling

shock wave soluuions to a wide family of kinetic incegro-

differential equations from non-equilibrium statistical

mechanics [1,2]. Such integro-differential. equations usu-

ally admit the Navier-Stokes system of compressible uas dy-

namics Or the M.H.D. systems in plasma dynamics as a singu-

‘-’-lar iimit [3-5], and exhibit similar viscous shock layer

‘solutions [6.7].

The mathematical methods associated to systems of

‘Partial Differential Equations must however be replaced by

—the following considerably more complex Bifurcation Theory

setting, first outlined in [8-10] for special cases. ~le

actually consider a hierarchy of bifurcation problems,

starting with a simple (solved) bifurcation problem from a

..,simple eigenvalue.

G

. .

Let (p,f) be a nonlinear mapping from a Banach

‘space X, into a Banach space Y, parametrized by D:

(1.1) Q(u#f) : R1 X X +ya

Consider
. .....-.,...._.._-._, -_ -----

(1.2) G(Il,f) =o,

such that

G
(U,o) =0, VIJ=R1..-. .. .. ,.



We admit all the necessary hypotheses to ir,surebifurcation

at B = u*, from a simple isolated eigenvalue of the Fre&het

derivative

G +J’,0).

Classical theory [11] insures that, in some neigh-

borhood of (P*,O) in R1 X X, there exists a seccnd branch

U(u) :

4

)

(1.3)
(P, U(D)) = o

lu(p*) = o.

Thus , the primary hypothesis is bifurcation from a simple

G
— eigenvalue for the operator . In concrete cases, the rel-

ative bifurcated and trivial branches correspond to differ-

ent asymptotic steady states at the “’tails”of the shock

wave (space-independent subsonic and supersonic states re-

,. lated by Rankine-Hugoniot

the transonic regime).

We shall actually

tended operator equation,

cor.ditions; P = U* corresponds to

investigate the more involved ex-

forxcR1, -~< x<+=:

_–-.-__.-.-.-A(p) ~ -

A
G(U,f) = O, or

(1.4)
a}(ll,f) = O, where

‘(1.5) A(v) : R1 Xx+y

is-a linear operator from X into Y, Parametrized by P ~ R1..

f is now a vector valued function of x E Ftl,- ~ < X<+co,

with values in the Banach space X. We may restrict our-

selves to spaces of absolutely cclntinuous functions. If

A(V)? I and x = t, {1.5) reduces to an evolution equation

(1.6) af
E- Q (P,f) = 0,

‘and one looks for solutions which are trajectories between

critical points of (1.1), i.e., the trivial solution and

the bifurcated solution u(p). Such a problem (1..6)of traj-

ectories joining wo steady asymptotic states, has first

been considered by B. Matkowsky, using matched asymptotic

~ expansions [12,13]; it has been investigated in depth by
---- . ..... ------ ....



.,.Iooss [141 and K. Kirchqtissner [15], within the Navier-r’

Stokes context (SC= also [16]).

However, in (1.4-5), fundamental properties of the

physical context impose samewhat pathological conditions on

A(p):

Hypothesis.

1) Zero belongs to the continuous spectrum of A(B),

VU, i.e.:

R(A(u)) =YandA(;l)f=O~f= O.

2) A(u) is neigher positive nor negative semi-defiriite, nor

is it accretive. As a corollary A(P)-1 does not exist, Yu.

Recall that

G

-1
.........,-... #1*# 0) _ ...-..-. .——_-

does not exist either at u = u*. In fact the properties of

A(u) are such that an initial value problem for (1.4) is

ill-posed. Attempts to straightforwardly extend methods

developed for (1.6) lead to erroneous results.

We still look for critical trajectories of (1.4),

between the trivial solution and u(P). We investigate the

possible existence of a branch $2(u,x), solution of (1.4)

such that: __________....._..._.. .. .. .____

1) o(lJ*,x) = O, but $2(P , x) + O, P # v*;

2a) Q(U, -~) = 0, !2(LI, +=) = Lu(l.l); ~
2b) Q(P, +~) = O, O(V, -~) = u(P),

for P close to v*. In an appropriate Barach space of ab-

solutely continuous functions normalized at t =, the hypo-

thetical non-trivial branch $2(P,x) corres~onds to bifur-

cation from the essential spectrum of:

(1.7) .
~ f(ll,o)= A(P) ~ -

Q
f(ll,o) . ---

‘Specifically at B = P*, zero is a limit point of the spec-

trum (a non-isolated eigenvalue in the essential spectrum).

The kernel is non-txivial, as it includes

The non-isolated character stems from the

tial specra of A(u) and~. (1.4) must be

,bona-fide problcm of bifurcation from the

that of
Q

~hJ*,oL
individu~l essen-

considered as a

essential spec-



trum. Finallv, we shall demon~trate the no?i-trivial result

that fl(v,+~) = ~(p) or O(U, -*) =:U(P) (critical tr3jcc-—
tory) . Since will will emphasize the mathematical tech-

niques, we briefly review the relcvancc of (1.4) to fluid

and statistical rechanics.

Steady prafile shock waves in compressible fluid

dynat:iicsand magneto-hydrodynamics correspond to ratilcrdif-

ferent mathematical theories according to the level and com-

plexity of the fluid dynamical description. In order of

increasing complexity, one has the well known hierarchy of

equational from the Es~lerlevel~ to the compressible Navier-

-.Stokes and the Magneto-hydrodynamic (M.H.D.) systems; a“ld

finally to the Boltzxriannequation and the Kinetic int.egro-

differential equations of collision-dominated plasmas.

While viscosity terms are explicit in macroscopic Navier-

Stokes equations, they are implicit in kinetic equations,

where they result from explicit int ‘rparticle collision

description on a microscopic scale. H. Grad [3-5] has care-

*fully investigated the singular limit of the Boltzmann

equation (for neutral gases) to the Navier-Stokes system

‘hIW en the mean free path between interparticle collisions

(microscopic scale) becomes very small as compared to the

macroscopic mean fiow scale. His estimates do not cover,

,,however, the shock case.
-----

hyperbolic systems are a standard tool for discon-

tinuous shock solutions of Euler equations. Compressible

lNavier-Stokes systems exhibit viscous shock layers: in one

Idimension, Gilbard and Paolucci reduced them to a system of

‘-nonlinear autonomous Ordinary Differential Equations [6,71~

land demonstrated that the shock layer is the unique traj-

ectory between a node and a saddle point. For M.H.D. sys-

items, such concepts have been extended by Conley and Smeller

[17], Wing advanced tools of Topological Dynatilicsand

lGlobal Analysis. Yet none of the above mathematical methods

‘apply to shock solutions of microscopic kinetic equations.

. ,Worse, it is well known that Partial Differential IZquations



approximations or the “13 moments” type break dcu”n at a

finite Flachnumber = 2 (non-existence of trajectories be-

tween critical points) [18]. The major problcm is whether

one can still consider the latter kinetic equations within

the framework of critical orbits kctween crit~.cal states.

Moreover, there is plenty of expcrimer.tal and numer-

ical evidence for important microscopically originating

effects observed in shock layers ruled by integrodifferen-

tial kinetic e~juations. Even in neutral gases, at small

Mach numbers of 1.2 (weak shocks) , a 40% deviation has been

observea for the local ratio of the heat diffusion to the

viscosity coefficients in the shock, as compared to predic-

tions from the Nav~.er-Stokes equation with Transport Coef-

ficients calculated by the time-honoured Chapman-Enskog

expansion [19]. This deviation is especially marked in the

“hot (subsonic) tail” of the shock [20]. Previous numerical

and experimental results have missed these important dis-

tortions by focusing only on the geometry af the sharp

transition profile [21]. In (collision-dominated) Plasmas,

small scale microinstakilities are as important as large

scale (?4.ti.D.)macroinstabilities, and account for the dif-

ficulties in obtaining stable equilibria configurations.

The simplest kinetic equation - the Boltzmann oper-

ator for neutral rarefied gases, has been wcrked out in

previous publications [8-10], and is summarized in the ap-

pendix. Technical estimates do, however, somewhat dissim-

ulate the conceptual simplicity of the hierarchy of Bifur-

cation Problems.

Most of the pathology of the mathematical problem

stems from the peculiar properties of the operator

This operator is nevertheless universally present in kinetic

(statistical mechanics) equations. Usually called “the

streaming aperato.r”, it represents transfer of very high

velocity particles. The latter account for all deviations



observed from Navier-Stokes. Physically, by traveling al-

most instantaneously in opposite upstream and dowr,stream

directions, these very high velocity particles cause a

strong coupling between the asymptotic “tails” of the shock.

2.

for

The ~athematical Problem: Principal Results.

We first consider a classical bifurcation setting

Problem I:

(2.1) .. G(p, f) =0 -—.

(?
f

where is a bounded nonlinear mapping from a Banach space
_... X into a Banach space Y (usually graph-norm spaces):

(2.2)
n

-—--- -vis assumed to be analytic, both in f and P:

(2.3.a)
G

(P,f) =
$,+ Q(n) ‘O;(’)””

with the notations:

(1) (0; f) ~ ;-“–-” (2.3.b) ““”
G

——-
= T “—-—— ‘---

(2.3.c) 1
G

(i)(0; f, f) = rp (f, f) ,
Z

.__-(2.3.d) ‘2 Q
(n)((); (f)(n)) =

n=2 $
.-h (P, ‘) .*..._ .

Hypothesis (). . .

a) VP, TB is a Fredholm operator of index zero.

b) at u = u*, dim ker {TP*} = 1 (zero is an isol-

!ated eigenvalue of TV*) .

c)
G

f JO;ll*)h $ R (TP*), Vh~ ker {TN*].
t .

‘Conclusion. In some neighborhood of (v*, O) in RI X X,

there exists a second branch u(D):

(2.4)
Q

(D, u(p)) = O and w(u*J = O . ‘“--

Hypothesis O.d~ The bifurcation is bilateral.

We now investigate Problem II. Letx ER1,-=<

: ,x < + -: .. . ..... .------- ..-------.



.(2.5.a)
GA(u) ~ - (,,,f)= O, equivalently

(2.5.b)
~

(p,f) = O, where

(2.6) A(u) : RIXX-+y

is a bounded (in graph-norm) linear mapping from X into Y.

~
is a nonlinear mappincj acting an spaces of vector-valued

absolutely continuous functions:

(2.7)
~

: R1 X AC1[R1 +X]+R 1 X ACIR1 +Y].

The space AC1 is such that ~ E Ac. Generally, the AC norms

are defined

In fact, we.

continuous.

alized:

by:

restrict ourselves to spaces such that ~ is

The absolutely continuous functions are norm-

— Now, VP, f E O is still a trivial solution. The question

is whether there is still bifu:.:ation for problem II, at

IJ= P*, such that:

Q(v,x) E ACTIR1 + x]

.— —--- ..-. —-.---— ..-. -—.-–-.-–.-4WI;X) = o

Q(l.1,-=) = o OJi-i(u,+=) = o .

In the affirmative, one might speculate that

“This corresponds to bifurcation from the essential spectrum

of:

(2.8)
,-— . —

Specifically’, at u = P*, zero is a non-isolated point of

. the spectrum, with

.

. .. . . .. . .... . .

ker {TV*} C ker {~ #p*;o)) .

-----...... .. .. ...-..-._



To insure the bifurcation, and as suggested by statistical

mechanics, wc need the further

Hypothesis 1. Zero bclonqs to the continuous spectrum of

the linear operator A(P), VP:

mm-) = Y andA(u)f = O 0 f = O .

Corollarv..— (A(E))-l is unbounded for every IJ.

Remark that, for B = L*, TU~-1 does not exist either.

Hypothesis ibis. A(u) is neither positive nor negati~’cde-

finite, nor more generally accretive; moreover (A A(p) -

TJ-l is not compact.
-----

Thus Gne cannot construct any equivalent norm.

Hypothesis 2. The generalized spectrum of the operator

JA(IJ)-TU:X+Y, M C,

.—.. is included in two sectors, one in Re A c O, the other in

Re A > 0, uniformly in p. (See Figure I). The generalized

spectrum [271 is the set of A such that (A A(P) - TB)-l does

not exist, or is unbounded as a mapping from Y to X. *mark

that X $ Y, and A(iIJ# I. .... ..... .__._-.—.
From classical perturbation and invariance proper-

ties of Fredholm operators, we deduce from Hypotheses O and

1:

Theorem 2.1.

a) There exists a neighborhood of A = O in C, where

“i A(IJ)- TU is Fredholm of index zero, Vu. -

b) There exists a neighborhood of (P*,O) in R1 x c,
---- -1

where (A A(u) - Tu) has a simple pole in A, corresponding

to a simple generalized eigenvalue ~o(u):

(209) AO(I.l) A(P) 60(IJ) - Tu #o(B) = O ,

where ~o(I.J) E X is a generalized eiqenfunction.1

Hypothesis 3. Ao(p) is real, and

AO(P) > 0 for u ~ IJ*,

lo(~) < 0 fur P < D*.

This last hypothesis implies that the linearization (2.8)
i
i*



is unstable for u ~ P*.— ——

. .

Figure I. The Spectrum of (~ A(B) - TV).



From Hsnothcses O-3, we dcmonstrat~ the fundamental.

Theorem 2.2. %‘rhcreexists a neighborhood ~ of (;:*,O)in

R1 X ACIR1 + X] , where there exists another branch solution

of prcblem II, fi(v,x), unique up to a translation, with:

and O(P*, x) S O at L = E*. ~(u) was defined in (2.4).

Specifically, Q(u, x) belongs to a closed subspace of

AC [R1 + X] such that, denoting by Cn the standard space of

Holder continuous functions of index a:

+Ecu[d+ x] flL1[R1+ x]

~ A(IJ)Q-=Ca[R1 + ‘f]rlL1[R1 -~Y] ,

(with appropriate asymptotic decay conditions at x = ~ ‘,

specified in later sections) . Here,Ocacl.~

AS a word of caution, note that
32

—-.. --- ~ G does not exist.

Recall that (A(u))-]
2Xcloesnot exist, VU.

The pathology introduced by the CJperdtOr A(u) re-

specifically new methods for the bifurcation Problem II.

The general line is to attempt to rescue the time-honored

Lyapunov-Schmidt decomposition, at the.following cost:

1) The generalized Lyapunov-Schmidt decomposition

requires infinite dimensional projection operators. These

-. are constructed with the help of a generalized Operational

Calculus, characterized by non-commutativitv properties.

2) The first generalized Lyapunov-Schmidt equation

is closely related to the essential spectrum and represents

the “fast particles contribution”. It is solved with the

help of a generalized operator inverse; the latter is con-

structed with generalized homomorphic semi-groups which do

not admit any ~nfinitesimal generator.

3) The.second generalized Lyapunov-Schmidt equation





d



Followinq the general trend of the Lyapunov-Schmidt

method, we dccomposc the solution f in the space X as:

(3.4.a) f.~ ~p (IJ)f+ (l-Eap (u)) f

(3,4.b) - c(x) ;~ (LI)+W(IJ, x)~ where

(3.4.C) c(x) ;0 (v) = E=P (IJ) f,

(304.d) w(L!,x) = (1 - Eap (P)) f,

and ~e(v) ~ X is the generalized eigenfunction associated

to AO(P) and defined in (2.9). In fact:

c(x) ~ A C1 [RIJ

W(IJ,x) ~ A C [R1 + (I - Eap)X]

Applying the proleckion [1 - Eav (P)) to Problem II (2.5),

using khct anticmmutation properties of Proposition (3.1)

and the reduction properties of Corollary (3.3), we obtain

the following generalized Lyapunov-Schmidt equations, which

wo shall call L1 and L2:

1:395) (Ll)
.. .. ... ..... .

A(IJ) ;; ‘TVW=(l-E ~v (u)) /V (P: C(x);. + w)

hwhere , dcf.ined in (2.3.d) is the remainder of the anal-

ytic cxpansl.onof
G

(kl,f)at f = 0, excluding the first

order Frcfihetderivative TP, but includinq the second order

dorivativu I“ll(f,f).

Should the major problem of constructing a pseudo-

invcrm for the! left ha~~dajdc of (3.5) be solved, the im-

plicit function thc!orcm in Banach Spaces would yield w as a

fr.nc~ionalof c(x):

(3,61 w {c(x)] : AC1[R1] + AC [R1 + (1 - Eap)Xl .

To obtain the second Lyapunov-Schmidt cqui.t~onl we

apply kho projection Kav (~:)to (205), usc the anticommut-

utiem prqN~rtiI’FI CJL’Proposition (3.1) and assume the result

(3.6). To ~lim!)lifyL2, we also nood

Th(w3rt’m 3.d . For a simple isolated eiqc?nvaluc Ao(\i),there-,.,,-.....”-...-.



exists n(u) E Y* and $(u) ~ X*, such that:

A*(IJ) n(v) = $(b) ,

With the previous result, L2 simplifies as:

(L2) %
= Ao(’l)C(x; - k(u) (C(X))*

-(3.7ca) A“+ {c(x),W}, ,.—.

where

(3.7.b)

.. . ..

k(~) = - amo@08toby*

k(v) + O, k(u) = c)(1),

(3.8.a) #{c(x), w} = <rl(u),A/(Ii;c(x)?. + w)>Y*
. . .-

-“ <w)rr ~ (C(x);o,c(x);o)y “-- ““”

and the normalization c~(P) ,?O(U)>X* = 1. (h and r have

been defined in (2.3.c-all).

A priori A is a mapping on c(x) and w:
....— ——-. .-—

A

. ..-.- ,.

(3s8.b) ““i ‘-”-”:AC1[R1] XACIR1+X]+ACIR ];

but with the implicit functional W{C ix)} in (3.6):

4+%: RC1 [R1] + AC [R1],
...— .. . ,. ...- .-. . .. . . ..- -------- . . .

where W{C} depends globally uPon c(x), -~ C x C +~. So in

fact, L2 (3.7) is a functional differential equaticm for

c(x)~ global in nature. The initial value problem is a

nonsense, as initial data ought to be specified Yx, -= <

x < +-: We remark that the differential part (including

the quadratic term) of the functional differential equation

L2 1s in fact Landau’s Equation [24]. The exact corrective

term to Landau’s model is, interestingly enough, neither

Apolynomial, nor differential, but a non-l,ocalmapping .

s

7We now define exactly the functional sutspaces ~. x,

Y’
and s c appropriate for the investigation of L1-L2:



(3.9)
s~C ACIR1+ (l-Eap)Xl

~ C ACIR1 + (l-Eav)y]
Y

f E ~x if:

. . .

B) :; E ca[R1+ (l-Eap)X] n L1 [Rl + (l-E IX]
ap

b)
32

~ ‘f c &[R1 -D (l-Eap)X] n L2 [R1 + (l-Eap)X]

32
c) exp(-2Aox) ~ and exp(-2Aox) ~ Af E L=[R1] for x<(J

ax

(asymptotic decay at x = -=)
2

d) exP((ao-E)x)* and exp((Ao- E)x)~ Af~Lrn[Rl] forx>O
“ax

-(asymptotic decay at x = +CO; c > o)...,,.

f G ~ if the co ditions a, c, d, (excluding b and any

*
P

k= ltlons for * ~f) arc! satisfied, with X replaced by Y,

and E by Eav. C is the usual Holder space of index a,

O < aa? 1....—-..

~c
..—-...._— -..-. ......——-----z._-, ..-. .,

.C(x) ~ if:

a) * ~ cOIR1] n L~[R1] and

b) exp(-~ox) ~ E Lm[RII, for x < 0,
-

c) exp ( (A. -c)x) ~ E L=[R1], for x > 0. ““

c(x) ~ s 1 if:~

a) ~c(x) E c and

sb) & c-

4. Methods of Solution for the Lyapunov-Schmidt and t&

Functional Differential Eauations.

Consider the first Lyapunov equation (3.5) as a

4mapping :

(4.1.a) 4(C,W) : s: x Sx + gy ,

“ (4.1.b) 4(0,0) = o, ...



.

(4.1.C) -(I-Eav) A;,; c(x) ;0 + w; = o =

Theorem 4.1. ~w((),f)) isanisomorphismqf~ onto~.1

Corollary 4.2. x $:X3X,In some neighborhood of (0,0) in

there exists a unique continuous mapping:w.

w{c(w),ll}: g “ Sx
such that:

4 (c(x), W{c(xl,ll}) = 0.!
. .- ““--Theorem4.1 hinges upon the existence of 4W(C,0)-l; let:

(4.2) #w(O, O)f = A(LI) ~ - ‘rpf= S(x)

. .

-.

To solve for f in (4.2), we construct generalized

holomorphie semi-groups. The mapping HW(O,O) acts from

(l-Eap)X into (l-EaV)Y, cf. the reduction diagram (3.3). In

particular the reduced operator ~A(B) - TU is invertible in

a neighborhood of XO(P) (deletion of the ei9envalue ~o(~j)”

The essential spectrum (cf. figure I) remains only, which

allows for the definition of Dunford Path Znteqrals along

it ● Let r+, r- be such paths along respectively the left

and right side essential spectra (.f~ figure I).

Pro osition 4.3. If S[X) E- ~y in (4.2)~ then the solution

*) is ,iv@n bY:

[

x

(4.3) f(x) E [J+(x-y)[S(y)-S(x)] dy
9

+J‘IJ-(jq)[s (Y)-s(X)] dy - T~l S(X)~
+-m

(T;l ie the ps~udo-inverse, which now does exist

even atu=ult

(4.4) U*(X) “ * [
eax (MHIJ)-TV)-l d~;

r ,r-

11U* II = O(*), IXI + o;

although U’:art? not semi-groups, A Ut and UAA arc:

,.(4.5) A U*(x+y) = A US(X) A Ut(y)~

forx z O, y > O~x < 0, y < 0#



(4.6)

(4.7)

(4.8) IIT U*II = O(:)t 1X1 + 01

and the homomorphic semi-groups (4.5) have no infinitesimal

generator. I

A technical hypothesis needed for Proposition (4.1),

and suggested by statistical mechanics is:
...-. Hypothesis 4. -1Let R(A,u) = (AA(P) - TV) ; then as Ial + CD,

within the resolvent set:

(4a) IIR(A,p)II = o(~&), o <“m< 1

or:

(4. b) II R(A,IJ)II = O(l).

Proof of Proposition (4.1) is more complicated with

hypothesis 4.b. Specifically, A U*(Ot) exist in the case
-..

of hypothesis 4.a (althouqh limits are projections, but not

the identity!), but are undefined under hypothesis 4.b.

We now investigate the functional differential eq-

uation L2 (3.7-8):
,.

L2:~~@c

(4.9)
*

- AO(I.l) C(X) - k(u) (C(X))2

+ 4 P, c, W{c}).

VLl, c E O is a trivial soluticn (as J is multilineal in c

and w{cI). (4.9) is again a full-sized bifurcation problem

from a continuous spectrum, at N = N*J

AJP*) = O, k(~+) = O(l), p = B*.

dc
At u = u*, the Frc~hct derivative of (4.9) reduces to ~.

The latter’s spectrum, in spaces of absolutely continuous

functions, is a purely continuous spectr~~mcontaining the

full left or right half complex plane, including the



imaginary axis (depcndinq an normalization of the AC spaces).

New techniques are needed for (4.9). We first make

the following remarks; in a neighborhood of u = u*:

. Ao(l.l) = O(p-p’) ,

Ilc(x) II = O(W*) ,

(4.10) - ● 2f = c(x) ;.(ll) + 0(1.1-v )

AJI.1) exp(~ox)

= ~ exp(iox)+l ‘o(~) + 0(lJ-P*)2 ;

the lowest order Landau differential operator approximation

(4.10) is accurate only to O(P-U*). The exact &( ;J,c,w)

contribution appears at 0(u-u*)2 and corresponds to devia-

tions from the “Navier-Stokes” solution (so called since

the Landau equation (4.9) without the functional 04 admits

the universal hyperbolic tangent Taylor weak shock p=ofile

for one-dimensional Navier-Stokes systems).

The key concept is to consider (4.9) not as a bi-

furcation from c(x) = O, but as a branching from the Landau-

Taylor profile
ho(lJ)exp(~ox)

(4.11.) fm
-~+exp(~ox) ‘o(p) .

To do so, we introduce a change of

variable and a change of parameter

(4.12.a) ~ m Ao(v) - lJ=

function, a change of

in (4.9):

P(T),

(4.12.b) y-Tx- Aox,

(4.12.c) c(x) = T
eY
— (l+o(y)) .& ey+~

L2 becomes a functional-differentialequation for f3(Y)~ on

-= < Y < +CO~Parametrized by T: w
eY ~

(4.13.a) ~ + — =- ~ e2+ T k(T)(l+e-y)#{O},
ey+l ey+1

(4.13.b) e ~ Oat~ E O j

lot L3 be the operator clcfi~~ by (4.13), then:

(4.130C) & ~L3:C+C;



& (O(y)) is identical to #(c(x) ) (3.8), after substitu-

tion of (4.12.a-b-c).

Whereas we look for @ + O as i + 0+ (branching from

Landau’s solution (4.11)), the former trivial branch c(x)=O

now becomes S(y) E-1, VT. We have effectively achieved ~-

aration of branches. This is confirmed by:

Theorem 4.4. Let ~(~) be the Fre~het derivative of L3 at
6-O:

“(4.14) d?(e) ==+ eye:
dy ey+1

Jthen -1 is a bounded mapping from

J

~ c onto s I,y:>o.1
-1 c

Remark: is an integral operator on -= < y C +OJ,which

is in general unbounded on spaces of integrable functions.

This required a much more complicated theory in [10]. If

we do take into account the asymptotic decay conditions

included in s=, ~c’ (3=9):

2
exp(-y) ~ and exp(-y) ~ ● L=(R1)

dy

for y < 0, and.... . .-

exp((l-c)y) ~ and exp((l-c)y) ‘~ ● L-[R1]
dy

Jfor y > 0, c > 0, then ‘1 is bounded from s“ ~
I

onto .

These decay conditions are, of course, suggest~d by thee

behavior of the derivatives of Landau’s solution (4.11) at

y - t-. To conclude:

Corollary 4.5. In some neighborhood of T = O in R1, there

exists a unique mapping

ouch that O{T] is the unique solution of (4.13) with

0(0} : 0“1
To demonstrate the corollary, wc use the implicit

function theorem applied to (4.13.a) considered as a map-

ping from: RIX~cl+~
c“



Finally from :{T}, we reconstruct

f = C(T) @ + W{C(T)} .
.

The solution is actually unique UP to a translation, since

we have chosen an arbitrary (normalized) origin is obtain-

ing the Landau profile (4.11) solution of:

(4.15)
2

-*
= AO(U) C(X) - k(~) (c(x)) .

The asymptotic behavior of f at x = s= shows that

deviations from the “Navier-Stokes” component c(x), caused

by w{c}, appear 0(~2) in the “hot tail” of tbe shc~k.

Roughly speaking, c(y) decays O(exp(y)) as y + -=, whereas

w(y) decays O(exp(2y)). AS Y + +=~ both c(Yl and w~Y) decaY
...

O(exp-(1-c)y).

To conclude, we remark that the concept of modified

Landau’s equation has also been introduced by N. N. Janenko

[25,26]: he has added higher order polynomial terms in C(X)
.. ... to (4.15), in order to study the transition to turbulence

in incompressible Navier-Stokes flows. Here- at the ktietic

Jlevel, we have a corrective global functional operator .

A natural extension of Problems I-II is:

(4.16)

in this respect, we have the

Conjecture. For u < u*, ~ < 0, the second branch fl(v,x) is

unstable in time; it is stable for B > P*, T s O. (This

corresponds to well-known Entrcpy Conditions across the

shock for Navier-Stokes). Also more general wave solutions

of (4.16) may be investigated, including Burgers-like waves.

Work is in progress on these questions.

APPENDIX—.
We summarize technical results of [8-101. The

Boltzmann equation [27] rules the evolution of a local vel-

ocity particle distribution F(~)t with the lacal VCIOCitY



vector

(Al) i!= (cl, C*, C3): c = 1=1 ●

The space-independent Boltzmann operator:

(A.2) Q[F, F] = O

is a bilinear integral operator in L2(R3) It acts only

upon the velocity vector ~. Classically:

(A.3) QIF, F]=OOF=

where u is a maxwellian (gaussian)

w(~, Z) = ~2TRTo3
/2 [

exp -

where p is the density, v the mean

the x-axis) and T the temperature.

bJ(Ll# a #
distribution:

(C1-)J)2+C22+C32 I F

2 RT

velocity (directed along

These macroscopic quan-

tities which appear in the Navier-Stakes equations, are

simply related to weighted averages of F(~~ x) :

P=
f

F(~,x)d&, PU =
f

Cl F(~,x)d~ ,

3PRT=
I

(~-;)2 F(g,x)d; ,

where R is the perfect gas constant.

In one space dimension, the space dependent Boltz-

mann equation for the velocity distribution

F(C1, C,x,t), c= Ial ,
(Ao4)

x E R1, -W<x<+m,

becomes:

(A.5)

The second term on the left side is the one dimensional

version of the ubiquitous “streamx,lq operator-

~. Vx F ●

We look for traveling waves of the type

F (cl # c, x + IJt) ●



A viscous shock is defined as a nonlinear trans-

-Ition profile between two asymptotic (x = SW) Maxwcllians;
+

one with mean velocity E subsonic; the other with v- super-

sonic. It must be noted that the ~ame Rankine-Hugoniot

conditions as for Navier-Sto]:es uniquely rchte b+, c+, T
+

and W-, p-~ T . After renormalization [9,10]:

(A.6) (k+cl) * = Lvf + ru[f,f] ,

where LU is the Fre&het derivative of Q, and rw, an approp-

riate second order derivative; together with the normal-

ization:

(A.7) f(clt cc -=) = O or f(cl, c, +-) = O .

(A.6) is investigated in a space AC of absolutely contin-

uous functions:

*[R1+‘1 + 4oc[R1* ‘1

(normalizedat A=, cf. (A.7)) and X,Y are appropriate graph-

norm Banach spaces defined uniquely on the velocity variable.

The following is then demonstrated:

Proposition Ad. In appropriate spaces X,Y (implicitly

incorporating the Rankine-Elugoniotconditions!.

(Am2bis) Q[f,f] = LM f + rv[f,f]

is a bifurcation problem from a simple isolated elgenvalue

~ LV* at the critical sonic value of u = I.1*. The two

branches correspond to a subsonic and a supersonic Maxwell-

ian, identical at LI= u*.1

Looking for a critical trajectory joining the two

asymptotic bifurcated subsonic and supersonic maxwellians,

w consider (A.6) as a bifurcation problem from the essen-

tial spectrum, superimposed upon the simple bifurcation

problem [A.2bis). In (A.6), f s O is indeed a trivial sol-

ution VLI. The eosential spectrum is evident from the

identification:

(A.8) A(LI) s (LI+C1)I,



which does not possess an in~-ersein L2(R3), since

--<c
1
c +=

(cf. c1 = -p). The hypothesis required by the abstract

setting arc ccznplctcd throuqh the:

Proposition A.2. The generalized eigenvalue prcblem
.

~(lJ+C1)V- LPW = O

has a real, simple, Isolated eigenvalue Ao(p), in the

spaces X and Y:

lo(v) < 0, lJ c u*

AO(LI) ● O, IJ > v*.I

Similar results were obtained by H. Weyl in 1949

[28], for the Navier-Stokes equations linearized about sub-

or supersonic equilibria. Finally, the “streaming operator”

A(v) defined in (A.8), though responsible fOr the pathology

of the problem, is universally present in kinetic (stat-

istical mechanics) equations. It represents transfer of

very high velocity particles, and generates the essential

spectrum of kinetic operators.
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