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1. Introduction and Backaround from Mechanics.

We investigate an abstract class of bifurcation
problems from the essential spectrum of the asscciated
Frechet derivative, This class is a very general framework
for the theory of one-dimensional, steady profile traveling
shock wave soluvions to a wide family of kinetic integro-
differentizl equations from non-equilibrium statistical
mechanics [1,2]. Such integro-differential equations usu-
ally admit the Navier-Stokes system of compressible gas dy-
namics Oor the M.H.D. systems in plasma dynamics as a singu-

~~" lar iimit [3-5], and exhibit similar viscous shock layer
'golutions [6.7].

The mathematical methods associated to systems of

'Partial Differential Equations must however be replaced by
—-the following considerably more complex Bifurcation Theory
setting, first outlined in [8-10] for special cases. We

actually consider a hierarchy of bifurcation problems,
starting with a simple (solved) bifurcation problem from a
....Bimple eigenvalue. ) L

Let (u,f) ke a nonlinear mapping from a Banach

'gpace X, into a Banach space Y, parametrized by u:

(1.1) &(u,f) : R X % » v,

Consider

(1.2) q'(u.f) = 0,

~ such that 1
_ o G(U.O)EO.VUER.
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We admit all the necessary hypotheses to insure bifurcation

at u = y*, from a simple isolated eigenvalue of the Frechet

Gf(u*.m.

Classical theory [1ll] insures that, in some neigh-

derivative

borhcod of (u*,O) in Rl X X, there exists a seccnd branch
wlp) : '

2y, w(u)) =0
m(u*) = 0.

Thus, the primary hypothesis is bifurcation from a simple

(1.3)

eigenvalue for the operator . In concrete cases, the rel-
ative bifurcated and trivial ‘branches correspond to differ-
ent asymptotic steady states at the "tails" of the shock
wave (space-independent subsonic and supersonic states re-
. lated by Rankine-Hugoniot cor.ditions; u = u* corresponds to
the transonic regime).

We shall actually investigate the more involved ex-

tended operator equation, for x € Rl, - oK X S + o ;

) - &(u,f) =0, or

‘§Z(u.f) = 0, where

"(1.5) A(p) : R x x » v

(1.4)

is_a linear operator from X into Y, parametrized by y € Rl.

f is now a vector valued function of x € Rl, - o &€ X S + o,
‘with values in the Banach space X. We may restrict our-
selves to spaces of absolutely continuous functions. If
~A{u)= I and x t, {L.5) reduces to an evolution equation

(1.6) af _ &’ _
Y3 (u,f) = ©,

rand one looks for solutions which are trajectories between

‘eritical points of (1.1), i.e., the “rivial solution and
the bifurcated solution Q(u). Such a problem (l.6) of traj-
ectories joining wo steady asymptotic states, has first
.been considered by B. Matkowsky, using matched asymptotic
expansions (12,13]); it has been investigated in depth by
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G. Iooss |14]1 and@ ¥. Kirchgdssner [15], within the Navier-
Stokes context (see also [1l€)).

However, in (1.4-5), fundamental propecrties of the
physical context impose somewhat pathoclogical conditions on
A(u): .

Hypothesis.

1) 2Zero belongs to the continuous spectrum of A(u),

Vu, i.e.:

R(A{p)) =Y and A(u)E =0« £ = 0.
2) A(y) is neigher positive nor negative semi-defirnite, nor
is it accretive. As a corollary A(u)_l does not exist, Vu.

Recall that . -1
._&’f(u , 0) e
*

does not exist either at v = y . In fact the properties of
A(u) are such that an initial value problem for (1.4) is
ill-posed. Attempts to straightforwardly extend methods

. developed for (1.6) lead to erroneous results.

We still look for critical trajectories of (l1.4),
between the trivial solution and w(pu). We investigate the
possible existence of a branch Q(uy, X), solution of (1.4)
-such that: '

1) aw*, x) = 0, but Q(u , x) # 0, u#u';
2a) Q(uy, =-=) = 0, Q(u, +o) = wly); or -
2b) Q(u, +=) = 0, Q(u, =-=) = w(y),

*
-for p close to ¥ . In an appropriate Barach space of ab-
solutely continuous functions normalized at + =, the hypo-

thetical non-trivial branch Q(u, x) corresronds to bifur-
‘cation from the essential spectrum of:

(1.7) R 4f(u00) = A(u) -aa)—( = gf(u'o) . -
*

‘Specifically at u = 4 , zero is a limit point of the spec-
trum (a ron-isolated eigenvalue in the essential spectrum).
The kernel is non-trivial, as it includes that of C;é(u*,O).

The non-isolated character stems from the individual essen~
A

ax’
.bona-fide problem of bifurcation from the essential spec-

tial specra of A(u) and (1.4) must be considered as a
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trum, Finallv, we shall demonstrate the norn-trivial result
"that Q(u, +=) = w(n) or Q2(p, =-») = wlu) (critical trajec-
tory). Since will will emphasize the mathematical tech-
niques, we briefly review the relevance of (1.4) to fluid
and statistical rechanics.

Steady profile shock waves in compressible fluid
dynasics and magneto-hydrodynamics correspond to rather dif-
ferent mathematical theories according to the level and com-
plexity of the fluid dynamical description. In order of
increasing complexity, one has the well known hierarchy of
equations, from the Euler level, to the compressible Navier-

- .8tokes and the Magneto-hydrodynanic (M.H.D.) systems; a)d
finally to the Boltzmann equation and the Kinetic integro-
differential equations of collision-dominated plasmas.

While viscosity terms are explicit in macroscopic Navier-
Stokes equations, they are implicit in kinetic equations,
where they result from explicit int ~-rparticle collision
description on a microscopic scala. H. Grad [3-5] has care-
.fully investigated the singular limit of the Boltzmann
.equation (for neutral gases) to the Navier-Stokes system

-|ﬁhen the mean free path between interparticle collisions
(microscopic scale) becomes very small as compared to the
.macroscopic mean fiow scale. His estimates do not cover,

. however, the shock case.

T Hyperbolic systems are a standard tool for discon-
tinuous shock solutions of Euler equations. Compressible
INavier-Stokes systems exhibit viscous shock layers: in one
.dimension, Gilbard and Paolucci reduced them to a system of

—nonlinear autonomous Ordinary Differential Equations [6,7],
.and demonstrated that the shock layer is the unique traj-
.ectory between a node and a saddle point. For M.H.D. sys-
.tems, such concepts have been extended by Conley and Smoller
[17), using advanced tools of Topological Dynamics and
'Global Analysis. Yet none of the above mathematical methods

- -apply to shock solutions of microscopic kinetic equations.

. .Worse, it is well known that Partial Differential Equations



approximations of the "13 moments" tvpe break down at a
finite Mach number = 2 (non-cxistence of trajectories be-
tween critical points) [18]). The major problem is whether
one can still consider the latter kinetic eguations within
the framework of critical orhits ketween critical states.

Moreover, there is plenty of experimental and numer-
~4ical evidence for important microscecpically originating
effects observed in shock layers ruled by integrocdifferen-
tial kinetic eyuations. Even in neutral gases, at small
Mach numbers of 1.2 (weak shocks), a 40% deviation has been
observed for the local ratio of the heat diffusion to the
viscosity coefficients in the shock, as compared to predic-
tions from the Navier-Stokes equation with Transport Coef-
ficients calculated by the time-honoured Chapman-Enskog
expansion (19]. This deviation is especially marked in the
"hot (subsonic) tail" of the shock [20]. Previous numerical
and experimental vesults have missed these important dis-
tortions by focusing only on the geometry of the sharp
transition profile [21]. In (collision~dominated) Plasmas,
small- ccale microinstatilities are as important as large
scale (M.H.D.) macroinstabilities, and account for the dif-
‘ficulties in obtaining stable equilibria configurations.

The simplest kinetic equation - the Boltzmann oper-
ator for neutral rarefied gases, has been wcrked out in
.previous publications [8-10], and is summarized in the ap-
pendix. Technical estimates do, however, somewhat dissim-
‘ulate the conceptual simplicity of the hierarchy of Bifur-
-cation Problems.

Most of the pathology of the mathematical problem
.stems from the peculiar properties of the operator

[
--A-(u‘ ﬁ .

‘This operator is nevertheless universally present in kinetic
(statistical mechanics) equations. Usually called "the
streaming operator", it represents transfer of very high
velocity particles. The latter account for all deviations




observed from Navier-Stokes. Physically, by traveling al-
most instantaneously in opposite upstream and downstream
directions, these very high velocity particles cause a
strong coupliné between the asymptotic "tails" of the shock.

2. The Mathematical Problem: Princival Results.

We first consider a classicai bifurcation setting
for Problem I:

(2.1) &’(u, £) = 0 o

where is a bounded nonlinear mapping from a Banach space
-~ X into a Banach space Y (usually graph-norm spaces):

>
&)(u. £) : RYEXx X » ¥,
(2.2) @mmﬂﬂw

_m"_-é?is assumed to be analytic, both in £ and u:
(2.3.a) &(u,f) = Z: nl—, &7(") (0; (6)™ ,
n=1

.with the notations:

' (2.3.b) ""‘“‘?‘1’ (0; £y =T , ——— —~
)

u
(
(2.3.¢) 1 &' |
21 s
_(2.3.Q) f%dmmmWHﬂmﬂh_

(0; £, £) =T (f' £) .,

n=2 1"
;Hypothesis 0.
a) Vu, Tu is a Fredholm operator of index zero.

b) at u = p*, dim ker {Tu*} = 1 (zero is an isol-

tated eigenvalue of T =).

c) C7g'u(0:u*)h ¢ R (Tu*)' Vh € ker {Tu*}-

:Conclusion. In some neighborhood of (u*, 0) in R1 X X,

.there exists a second branch w(u):

(2.4) é?(u, w(p)) = 0 and wm®) =0 .

. 'Hypothesis 0.d. The bifurcation is bilateral.

We now investigate Problem II. Let x € Rl, - o <

DX S + o
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~(2.5.a) A(u) g—é - &7(1:,1') = 0, equivalently
(2.5.b) J)?(u,f) = 0, where
(2.6) A() : RV X Xy

is a bounded (in graph-norm) lincar mapping from X into Y.
d;?is a nonlinear mapping acting on spaces of vector-valued
absolutely continuous functions:

(2.7) 4 . RY x acT(r! + x] » R! x ac[r! - v].

The space ACI is such that %5 € AC. Generally, the AC norms

are defined by:

4 oo
i - ]
el = 7 N3 e
© T X,Y
In fact, we restrict ourselves to spaces such that %; is

continuous. The absolutely continuous functions are norm-

alized:
f+0as x » - 0r x + t= ,
Now, Vuy, £ = 0 is still a trivial solution. The question

is whether there is still bifv:.ation for problem II, at

o = u*, such that:

Q(u,x) € acT[R! + x)

e e e QT X)) = 0
Q(u,-=) = 0 or Q(u,+=) = 0 .

'In the affirmative, one might speculate that

Blu,+=) = wlu) or R(u,-=) = wlp) .

‘This corresponds to bifurcation from the essential spectrum
-of:

)
ax !

(2.8) ‘gz(u:O) =A(W) — -T .

Specifically, at u = u*, zero is a non-isolated point of
the spectrum, with

ker {T «} C ker {4;;(u*:0)} .

ICw
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‘A A(u) - T, is Fredholm of index zero, Vu.

 where () A(y) - Tu)-

To insure the bifurcation, and as suggestecd by statistical
mechanics, we need the further

Hypothesis 1. Zero belongs to the continuous spectrum of

the linear operator A(u), Vu:

R(A(p)) =Y and A(W)f =0 £ = 0 .
Corollary. (A(w))~1 is unbounded for every u.
w -
Remark that, for v = ¢ , Tu* 1 does not exist either.

Hypothesis 1his, A(u) is neither positive nor negative de-

finite, nor more generally accretive; moreover (A A(uy) -
'I‘u)-1 is not compact.

Thus cne cannot construct any equivalent norm.
Hypothesis 2. The generalized spectrum of the operator

A A(y) - Tu : X+ Y, A €C,

- 1is included in two sectors, one in Re A < 0, the other in

Re A > 0, uniformly in u. (See Figure I). The generalized
spectrum [27] is the set of A such that (A A(uy) - Tu)-l
not exist, or is unkbtounded as a mapping from Y to X. Remark
that X # Y, and A(u) # I. - N _
From classical perturbation and invariance proper-

does

‘ties of Fredholm operators, we deduce from Hypotheses 0 and

1l:

Theorem 2.1.
a) There exists a neighborhood of A = 0 in C, where

* 3
b) There exists a neighborhood of (u*,0) in R x c,

1 has a simple pole in ), corresponding

to a simple generalized eigenvalue Ao(u):

-

(2.9) Ao(u) A(u) wo(u) - Tu ¢°(u) =0,

‘where Qo(u) € X is a generalized eigenfunction. ]

Hypothesis 3. Ao(u) is real, and
Ao(u) >0 for w > u",
A, (u) <0 for u < Thil

This last hypcthesis implies that the linearization (2.8)
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From Hyootheses 0-3, we demonstrate the fundamental

‘Theorem 2.2. There exists a ncighborhood /) of (.*%,0) in
Rl X AC[Rl ~ X], where there exists another branch solution
of prcblem II, §&(u,x), unique up to a translation, with:
a) p»u*:Qu,-=) =0
Qu,+=) = w(u)
b) u <" : Qu,+=) = 0
Qu,==) = w(u) ,

0 at ¢ = p*. Ww(u) was defined in (2.4).

and Q(u*, x)
Specifically, Q(u, x) belongs to a closed subspace of
AC[R1 + X} such that, denotingy by c the standard space of
Holder continuous functions of index a:

%% e c*r! -+ x] n LY R! - x)
2 ]
—17 A e € c*r + v] YRt - v,
ax

(with appropriate asymptotic decay conditions at x = + =,
specified in later sections). Here, 0 < a < 1./
2

As a word of caution, note that
Recall that (A(u))_1 does not exist, Vu."
The pathology introduced by the operator A(u) re-

X

specifically new methods for the bifurcation Problem II.
'The general line is to attempt to rescue the time-honored
Lyapunov-Schmidt decomposition, at the followina cost:

1) The generalized Lyapunov-Schmidt decomposition
requires infinite dimensional projection operators. These
are constructed with the help of a generalized Operational
Calculus, characterized by non-commutativity properties.

2) The first generalized Lyapunov-Schmidt equation
is closely related to the essential spectrum and represents
the "fast particles contribution". It is solved with the
help of a generalized operator inverse; the latter is con-
structed with Generalized holomorphic semi-groups which do
not admit any infinitesimal generator.

3) The second generalized Lyapunov-Schmidt equation

0 does not exist.

I A AT



is pot a mapping on finite-dimens:ional spacen. Rather it
1s a Functional=Differcential oquation i the sole variable
x € Rl, - < x 7 +%, and qlobhal (ron=local) o ohareetor:
the initial valuc problem is ill-pored. Moreover, thin
egquation in itsclf is agqain a hifurcation jrobivm trom
purely continuous spectrum,

We outline the mathematical technigues tn the st
sections., Full details will appcear in [22] and eloewhere,

3. A Generalized Operatinnal Calenlue, amd the Perovaten
of the Generalized Lvanunov=schrndat Logat o,
Let
(3.1) R(A,u) = (X Afu) =

Tu,-l
where 'ru is defincd as thr Frechoet deorit ative of 67“ o 1)
£ =0 (2.3.Db).

In order to consitruct appropriate projections: aenee
iat.:ed to the isnlated pole \o(u), one cannot une the ¢lasne
ical opcecrational calculus based on Dunford Intearal . ot

R()A,u), since the standurd remsolvent identity
R(A) = R(A") = (A' = 1) R(N) R(\")

is false (non commutativity of A(u) and T"). It munt b
replaccd by the following corrcct identiticen:

(3.2.a) A R(N) = AR(A') = (A" = A) A ROV A R(VY)
(3.2.b) R(A) A = R(A'IA » (X' = X)) R{MA R(VY)A

Bascd on (3.2), a Generalised Operational Galealun e con-
structed, characterizod by anticommtat ivity propecrtiea,
Proposition 3.1. There oxiutas two tamiliea of paoject e
opcrators:

Bav (Aotu)) r Y 2 ¥  (ranue)

Enp (Aotu)) t X *» X (domain)

associated to the qenoralized clacavalue \“(u), Hilch that

Bav‘au) Alu) =~ A(u) H“r(\")

E e
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Following the gcneral trend of the Lyapunov-Schmidt
method, we deccompose the solution f in the space X as:

(3.4.a) f = Ea (u) £ + (1 - Ea (b)) £

P P
(3.4.b) = c(x) Go (u) +w(u, x), where
(3.4.c) c(x) Go () = Eap (u) £,
(3.4.4) w(u, x) = (1 - Eap (v)) £,

and Go(u) € X is the gencralized eigenfuncticn associated
to Ao(u) and defined in (2.9). 1In fact:

c(x) € A ¢ [rRY)

l
w(p, x) € AC [RT » (I ~ Eap)x]

Applying the projection (I - Eav (u)) to Problem II (2.5),
uging che anticommutation properties of Proposition (3.1)
and the reduction properties of Corollary (3.3), we obtain
the following gencralized Lyapunov-Schmidt equations, which
we shall call L1 and L2:

13.5) (L1)

A(u) %¥ - Tu wa (I - Eav (v)) /4/(u: c(x)Go + W)

where /V. Acfined in (2.3.d) is the remainder of the anal-
ytic cxpansion of (u,f) at £ = 0, excluding the first
order Frethet derivative Tu, but including the second order
dorivative r“(f,f).

S8hould the major problem of constructinc a pseudo-
inverse for the left hand side of (3.5) be solved, the im-
plicit function theorem in Banach Spaces would yield w as a
funclional of c(x):

(3.6) w te(x)) ¢ act(rY) » ac (rR! » (1 - Eyp) X1 -

To obtain the sccond Lyapunov-Schmidt equition, we
apply the projection Eav(“) to (2.35), use the anticommut-
ation proportics of Proposition (3.1) and assume the result
(3.6)., To simplify L2, we also ncad
Theorem 3.4, For a simple isolated eigenvalue Ao (M), there
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exists n(u) € Y* and y(u) € x*, such that:
A'(w ntw) = V)
Epp (W) £ = ¢ (1) €hlu), £3/<u(1),¢ (u)>,

B,y (W) £ = A ¢ () <n(), £3/<u ()3 (w)> .|

With the previous result, L2 simplifies as:

(L2) g = a0 clxi - k() (elx))?
(3.7.2) s Hftex) i, -
where . | i
K(p) = = <nfu),T (9,0 )> %
(3.7.b) BToTon ¥

k(u) # 0, k(u) = 0(1),
(3.8.a) c}y{c(x).w} = <n(uj, /V(u; c(x)@  + w)> ¥

T=en(u), T (c(x)Eo.c(x)$°)>Y*

and the normalization <W(u).$°(u)>xt = 1. (/‘/ and I' have
-been defined in (2.3.c-d)).
A prioricyélis a mapping on c(x) and w:

_ I L

(3.8.b) : AC

(Rl] x ac [r! » x] +» ac (R} ;

but with the implicit functional w{ci(x)} in (3.6):
¢74{= ac? [rl] » ac [rRl],

where w{c} depends globally upon c(x), =~ € x € +=, So in
fact, L2 (3.7) is a functional differential equaticn for
c(x), global in nature. The initial value problem is a
nonsense, as initial data ouuht to be specified ¥x, == <
X € +»! We remark that the differential part (including
the quadratic term) of the functional differential equation
L2 is in fact Landau's Equation [24]. The exact corrective
term to Landau's model is, interestingly enough, neither
polynomial, nor differential, but a non-local mapping .
We _now define exactly the functional sukspaces é;;,

ég;, and ég; abpropriate for the investigation of Ll1-L2:

AW S. W ae



' (3.9)

f € gx if:

S, c acir! - (1- E,p) X]
é? c acr! - (1- ~E_ ) Y]

B) 3f ¢ ~a pl | o I T
3% € CTIRT > (I-E,[)X] 2 LU (R” » (1-E, )X]

2

9 a 1 1.1
——7 Af € C [R” =~ (I-Eap)X] N L™ [R™ ~» (I-Eap)xl

b)

2
c) exp(-2)_x) 5— and exp(-2)_x) Jii Af € L[R!} for x<0

(asymptotic decay at x = -=)
2
of ) w
d) exp((ko-c)x)ﬁ and exp((Ao-c)x_)—z-ax Af €L [R”] for x>0

(asymptotic decay at x = +=; € > 0),

£ € é? if the c%?dltlons a, ¢, d, (excluding b and any

conditions for _—7 Af) arc satisfied, with X replaced by Y,

and Eap by Eav.ax c® is the usual H3lder space of index ¢,

0 <a < 1.

“.c(x) c & g T e

c

a) g& ¢ ¢!} n L[r!'] and

b) exp(-kox) gg € L” ;R 1, for x < 0,

c) exp((lo-c)x) Hi € L” [R 1, for x > 0.
c(x) € ‘SLI if:

a) c(x) € Sc and
de
by $Se S ..

[~

4. Methods of Solution for the Lyapunov-Schmidt and the

Funciional Differential Ecuations.
Consider the first Lyapunov equation (3.5) as a

mapping

(4.1.a) vq(c.w) g g g

(4.1.Db) #7(0 0) =0,



- w _

f?(C.w) = A(u) X T w

(4.1.0) -(I-E ) /V(u: c(x) 30 +w, =0.
Theorem 4.1. %7 (0,0) is an isomorphism Qf é? ont? é?y.
Corollary 4.2. In some neighborhood of (0,0) in e§ '

there exists a unique continuous mapping:

I
wic(w),ul : é?c - ég;

such that:
fg(c(x). w{c(x),u}) = 0.]|

~-pheorem 4.1 hinges upon the existence of %7w(0,0)-1; let:
of _ . =
(4.2) f?w(0.0)f = A(u) i ruf = S(x)

To solve for f in (4.2), we construct generalized
holomorphi~s semi-groups. The mapping /jw(0,0) acts from
(I-Eap)x into (I-Eav)Y, cf. the reducticon diagram (3.3). 1In
particular the reduced operator AA(u) - Tu is invertible in
a neighborhood of ko(u) (deletion of the eigenvalue xo(u)).
The essential spectrum (cf. figure I) remains only, which
allows for the definition of Dunford Path Integrals along
it. Let 'Y, I'" be such paths along respectively the left
and right side essential spectra (cf. figure I).

Proposition 4.3. If S(x) € é?v in (4.2), then the solution

f € Sx of (4.2) is gi\;en by:

(4.3) £(x) =[ IJ+(X-Y) [S(y)-8(x)] dy

X -
f U (x-y) [S(y)=5(x)] dy - T s,

+ o
(T;1 is the pseudo-1nverse, which now does exist

even at u = u ):

* 1 Ax -1
(4.4) U (x) = !iI'Jr e (AA(u)-Tu) an

re,r-
No*) = °‘T'T’ x| + 0;
although U- ar< not eemi-groups, A vl and v*A are:

. (4.5) A Ut (x+y) = A Ut(x) A UTY),
for x » 0, y >0or x <0,y < 0;
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*
(4.6) JAU” ¢ _ T, vt ,

ox
(4.7) au*a t
(4.8) T u*ll = o). Ixl + o,

and the holomorphic semi-groups (4.5) have no infinitesimal
generator. |

A technical hypothesis needed for Proposition (4.1),
and suggested by statistical mechanics is:
Hypothesis 4. Let R(A,u) = (AA(u) - Tu)-l; then as || » =,

within the resolvent set:

(4.a)  [|R(A,W]] = O‘Tf%a)' 0 <ac<l

(4.b) ||R(A.u)il = 0(1).

Proof of Proposition (4.1) is more complicated with
hypothesis 4.b. Specifically, A Ui(ot) exist in the case
of hypothesis 4.a (although limits are projections, but not
the identity!), but are undéfined under hypothesis 4.b.

We now investigate the functional differential eg-

uation L2 (3.7-8): I
L2 : é?c > é;:

£ =200 etx) - k) (ex)?
+ A, e, wich.

Vu, ¢ £ 0 is a trivial soluticn (as cA/is multilinear in c
and wi{cl). (4.9) is agair a full-sized bifurcation problem
from a continuous spectrum, at u = u"

(4.9)

Agu®) = 0, k(") = 0(1), u = wt.

At y = u', the Frethet derivative of (4.9) reduées to g%.

The latter's spcctrum, in spacces of absolutely continuous
functions, is a purcly continuous spectrum containing the

full left or right half complex plane, including the




imaginary axis (depending on normalization of the AC spaces).

New technigques are needed for (4.9). We first make

the following remarks; in a neighborhood of u = u*:

- .
Ao(u) = O(u-n~)
lle(x) |l = o(u-p™) ,

(4.10) £=clx) ¢ (n) + O(u-u*)?

~
»

A_(u) exp()_x)
o o .o
k(u) exp(i _x)+1 o) + o~ ”

the lowest order Landau differential operator approximation
(4.10) is accurate only to O(u-pu*). The exact aAQu,c,w)
contribution appears at O(u-u")2 and corresponds to devia-~
tions from the "Navier-Stokes" solution (so called since
the Landau equation (4.9) without the functional cA/ admits
the universal hyperbolic tangent Taylor weak shock profile
for one-dimensional Navier-Stokes systems).

The key concept is to consider (4.9) not as a bi-
furcation from c(x) = 0, but as a branching from the Landau-

Taylor profile

Ao(u) exp(on) R
(4.11) £ = k() 1+exp(A°x) ¢o(u) °

To do so, we introduce a change of function, a change of
variable and a change of parameter in (4.9):

(4.12.a) T = A (0) ¢um= u(t),
(4.12.b) y=11xm= on ’

_ 1 eY
(4.12.c) ci(x) =1 m ——eY+1 (1+0(y)) .

L2 becomes a functional-differential cquation for 0(y), on
- € y € +w», parametrized by T:

o~

y -

(4.13.a) dé + = f = = _ey_ ez+ T k(1) (1+e”Y) 01/{6}'
dy e¥+1 ef+1

(4.13.b) 6 =0at vt =0

lot L3 be the nperator defined by (4.13), then:
>
(4.13.c) B: S+ 8,
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a’/(O(y)) is identical to al/(c(x)) (3.8), after substitu-
tion of (4.12.a-~b-c).

whereas we look for 8 - 0 as 7 +» 0% (branching from
Landau's solution (4.11l)), the former trivial branch c(x):=0
now becomes 2(y)=-1l, V1r. We have effectively achieved sep-
aration of branches. This is confirmed by:
Theorem 4.4. Let a!(?) be the Frechet derivative of L3 at
6 = 0:

Yy
(4.14) - Loy = =,
then .[-1 is a bounded mapping from Sc onto ch, v: > 0. |

Remark: -1

is an integral operator on -» € y € +», which
is in general unbounded on spaces of integrable functions.
This required a much more complicated theory in [10]. 1If
we do take into account the asymptotic decay conditions

included in &, S;I (3.9) :

c
2
0 da~e «, 1
exp(-y) == and exp(-y) € L (RV)
dy ay?
. for y < 0, and -
2
exp((l-¢e)y) g% and exp((l-¢c)y) g—% € L“[Rll
b 4

for y » 0, € > 0, then ! is bounded from Sc onto ch.
These decay conditions are, of course, suggested by the
behavior of the derivatives of Landau's solution (4.11) at
y = o, To conclude:

Corollary 4.5. In some neighborhood of t = @ in R
exists a unique mapping

1, there

T » 0{1}
Rl"gr ’
c
such that 0{tr} is the unique solution of (4.13) with
e{o} = o.]|
To demonstrate the corollary, we use the implicit

function theorem applied to (4.13.a) considered as a map-
ping from: Rl X gcx + <gc .
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Finally from %{1}, we reconstruct
exXp(Tx)

= X £+
(1) = g Teexp(ray (M*E(7H)

£ = c(1) Go(r) + wic(t)} .

The solution is actually unique up to a translation, since
we have chosen an arbitrary (normalized) origin is obtain-
ing the Landau profile (4.11l) solution of:

(4.15) C e ) e - k) tetxn? L

The asymptotic behavior of f at x = 2« shows that
deviations from the "Navier-Stokes" component c(x), causecd
by w{c}, appear 0(12) in the "hot tail" of the shcck.
Roughly speaking, c(y) decays O(exp(y)) as y = -=, whereas
w(y) decays O(exp(2y)). As y » +=, both c(y) and w(y) decay
O(exp-(l-€)y) .

To conclude, we remark that the concept of modified
Landau's equation has also been introduced by N. N. Janenko
[25,26] : he has added higher order polynomial terms in c(x)
- 40 (4.15), in order to study the transition to turbulence
in incompressible Navier-Stokes flows. Here, at the kinetic
level, we have a corrective globhal functional operator .

A natural extension of Problems I-II is:

(4.16) E+am - Gu.e) =0 ;

in this respect, we have the

Conjecture. For u < u*, 1 < 0, the second branch Q(u,x) is
unstable in time; it is stable for u > p*, T > 0. (This
corresponds to well-known Entrcpy Conditions across the

shock for Navier-Stokes). Also more general wave solutions
of (4.16) may be investigated, including Burgers-like waves.
Work is in progress on these questions.

APPENDIX

We summarize technical results of [8-10). The
Boltzmann equation [27) rules the evolution of a local vel-
ocity particlc distribution F(&), with thc lecal velocity
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vector

(A.1) & = (c,, ¢, cy)i ¢ = |&] -
The space-independent Boltzmann operator:
(A.2) Ql[F, F] =0

is a bilinear integral operator in Lz(Ra) It acts only
upon the velocity vector c. Classically:

(A.3) QIF, F] =0« F = w(u, &) .

where w is a maxwellian (gaussian) distribution:

2 2 2
(cl-u) +c, +c,

wly, 3) = LS exp { - S
(27RT) 372 2RT
where p is the density, u the mean velocity (directed along
the x-axis) and T the temperature. These macroscopic quan-
tities which appear in the Navier-Stokes eguations, are
simply related to weighted averages of F(S, X):

p = fr(é,x)dé, pu = fcl F(&,x)ad ,
3pRT= Jf(E-E)z F(c,x)dc ,

where R is the perfect gas constant.
In one space dimenesion, the space dependent Boltz-
mann equation for the velocity distribution

F(c;, c, %, t), Cc = 1] ,

(A.4) 1
X ER, =o€ x € 42 ,
becomes:
aF F _
(A.S) T‘E + CIH Q[F,F]

The second term on the left cide is the one dimensional
version of the ubiquitous "streamiuag operator”

-
C. vx F .
We look for traveling waves of the type

F(Clp c, X + ut)



A viscous shock is defined as a nonlincar trans-

" ition profilc betwecen two asymptotic (x = :«) Maxwellians;
one with mean velocity ut subsonic; the other with u~ super-
sonic. It must be noted that the came Rankine-Hugoniot
conditions as for Navier-Stokes uniquely relate u+, c+, Tt
and u, p, T . After renormaiization [9,10]:

(A.6) (wtc)) 3= =L £+ T IE,€],

where Lu is the Frechet derivative of Q, and ru, an approp-
riate second order derivative; together with the normal-
ization:

(A.7) f(cll C, --) L 0 or f(cl, c' +°) L 0 e

(A.6) is investigated in a space AC of absolutely contin-
uous functions: -

1 1 .1
AC[R™ =+ X] ~» L;oc[R Y]

(normalized at =, cf. (A.7)) and X,Y are appropriate graph-
norm Banach spaces defined uniquely on the velocity variable.
The following is then demonstrated:

Proposition A.l. 1In appropriate spaces X,Y (implicitly
incorpocrating the Rankine-Hugoniot conditions),

(A.2bis) Qf,f] = Lu £ + Pulf,fl

is a bifurcation problem from a simple isolated eigenvalue

of L + at the critical sonic value of u = u*. The two
branches correspond to a subsonic and a supersonic Maxwell-
ian, identical at u = u*.|

Looking for a critical trajectory joining the two
asymptotic bifurcated subsonic and supersonic riaxwellians,
ve consider (A.6) as a bifurcation problem from the essen-
tial spectrum, superimposed upon the simple bifurcation
problem (A.2bis). In (A.6), £ = 0 is indeed a trivial sol-
ution Vu. The essential spectrum is evident from the
identification:

(A.8) A(u) = (u+c1)I ’
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which docs not possess an inverse in LZ(R3), since

- Q c1 < +o

(cf. ¢, = -p). The hypothesis required by the abstract
setting arc campleted through the:

Proposition A.2. The generalized eigenvalue preblem
AMute, )¢ - Luw =0

has a real, simple, 1solated eigenvalue Ao(u), in the
spaces X and Y:

A (u) €0, u< u*
> *
Ag(w) 2 0, u>u <

Similar results were obtained by H. Weyl in 1949
[28), for the Navier-Stokes equations linearized about sub-
or supersonic equilibria. Finally, the "streaming operator"”
A(u) defined in (A.8), though responsible for the pathology
of the problem, is universally present in kinetic (stat-
istical mechanics) equations. It represents transfer of
very high velocity particles, ané generates the essential
spectrum of kinetic oparators.
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