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Decision Analysis for Dynamic Accounting of Nuclear titerial

by

JAMES P. SHIPLEY
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AESTR4CT

Effective materials accounting for special nuclear material in
modern fuel cycle facilities will depznd heavily on sophisticated data-
anelysis techniques. Decision analysis, wnich combines elements of
estimation theory, decision theory, and systems analysis, is a frame-
work well suited to the development and application of these techniques.
Augmented by pattern-recognition tools such as the alarm-sequence chart,
decision analysis can be used to reduce errors caused by subjective
data evaluation and to condense large collections of data to a smaller
set of more descriptive statistics. Application to data from a model
plutonium nitrate-to-oxide conversion process illustrates the concepts.

KEYWORDS: Nuclear safeguards, materials accounting, decision analysis,
CUSUti,Kalman filter, alarm-sequence chart, plutonium
nitrate-to-oxide conversion

INTRODUCTION

Materials accounting for safeguarding special nuclear material (SNM) has two important
●spects: (1) the collection of materials accounting data, and (2)the analysis of materials
●ccounting data. The collection function is a broad, highly developed subject (e.g., see
Ref8. 1-5 and the references therein) that we will not pursue here; in this paper we are
primarily concerned with the analynis of materials accounting data.

The data collection function is &ually structured to facilitate performance of the
analysls function, commonly by providing sufficient measurement of SNM within a facility
to allow the drawing of m?terial balances around selected portions of.the facility on a
reasonable time scale. Tha data, which are always corrupted by measurement errore, often
●ppear ae time sequencem of material balances, one eequence from each part of the facility
for which material balancee are drawn.

Therefore, the data-analysis function must operate on imperfect data that become avail-
●ble sequentially in time. Its primary goale are (1) detection of the event(s) that SNM has
been diverted, (2) estimation of the amounte diverted, and (3) determination of the signifi-
cance of the estimatee. Furthermore, data analysis must search for evidence of diversion
that may have occurred in any of several pauterne.

These goals are ideal for statistical treatment ueing sequential, probabilistic te h-
niques that have been developed for application to communication and control systems.&9

Decieion analysielO*ll is a framework of such toole, and combinee techniques from estimation
theory and hypothesis testing, ur decieion theory, with systeme analysis for treating com-
plex, dynsmic probleme. The decision-aralysis framework is general enough to allow a wide
range in the leval of sophistication in examining SNM accounting data, while providing
@delinee for the development and application of a variety of powerful methods.

.



THE DECISION PROBLZM

Let us suppose that over some time period we have acquired materiala accounting data
conaiet%ng of a set of in-process inventory measurements at discrete times and a eet of
material transfer meesuremente between thoss times. Let I(k) be the kth inventory measure-
-nt, and let T(k) be the measurement of the net transfers that occurred between the I(k)
amd I(k+l) inventory meaeuremente. If the measurements were exact and there had been no
diversion of SNM, then the continuity equat$on would be satisfizd:

I(k+l) = I(k) +T(k) . (1)

However, we never have perfect measurement of bulk material, and SNM may or may not have
been diverted, ao that (1) ehould be rewritten as

I(k+l) = I(k) + T(k) -M(k+l) , (2)

where M(k+l) is the imbalance in the continuity equation (1) at time k+l cauaed by ❑easure-
rnnt errors and diversion. de call M(k) the material balance value at time k, or the kth
material balance for short. Clearly, M(k) is a random variable, and the sequence
{M(k), k = 2,3,...} is a stochastic process, about which we can make probabilistic state-
ments if something is knowu of the nature of the measurement errors.

For convenience, denote the eet of inventory measurements {I(k), k = 1,2,...,N}, the
set of-net transfer measurement {T(k), k = 1,2,...,1},}, and the statistical information on
the measurement errore by the quantity Z(N). Then Z(N) contains all information available
for the N materials accounting intervals. Thue, the decision problem is to determine, based
on observation of Z(bl),whether the eet {M(k+l), k = 1,2,...,1}1} (MN for eimpliclty) con-
tains diversion.

.

The Likelihood Ratio

For any particular Z(N) that Is obeerved, MN may or may not have contained divereion.
Define the hypotheses

H: # does not contain diversion,

K: @ does contaltidiversion.

Then the actual probability deneity fuhction that governs Z(N) is determined by which of
E, K ie true; i.e.,

Z(N) % p[Z(N)lH] for H true,
.

Z(N) % p[Z(N)lK] for K true,

where *meene “hae the density function.” These two conditional deneity functions are also
called likelihood fumctione Zor the hypotheses H and K. The values of the likelihood func-
tionsf= particuhr Z(N) are relative meaeuree of the likelihood that Z(N) is governed by
one or the other demeity function, or in other worde, that H is true or K is true.

The umel statistical teet coneists of forming the
Ins it to ● threehold:

likeli!;oodratio,
6-9

L, and compar-

lf ‘[Z(N)]‘m {H;::;::
wbara T ie the threshold to be deterudnad below. Roughly epeaking, if Z(N) is
likely to have occurred ●s ● reeult of H being true thar:of K being true, then
im true; otherwise, decide that K is true.

●

(3)

“enr*Jgh”more
decide that H



Conversion to Sufficient Statistics

The likelihood functions are difficult to work with.because thay are joint density
functions of many variables, in general. Under certain circumstances, which usually hold
for SXIMaccounting, it is possible to condense the quantity Z(N) to a single number S(N)
withovt loss of information. The number S(N) is called a sufficient statistic7 and is
equivalent to knowledge of Z(N). If such a S(N) can be fo~,~if its density function
can be calculated, then the likelihood ratio test (3) can be replaced by

‘f ‘[S(N)]‘M-I-%{;:::::;: (4)

Now, the density (i.e., likelihood) functions are univariate and, therefore, much more
tractablk methematicallv. The hidden problercis to find a sufficient statistic that is
significantly indicative of whether H or K is true.

Sequential Formulation

A8 we have seen, the likelihood ratio test, (3) or (4), for a
coneiete of comparing the likelihood ratio to a single threehold.
situations we seldom will know when the test should start or end.
to begin the test at all possible starting points and let the test

fixed number N of points
However, in practical
Therefore, we will want
itself determine when it

should be terminated. This procedure also has the provident property of requiring fewer
samples, on the average, than a fixed-sample-size test having the same characteristics.8

Fcr the sequential likelihood ratio test, also called the sequential probability ratio
teet or SPRT,8 there are three possible results at each .ecisiontime, rather than two:

I
~TO, accept H,

If L[’(k)] ~ T , accept K,
1

(5)

otherwise, take another observation,

and the SPRT Is repeated for all possible starting points. The thresholds To and T1 can bi!
found from the Neyman-Pearson criterion or by minimizing the Bayes risk,7 but that may
require some information that is unavailable. The following approximation, devised by Wald,
gives useful thresholds that can be sh~wn to be conservative.

Let PM and PF be the dasired (given) miss and false-alarm probabilities, respectively,
for the SPRT. Then the thresholda are?y~

(6)
l-PM

T1.— .

‘F

The probability of detecting diversion, related
test; PF is called the significance or level of

SOME SUFFICIENT

For any decision vroblem, there is a large

to 1-%, .s called the power or ~ of the
the teat.

STATISTICS

number of efficient statistics that may be
c,elculated,”butsome are more ueeful than othere because of computational reaeone, claser
relationship to physically meaningful quantities, or better diecrininatory powere between
the two hypotheeee. Following are eeveral statistics that have been effective in various
●pplicatione.
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The CUSUM Statistic

me ~SWl,12-16
(cumulative eummstion) of material balancea is juet the sum of the

material balances over the time period of intereet.

CUSUM(k+l) = M(2) +M(3) + ... +M(k+l) ,

where the M(i) are found from (2):

M(i+l) = - 1(1+1) + I(i) +T(i) , i=l,2,...,k ,

The CUSUM can also be written as

k
CUSUM(k+l) = - I(k+l) + I(1) + X T(i) ,

i-l

which ●mphasizes that the material balances are negatively correlated through the common
inventor> measurement. For uncorrelated transfer measurements, the CUSUM variance is

k
VC(k+l) = VI(k+l) +VI(l) + z VT(i) ,

1=1

where VI(-) and VT(o) are the inventory and transfer measurement error variances, respec-
tively. In recursive foxm suitable for a SPRT, the cuaum and its variance can be written
●s

CUSUM(k+l) = CUSUM(k) - I(k+l) +I(k) +T(k) , (7)

VC(k+l) = VC(k) +VI(k+l) - VI(k) +VT(k) . (8)

Tim corresponding SPRY can he shown to reduce to

I
<-fi~ ,accept H,

If tXJSUM(k+l) -

~ ~+ ~~T , accept K,
1

(9)

~ otherwisb, take another observation.

The CUSUM etatistic is interesting because it is an estimate of the total amount of miesing
material during the period. However, the CUSUM is not a minimum-variance statistic unless
the variances of the material balance measurements ~ all equal, and unless the knowledge *
of how the material balancee combine inventory and transfer measurements is unimportant. Tlle
laat condition would hold if the inventory were small or well meaaured compared to the trans-
fers.

The Two-State Kalmen Filter Statlsti.c

The two-state Kalmun filtar etatietic
2,17-20

estimates the average amount of missing
matetial per balance. It uses all available information from the continuity equation (2)
and from the etatietlce of the measurement errore. The two-stats Kslman filter etatistic

can be shown to be optimal in the senee that it 10 the minimum-variance, unbiaaed, linear
●stimate whenever the measurement error probability deneitiee are eymnmtric about their
nane.21

The two-state Kmlman filter yielde ●etimetes of both the inventory and the material
balance at each time. h recureive form, the equatione are21~22

.



i(k+l) = i(k+llk) +Kl [I(k+l) - i(k+llk)]

fi(k+l)=i?(k) +K2 [I(k+l) - ?(k+llk)l ,

where

i(k+llk) = i(k) +T(k) -fi(k) ,

and ~(k+l) and fi(k+l)are the inventory and material
time k+l based on all information through time k+l.
by

~ =-WIE(k+l)
2 VI(k}l) ‘

where VIE(k+l) and
covariance between
recursively by

with

The

See

VIE(k+l)

balance estimates, respectively,
The filter gains, K1 and K2, are

(lo)

at
given

(11)

VMIE(k+l) are respectively the inventory estimate error variance and the
the inventory and material balance estimate ez:o~s. They are given

VMIE(k+l) =

VIE(k+llk)

VMIE(k+llk)

vIE(k+lik) VI(k+l)
VIE(k+l]k) + VI(k+l) ‘

(12)
VMIE(k+llk) VI(k+l)
VIE(k+llk) + VI(k+l) ‘

= VIE(k) - 2VMIE(k) +vME(k) +VI(k) ,

= VMIE(k) - VME(k) .

variance of the error of the material balance estimate at time k+l, VME(k+l), la

VME(k+l) = VME(k)
-~ ●

References 2 and 17-24 for more detail.

The resulting SPRT is similar to that for the CUSUM, and reduces to

I
s-- ?a’=w”~
~ + fi~ , accept K,

otherwise, take another observation.

(13)

(14)

(15)

Other Sufficient Statistic

All sufficient statistics such as tho~: +uat discussed are called parametric because
thsy depend upon knowledge of the statistics of ‘i;: rement errors. They alao happen to
work bsst when the measurement errors are Gausbian, a q.. - common but by no means all-

inclusivc situation. If the measurement error statiatica are u,.kncm or nrm-Gaussian, then
nonparametric25 sufficient statistics may give better test results. In addition, nonpara-

matric tests can provide independent support for the results of parametric tc~ts even though
nonparametric testa are generally less powerful than parametric oces under condlb.’-~efor
which the latter are designed.

,,
..

%..
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The two most common nonparametric tests are the ~ test and the Wilcoxon rank sum
test. The sufficient statistic for the sign test is the total number of positive material
balances. That for the Wilcoxon test is the sum of the ranka of the material balances.
The rank of a material balance is its relative position index under a reordering of the
material balances according to magnitude. Other, possibly more effective, nonparametric
teete are being investigated. Further discussion of nonparametric test~ is beyond the
●cope of this paper.

TEST APPLICATION

Procedure

Aa diecueeed above, we seldom will know beforehand when diversion haa etarted or how
long it will last. Therefore, the decision tests must examine all possible, contiguous sub-
sequences of the available materials accounting data. That is, if at some time.we have N
material balances, then there are N starting points for N possible tiequences,all ending at
the Nth, or current, material balance, and the sequence lengths range from N to 1. Because
of the sequential application of the tests, sequences with ending points less than N have
●lready been tested; those with ending points greater than N will t)e done if the tests do
not terminate before then.

Amother procedure that helps in interpreting the results of testa is to do the testing
●t ●ev’ral significance levels, or false-alarm probabilities. This is so becauae, In prac-
cice, the teet thresholds are never exactly met; thus, the true significance of the data is
obecured. Several thresholds corresponding to different false-alarm probabilities give at
least a rough idea of the actual probability of a false alarm,

Displaying the Results

Of course, one of the results of most interest is the efficient statistic. Conmnon
practice ie to plot the efficient statistic, with symmetric error bars of length twice the
●quere root of its varience, va the material balance number. The initial material balance
end the total number of material balances are chosen arbitrarily, perhaps to correspond to
the shift or campaign stwcture of the process. For example, if balances are drawn hourly,
●nd ● day consists of three shifte, then the initial material balance might be chosen as
the first of the day, and the total number of msterial balances might be 24, covering three
shifts. Remember, however, that thi.s&hoice is for display purposes only; the actual test-
ing procedure eelects”all possible initial points and sequence lengths, and any sufficient
statistic may br displayed aa seems appropriate,

The other important reeulte are the outcomes of the teata, performed at the several
●igmificance levels. A new tool, called the alarm-sequance chart,l-3,12 has been developed
to dimplay these results in compact and readable form. To generate the alarm-sequence chart,
uch sequence caueing an alarm la assigned (1) a descriptor that classifies the alarm accord-
Ie$ to ite falee-alarm probability, and (2) a pair of integers (r ,r2) that are, respec-

itivaly, the indexes of the Initiel and final material balance num ers in the sequence.* The
●larm-sequence chart is a poin~ plot of rl vs r2 for each eequence that caused an alarm~
with the ●lgnificance range of each point indicated by the plotting symbol. One possible
corraepondence of plotting symbol to significance ie given in Table 1. The symbol T denotes

* It ia ●lso poesible to define (r1,r2) as the eequence length and the final material bal-
ance number of the sequence. The two definitions are equivalent.

.



ALARM CLASSIFICATION

Classification
(Plotting Symbol)

A,
B.
c
D
E
F
T

TABLE I

FOR THE ALARM-SEQUENCE CHART

False-Alarm Probability

10-2 to 5 x 10-?
5 x 10-3 to 10-3”

1(3-3to 5 x 10-4

5x 10-4 to 10-4

10-4 to 1(3-5

< 10.5

m 0.5

sequences of such low significance that it would be fruitless to examine extensions of them;
the letter T indicates their termination points. It is always true that rl ~ r2 so that all
symbols lie to the right of a 45° line through the origin. Examples of these charts are
ehown In the section on results.

AN EXAMPLE

The Process

To illustrate the application of dectsion analysis, we present results from a study of
nulterialsaccounting in a plutonium nitrate-to-oxide conversion facility.3 The reference
process is based on plutonium (111)-oxalateprecipitation; a simplified block diagram is
shown in Fig. 1. Nominal capacity is li6 kg of plutonium per day, processed in 2-kg
batches. Some of the most important design parameters for the main process stream are given
in Table II.

TABLE 11

CONVERSION PROCESS DESIGN

Function’

Receipt tank feed
Valence adjust feed
Precipitator fee
Pu oxalate boat to furnace
Pu oxide to accountability
Pu product to storage
Filtrate
Precipitator flush
Furoece sweeping
Boat flush
Dump station sweep

Volume or Weight
Par Batch

200.0 L
66.67 L
75.44 L
4.65 kg
2.21 kg
2.18 kg

154.9 L
109.2 L
0.85 kg
34.4 L
0.85 kg

PARAMETERS

Concentration.—

30.0 ~/L
30.3 giL
26.5 g/L
0.422 kg/kg
0.882 kg/kg
0.882 kg/kg
66.4 mglL
4.6 glL
0.882 kgjkg
2.9 g/L
0.882 kgjkg

Frequency

1/0.41 h
1/0.41 h
1/0.41 h
1/0.41 h
1/0.41 h
1/0.41 h
1/0.41 h
3/day
I/week
10/day
2/day

The Materials AcctiuntingSystem

Many different ways of drawing material balances for the c“ vers~on process can be
defined. Based on the conversion.study,3 one strategy that wor.cavery well is to consider
the main process stream from the receipt tank to the product dump and assay station as one
unft process. Thus, the transfers consist of feed into the receipt tank, product out of the
dump and assay station, and recycle solids and liqaidc. All these transfers must be meas-
ured, and we must obtain an estimate of the in-process ;nventory. Table 111 gives the
required measurements and some possible measurement methods and associated uncertainties.
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TAELE III

MATERIALS ACCOUNTING MEASUREWNTS FOR

Memurement Point

Receipt tank

Wet boat
(precipitatoroutput)

Recipitator holdup

Filtrate

Recipitator flush

Boat flush

Furnace sweep

Dump station .eweep

Product cane

THE CONVERSION PROCESS

Measurement Type*

v41me
Concentration (by L-edge
densitometry)

Mess (by neutron well counter)

Mass (by He-3

volume
Concentration

Volume
Concentration
deneitometry)

volume
Concentration
fluorescence)

neutron counter)

(by alpha monitor)

(by L-edge

(by x-ray

Mess (by neutron well counter)

Mese (by neutron well counter)

Mess (by neutron well counter,
calorimeter, or gamma spectrome-
ter

Instrument
Precision

(%)

0.2
1

2

2

0.2
10

0.2
1

0.2
1

2

2

1

Calibration
Error
(%)

0.1
0.3 .

5

--

0.1
2

0.1
0.3

0.1
0.3

0.5
.

0.5

0.5

*
See References 1-3 for detailed diecuseions of measurement techniques.

Results
b

The techniques of decision analyeia deecribed earlier have been used to evaluate the
diversion aensitivtty of this materials accounting strategy and others, Part of the evalua-
tion conaiats of examining teet results, in the form of estimate (sufficient statistic) and
alarm-sequence charts. for various time intervals, Examples of typical one-day charts for
the CUSUM end two-etate IGdmen filter are s own in Figs. 2 and 4; the corresponding alatm.
●aquence charts sre given in Figs. 3 and 5.9 In the course of evaluation, many such sets of
charts are examined so that the random effects of measurement errors and normal process
variability can be assessed; that 1s, we perform a Monte Carlo study to estimate the sensi-
tivity to dtversion. In applying decision analysis to data from a fscility operating under
●ctunl conditions, only one set of data will be available for making decisions, rather than
the multiple data streeme generated from a simulation. The decision-maker will have to
extrapolate from historical information and from careful process and measurement analysis to
●acartain his true diversion sensitivity.

The reaulte of the evaluation are given in Table IV. By comparison, current regulations
require that the meterlal balance uncertainty be less than 0.5% (2u) of throughput for each
two-month ●ccountingjperiod, which corrumponda to 33 kg of plutonium for this procese, Such
lar@e improvemmt in divermion sensitivity iu possible through the comb?uation of timely
mesureaents with the powerful statistical methods of decieion analysi~.

,.

●



TABLE IV

DIVERSION SENSITIVITY FOR THE CONVERSION PROCESS

the

1.

2.

3.

4.

5*

6.

7.

8.

9.

10.

11●

Average Diversion Per Batch Total at Time of Detection
Detection Time (kg h) (kg pu)

1 batch (1.35 h) 0.13 0.13
1 day 0.03 0.63
1 week 0.01 1.24
1 month 0.005 2.65
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