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smERxAL SHfm CWAPSE m A NM” IDEAL KPIwi

.W5&W Sa=s ha= SMWFS had ● pli=e itszht mdy d fluid mor%m.
Fluid motions which me setl~-irmarimt sre self -si=ila: motiom. The

first self-si=ilsr mt:ms wrr< st-ikdied by iayiar,} ‘*o*,2 Guderley,%

●nd Landau and Stanyuklx”lch.b Self-si=ilar motions in one dissension

satisfy ordinary diffzrenti=l cquatiwts in scale-inwzriant waria?sles

rather than partial differential equations im space and ti=e. They ●re

physically iqmrtant kcause the) rep-ewnt ●sgqte%ic stztss ef mmim..

which occur uhen %he fluid is no longer strzqly influenced N{ 1Ss ini-

tial conditions.%

The scalt transfumtions which dtte=int self-si=llar motims are

Lie group qerations. Birkhoff* in 193P first •~lied grcq theory te

get invariant selut~ons of Euler’s equations. !hibstquently scwral

others --for tx~:e tksjannihov,’ Uichal,8 and Killer ●nd Natschat’ --

have refined Lie’s original ●rthodxe of integration of d~fferen:ia~ eqw-

tions by group tkretical techniques. Uan?- have applied it to $td*”

grotq invariant motions of an ideal gas.~i

?sentrop~c fluid motion is goi-erned by Euier’s ecwa:ims. Euler’s

equations conta)n three inde~ndent ,dixnssons: ~a~~, length. ●nd time.

50 ●t most the} cm ●d-it three inde~dtnt scale tran+fw=atims. Self-

similar shod motions u?i)i:e ●ll thret itiqwuknt choicts of scale.

One choice is fixed by the I%ttial density ahead of the S?SPCL. Amthtr

is dtter=iaed by the nuatrical solut~on fcw tk sl=ilarxty ●xponent.

This ●lso detemines t~t shock tra.iecte~ an s~a:t-t]ae ●nd tht shapr ef

the floz behind tht SMKA. TN reaa)~ing c+mict ef scalt tan be u~td tc



2. Statmnt of I’rokit? ●nd Gr.*:ric 4jjjpa_ct. to 12s Selu*ion-——. .-—
Consider the ~ro?l- of t!w s~b.trzcal conitrgenct of ● shock -w

te the center o! ● uv~fonr. s?at:onary uterl~l. Mead of the slwck the

initial cond]?ims ●re



d.whert x is the spatial coordlnatt [radius; ●nd 4T IS the eater]a] deriva-

tive with respect to tire.

the equation of state Influences the tquation$ cf motion through :i,c

●diatutic bulk modulus in the last quat~cn. h%en aritten in terms of a

Smersl ●diabatic hJ)L modulus, ~nvar]ancc analys]s leads to the con-

struction?. of s~lf-s~m]lar solut~ons and other types of jnvariant seiut:m-



media mher than ●n ideal gas. *e seek functional forlas ef

bulk snxlulus fur ~hich Euler’s equaticms adtait thexitaal

&==p of point trmsfeNtiens*

* (aa -
&

where pe is an arbitrary constant with u-.~,ts of pressure. In the last

t-o equations the arbitrary constants al, aa, and a5 correspond to choices.
of t!tree direction ccx ficients in the group space. The general soluticw

of (&- ●; f~T thp adiitbittic hulk ~dulu~ is

/
b

.( )

l+

(r + pe? 2
B$(p,L? = (p + ~lm] f –– ---=----— (j-~)

,-

where f is ar, arbitrary fune:ion of its argument. Khen the bulk modulus

has this fot%, three independent scale transformat~cms are admitte~ by

Euier’s ●quations.

Euler’s equations are also invariant under time traasiations, sincc-

the independent variable t does not appear explicitly in the system.. So

the :ero-value @f tine say be chosen arbitrarily. Ifi planar geometry,

invariance undey spatial Jis~lacements and Gali]ean transformations

would also occur. In m:re spatial dimensions rigid rotations of all

vectors would he admittvc!, as well.

For the initial condition of uniform density ahead of the shock to

be invariant, a relation IWSt be imposed in ~p,

a,- 2a = O .1
(3-4)

&

Thus the buik modulus for self-similar shock propagation into a uniform

aedium adopts the separable form,



BJPA = (P * p=) f(e) (3-5)

where again f(p) is an arbitrary functXm. Such quatiens fey ~he bulk

modulus have been used befme as intqsolatim functicw in s-k wave

physics. Two choices fQT f(o) are well-known; the TtM etpation,is

f{a) = constant = * f%f$)
Q

and the Walsh equattion, 1*

f(o) = ~Q-;==*

The WttJsh equation has the added advantage

(3-?)

that it is consistent

with the experimentally obsened linear relation between shock speed, D,

and particle speed, u, behind the shock,

~=c+~u (3-8]

true for plate-i=pact rxperiaientswith shock pressure greater than about

fifty kilobars. In terms of this relatior,the constants A,pe, in the

Malsh equation are

Typically for metals s is about 1.25 and c is roughly equal to the sound

speed. In what follows we specialize to the Walsh equation. Comparison

with shock wave data of the Mie-Grtineisenequations of state implied by

the Walsh and TKN equations for the adiabatic bulk modulus will be pub-

lished elsewhere.~’

4, Construction of Similarity Variables as Grouy InYariants.—— .--. .-—.--..- --— ----. ..-- .— .---_.-. ----- —

Euler’s equations can be reduced to a system of three nonlinear

ordinar:’differential equations by transformation of variables to the in-

variant coordinates of ~p, the operator in (3-1) with condition (3-4),

qpf(x, t,u, c)p) = o . (4-1)

In general the solution of such a first order partial differential

equation involves arbitrary functions of the functionally independent

integrals of the characteristic equations. In our case the arbitrary



tiles are resolved frm the independent group

where the @xponent a is,

~~+&
13

a = -—–—+ a-al .?

and the value of time is taken to be negative

ish when the shock reaches the center.

(4-3]

before collapse and to van-

Upon substitution of the self-similar flow variables into Euler’s

equations, a coupled set of three nonlinear ordinary differential equa-

tions in A remains to be integrated. The boundary and initial conditions

for this system will be invariant if t~e shock trajectory follows a path,

Xs(t) = (const) ta (4-4)

and if also the initial density distribution is uniform,

P(x,o) = P. (4-5)

<.. Evaluation of the Similarity \’ariables——- ——— ..-.—- ..——. ..——

The numerical evaluations of the similarity variables requires solv-

ing a system of nonlinear ordinary differential equations obtained by

entering the group invariants into the conservation relations. This sys-

tem can be expressed in the following mhtrix form:

[

Us - a Rs o

0 Us - a R~l

rpsLo (us - a) Rs

.
(5-1)

where r = (poA)-l and primes are derivatives with respect to log l., solv-

ing equation (5-1) explicitly for the derivatives by Cramer’s rule produces

‘1 ‘2 ‘3
R;=F u;=~ P;=~- (~-~)



in which the determinants are defined as f~llows:

Division among equations (5-2) gives,

The similarity exponent o which appears in equations (5-4] can not be

determined from an int.:gralenergy Salance as is the case for diverging

shock waves driven by the release of energy at a point. The procedure for

finding the numerical values of the similarity exponent for various values

of ~ entails s~lving equations (5-4) numerically, and iterating on assumed

values for the similarity exponent. In this procedure the Ranhine-Hugoniot

relations, which for this problem are

-)

(Po+~ 2(1-a)

)
P5(?.H) = p:- t-.?=_

c
f

(J

P+B 2fl-cl) -1

)
RS(AH) = 1 - :+ ~= -“-n-–”t-- ;-—

a- ‘0
.

“H

must be satisfied. In the strong s50cA limit these general forms of the

Rankine-Hugoniot relations simplify to

When the correct value of the similarity exponent has been chosen, the

numerical integration of (S-4) subject to the initial conditions (s-6)



results in single-valued nonsingular funstions. The test for ccmergence

resides in the fact that only two of the four dlsteminants in equations

[S-3} are linaarly indqendent. When any two e!: these four detenainants

wsrtish si~ltae,w~sly 8% the S- %@ue of u, the amrect value for the

similmity exponent has been selected.

6, Ntaaerical Results, Stability, and Finite-St:re~h Shocks—. .— .——. .—.
The solution to equations (S-1) ekn be visualized as sketched in

Figure 1 in the space with coordinates (t,x,u]. In Figure 1 ~=mp trans-

formations generated by Qop produce a vector field tangential to the solu-

tion surface along lines X = const. The group-reduced Euler equations

produce a tangential vector field which crosses lines A = const. More

quantitatively, for T = 5 numerical results are graphed in F~gure 2 for

the reduced v3ri3>!e5 t! (>) @~(>,), and Rs(;). “Thefu~~ti~n~ ~1~(1)and
s

P-(>.)are decreasing functions, while R~(AJ is i~nincreasing function

j~st behind the shock position at >.= 1.

In Figure 3 is shwn the dependence of the similarity exponent, a,

on the material parameter T = ~~-, with specific materials labeled.

Superimposed as a dotted line i~°Figure 3 is the similarity exponent, a,

as a function of y = c /c for an ideal gas.
pv The two curves disagree by

about ten percent near the middle of the range shown.

The stability of these solutions has also been examined. The major

conclusion is that an angular perturbation will grow and oscillate as the

shock converges, as though the shock had surface tension. The perturba-

tion is stable in size but not in shape as the shock converges to the

origin. The physical interpretation of this stability behavior: near

the origin the shock becomes non-radially coupled to itself and ceases

to converge to a single point. Details of the !;tabilitvanalysis will be

published elsewhere.18

The invariance analysis presented here ma>-be extende! to finite

shock strengths essentially without change, excvpt for a parametric de-

pendence of the similarity exponent on the valuv of the time before

collapse. The group analysis and numerical procedure described here

still apply for finite-strength shock collapse, but the numerical itera-

tion for the similarity exponent must be done as a function of time.

Details for finite-strength shocks will be published elsewhere.ia
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Fig. 1. The solution surface
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