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NEW DEVELOPMENTS IN DIFFERENCING THE SPHERICAL
GEOMETRY NEUTRON TRANSPORT EQUATION

Warren F. Miller, Jr.

Deputy Associate Director for Nuclear Programs
Los Alamos Scientific Laboratory, Los Alamos, New Mexico USA

ABSTRACT

Early differencing methods due to Carlson, Lathrop, a.ad others have
continued to be used to approximate the spherical geometry neutron trans-
por: cquations. Nonphysical depressions in the scalar flux profiles con-
tinue to cause problems when these early techniques are used. Recent

derelopments, however, provige “~tter understanding of the behavior of
thesc methods and have led to a simple approach to improve numerical

solutions.
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I. INTRODUCTICN

It has been observed for sevaral years that nonphysical depreseions
in the scalar flux spatial profile can appear near a spherical system ori-
gln when production, diamond-difference, discrete-ordinates, neutron
transport computer codes are used.ls? Such depressions have also been
observed in solutions from the nower spatial finite element, discrete-
ordinates code ONETRAN.3 Even when such depressions do not appear, the
origin flux ca be disconcertingly ineccurate, exhibiting a first-order
error in the spatial variable.

Reed and Lathrop“ associated origin scalar flux depressions with the
spatial truncation error. They studied this errcr as well an the angular
truncation error with the purposes of improving accuracy and eliminating
these depressions. The results of their work were weighted--diamond-
difference schemes for use in both the angular and the spatisl variables.
Using their approach. they reported elimination of the origin scalar flux
depresaion for a eample problem. Thelr angular welghted-iiamond scheme,
however, has not been extensively used since it does not allow the trans-
port computer code user the freedom ot picking h'e own quadrature data.
Their spatial weighted-difamond scheme is not used due to substantial
inaccuracies for coarse grids.

In the present work, the discrete-ordinates equations arc first
developed and an expression for the angular truncation error is deter-
mincd. It is ehown that one class of scalar flux depressions at the sys-
tem origin is due to this angular truncation error, aad thur, cannot be
eliminated by any convergent apatial d!fference scheme. The spatially
differenced cruatiors are then derived using diamond differencing and we
demonacrate that the spatial truncatfon error is apatially nonuniform and
becomes first-order at Lhe origin. The second ciaws of scalar flux
depressions is duc to this spatial truncation errar. Ue d velop a new
{mprovement to the diamend-difference cquations due to Alcouffe and Niller
yielding sccond-order crrors at the system origin,  These theoretdcal
developments are provided in Section 11, Sectfon 111 provides numerical
revults and conclusions.

1. THEORY
A.  The Discrete=0rdinates Approximation

The spherieal geometrr transnort equat ioa, [or a glven enerpy grouy,
mny be writtoen an

23 .(J.j.i-_?) '

" ar 1

T (et c e (00D + o) = S0) ()

- r
or, in conyervation form, " as

2 ?
TR Ca) IR 1 (S TR 1) I, - S(r 2
rz o + o 4 001y ,u) S(r)y . (¢3!
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In Egs. (1) and (2), the inhomogeneous term, Q(r), includea external
fission, and scattering sources to the energy group. For the purposes of
this study, there i8 no loss in generality in assauing that this source
i3 isotropic. This group source, Q(r), is a function of the flux itself,
and the equation is solved iteratively. It is assumed that an interation
cycle (called an outer iteration) on the fission and group scattering
source has just been completed and Q(r) is known. 1In Eq. (1), the scalar
flux, ¢(r), ir defined as

1
1(r) -%f du'y(r.u'). &)
A

The scattering process within the energy group is also assumed to be iso-
tropic. For a given outer iteration cycle, an inner iteration procedure
is used to solve Eq. (1) or Eq. (2) since S(r) is a function of y(r,w)
through ¢(r). Thus, it is further assumed :hat ar inner iteration cycle
has just been completed and S(r) 1is known.

An angular mesh is imposed on the domain -1 < u < 1 and the mesh
edges are denoted by “m:l 2 and “m-l/Z < “III_ < hll'H-].lIZ' We inicially insist
that up be the midpoint of the interval. We denote

'.-m(r) = u(r.\.m) (4)

and define the normalized mesh intervals by

1
o = 'z'(“ml/: | "m-1/2)' ¢

m=1, 2,... M.

The discrete~ordinates approximation to Eq. (2) is then

ng d0r2 ) Clan/2ima2 T w1212, .
R T et = TR - SO 6y
r m
m= 1, 2,..., M.
where
M
S(r) = u"(r)T(r) +Q(r) = -vu(r)z Wi (r) + 00, (7
m'=]

and
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/2 T %p-172 © Mobp o (8)

m=1,2,..., M

In Eqs- (B) ul is taken to be zero Jdue to ieutron conservation argu-
ments" and, if éﬁe mesh points and intervals are aymmetric (up = -Up-mil
and Wy = Uy_py1), @8 13 usually the case,uH+i‘E = 0. Note in Eq. (7) that
the scalar flux integral [Eq. (3)] 1s approxibited using a quadrature rule

M
TORERCED DRI ON (9

m'=]

Thus, W , ;. are simultaneously used as quadrature weights and points as
well as angular mesh intervals and mesh points.

Each of Eqs. (6) is one equation in two unknowns, Vit / (r) and

Yp(r) assuming the cell edge flux yp.-)1/2(r) 1s known. Thus an addirional
vquat {on s required. We invoke the angular diamond equalion.'

(

Pl

vp(r) = w1728 vy /() (10;

m=1, 2...., M,

as the other needed relationship. The set of Eqn. (6) and (10) are solved
in the order of small values of m, corrcsponding te the most negative
values of ke O large values of m corresponding to the most poritive
values of g,

For m= 1, a relationship with vhich to determine "}/z(r)- associated
with the direction 0 = =1, Ju needed. This equation, for the so-called
stm . ing direction flux, is obtained by wetting v = =1 In Eq. (1) result-
fng In the Hlab geometry travwport equat fon

-(|-
—e ) e el
. a(r) u”:,u) S(r). Ul

Woe have assumed that the i derfvative of ¢ {r bounded at . = =1. This ir
the case for a nonsingular soutrce=-the aituation constdered In transport
codon,

Asnociat-d with Eq. (1) {x the boundary condition at the outer
tadlun, « =~ R,

V(R = ¥(u) voe Q) (120

where v (u) (w known,  The analogou. conditionn for Eqm. (6) are
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Va(R) = ¥ (12p)
m=1, 2, ..., M/2.
Although no boundary condicion 18 required at r = O, for the development

to follow, we must consider the form of Eq. (1) at the origin. We multi-
ply by r and let r » 0 to yield

ay
M

rep = O (13a)

so that the angular flux 1s isot.opic at the origin. Analogously,
multiplying Eqs. (6) by r, letring r - 0 aund ueing Fqu. (8) and (9) yields

= 5 (r

G s

um(r)] -

mi/2
{r=0

r=0 r«0

m=1, 2, ..., M.

To determine angular truncation errsre in iqe. (6) we follow the
argument prescnted in Reference 4. Namely, for a particular m, we seek
to determine the error in the cqua:ions satiafied by wm(r). wn*é 20(1) and
.m_l/z(r). That s, to what order truncation crvor do#s Eq. ( ‘ approxi-
mat¢ Eq. (1)?7 Althouph this {s not a truncation error in the sense of
spucifically determing the error In the rolution of the equations,’ i is
one approach to viewing trucation errors and, as shown in numerical
resules,” apperently provides an accuraie meapure of the order of the
truncatjon error of the solution,

Ve expand the angular cell edpe flux !n a Taylor serles about “he
poln. ug. Then

, w2y
O PRI T B (14)
m'l/2 | m W u-'..n < ' -

Inkerting Eq. (14) into Ey, (b) and using Eq (8) yields
, 2
m (a +u y +.p = 8S) =0 " (1)
Y T tom+l/2 m-1/27 o lumy N T r

But from Ey. (B)

o m Yatel/? ] '
'my1/7 " Z (=20 ML) -Z 2 /‘" Qo) + oW,
') m'f

\lml_llz

Vo2 2 1 2 ?
—[ dp (-u) + ()N“I =y (1 - |I'”/2) + (‘k'm . (16)
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Also from Eq. (7)
b
S(r) = 0_(r) ) Mgi¥gr (1) +QUT)

M'=1

1
- .-s(,)f iy (1,0") 4 Q(r) + 00 7 = S(0) + 0N C (17)
7 -1

Combining these¢ equations yields

vy U _hmz) 9y 2 umz
vy 57 - 7% - + J(r)um(r) = S(r) + owm + O-F— (18)

2 2
The oum” 4+ 0 Wy /r error frem thie analysis assumes that g 18 the
midpoint of the angular interval. 1t is scraightforward to show, however,
that 1f the i, are selected so that

toe1/2 2

"
o Mt1/2 + OHm , (19)

‘m 2

the truncation error is still OHm2 + 0 Hmzlr. The popular Gauss Quadrature
set, common!y used with discrete ordinate codes satitien Eq. (19).

At this polint, onc might ask if the error in the flux is unbounded
as r approaches zero.  The exact flux satisfied Eq. (13a) at the origin.
Expanding ;p,1/2 of Eq. (13b) in 8 Tavlor scries about .5, however, viclds
Eq. (13n) with no truncation error. The origin flux {s, then, bounded and
Isotropic. The exact fJux is rot obtained, however, since when Eq. (11) is
sclved for all r (including r = 0), a srecond order angular truincatlon error
isn made In approximating the source uaing a quadraturc rule. For a pure
absorber, (4 = 0) we would expect rthe exact or{gin flux. Thiw {s verified
for a sample problem In Section 1[I,

The nonuniformity of the angular error ar a function of the spatial
variable can, however, cause unexpected behavior in the spatial scalar flux
profile. Namely, a nonphvelcal scalar flux deprearion cean occur in the
vicinity of the svstem orfgin, This anamely {8 duee to the dincrete-
ordinates approximat jon ftwelfl and nc spatial difference scheme that con-
verges Lo Eq. (h) can eliminate {t. Note that wince for o4 = 0, the
discrete-ordinates cquatfons give the exact molution at the svatem origin,
thin behavior should actually be viewed an a nonphvaica) riee in the ncalar
flux as one proceeds away from the origin. A demonstration of thins
anamulous behavior, for a sample vacuum problem, fm provided in the Appen-
dix. Numericeal results {n Section 111 indicate that this clars of depres-
Hiona can alre occur when o ~ 0,

B. Spatial Difforencing

1. Diamond Dil{ference Equations

We next impome a mpatial mesh on the domain 0 < r < R and let the
penh edgen he denoted hy T{41/2 and T,21/2 €71 < T4/ For mimplicity,
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we let ry be the midpoint of the interval and all mesh intervals, 4r, be
equal. We denote

- v'--(r L ) (20)
m R
i .

- 1' zl
-1, 2, 1.

The particle balance equation is derived by operating on Iqs. (6) with

an_frh»l/z 2
Vi drr”,

T1-1/2
with V; the spherical shell volume, and making suitable approximations.
Making the usual assumption that spatially dependent cross sections are

approximated by suitable averages, thls equation 1s

b

m
v, Preryzmisyz T Mey/2tee-1g2)
(A - A1)
172 = A1y ) .
* T (‘muz"mﬂ/:i T %-1/2°m 1/21) MMV IR
m=1, 2,,.., M
fe 1) 2

with A, . .,, the spherical shell areas at ry,y,9. For up > 0, for example,
&m|-1/§'ié“knoun from tha solution in the prcv{uuﬁ spatial cell while

‘m-l/”&)ls known for the previous angular cell. Thumr, coupled with Fqa (21)

and (] » Wwe require another neo of relationships, the spatial-diamond
vqunt lons
-1 + . ) (22)
‘mi 2 TTmi+l/? ml-1/2

The spatial difference approximation to Eq. (11) is obtalned by set-

ting w2 = O, and Vmy1/21 ® "y In Eq. (2]) and using Eqs. (B)
(22) ylelding

AL

= (A .
- -H——l.—z - - D
v, (-1/2.|+l/2 "1/2.1—1/2) taopgaa Y 3}

In Eq. (23), wve have swet g = -1, Equations (27) and (22), the latter for
mw 1/2, are the starting direction diamond~d{fference equationn,

It Is lmportant to note how the origin point im handled in the process
of molving kgqm. (10), (21), (22), and (23). One firat snlves the starting
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direction diamond-difference equartions proceeding from the outer boundary
to the origin. One then solves Eq. (21), for m = 1 corresponding to the
most negative value for pp. Again the solution process proceeds frem the
ourer boundary to the origin. At the vrigin a, so called, reflection con-
ditlon is normzlly used. That 1is, the direction corresponding to spectral
reflection (in thie case the direction of most positive y,) 18 solved next
and the origin value o° the angular flux for this direction 1s set equal
to that just ralculated for the m = ] direction. The calculation then
proceeds outward for this direction, k= ly. One then soives in the next
most negative direction and proceeds in an analogous way. Note that using
this procedure, the origin angular flux at ¥y p4ys @ = 1, 2,..., M/2 is
always set equal to the corresponding origin flux at ip, m =1, 2, ...,M/2.
All origin angular flux values, however, are not equal to one another, in
violation of Eq. (13b).

To analyze the truncatior. errors in Eq. (21), we usc¢ the expansion

2 2
. Lr 3% LrTooe
Ymi21/2 " ‘mt T2 wrfim B 7|t (24)
ar |im
We insert Eq. (24) fnto Eq. (21) vielding
n__.r ‘.m
A7 M2 T A T frer
(l\ - A ) '7'.
{+1/2 i-1/2 2 i - .
+ v a b ) e ;-t rlwml Smi AR (25)
I m
Sinee
(A + A Yar 2
+1/2 -1/2 .
LY s i-1/ .1+ 0 _[2 (2h)

1 r

il
We have a egpatfal truncation errer of O frzlr: added to a 0.7 error
resulting from Eq. (22)

Equation (21), then has a nonuriform spatial truncation error. We

agaln scek the truncation error at the origin. Equation (21) for the
origin ceil, (rl”/1 = 'r), is

3 . - .
Vewrm a2 T A Clpp1/2*ee1/2,1 7 'm-1/2%m-1/2,1)

+ 'lu o= R (27

But, using k6. (8), (22), and

Yo 372 T vm * UM (28)
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we obtain

“m+1/2,1 " "m-1/2,1 T 0AT- (29)

Thus, we expect a first order error in the origin flux. A similar analysis
vields a first order error in the starting direction origin flux as well.
This first order arror is demonstrated in the numerical results.

This first order error can cause a flux depression at the origin
quite independent from that due to the discrete-ordinates approximation.
This latter class of depressions 18 much more common but eventually dis-
appears as the spatial mesh if refined.

2. Alcouffe-Miller Correction

R. E. Alcouffe and W. F. Miller, Jr.7 have recently developed a
correction that yields second-order spatial truncation errors for all
values of r, including r = 0. The correction entails first changing the
starting direction differenz> equations. Wc note from Eq. (11; that the
starting directlon equatiosn i{s preciselv the slab transport equation. 1In
lieu of the rraditional diifei»ncing, given by Eq. (23), we use glab
geometry differencing.! Operating on Eq. (11) with

.ﬁlf i+1/2
..r
Ti-1/2

and approximating the cecll average flux with the cell center flux vields

- (v - )
"1/2141/2 ~ 1/21-1/2 .
Ir A VPR Qo

In addi{tion to Eq. (30) we use the diamond equaticn

V1721 = Y2Gy 004172 t V1y21-172) (31

By Taylor expansion, it is fF.raightiorward to show that the truncation
error is 0Ar«. This 18 _c decided improvement ouver the truncation error of
Eq. (23), otr?/e2 + var?.

In the Alcouffe-Miller correction, Eqs. (30) and (31) are used Lo
sweep the mesh ‘from r = R to r » 0. Then atr the origin, the flux is set
equal to w]/Z 1/2 for all m.

y1/2

w172 = Y1/2,1/2 =1, 2,..., M
This assures an isotropic origin flux and a second-order spatial trunca-

tion error everywhere. Then for 1t = 1l and m = 1, 2,..., M/2, the spatial
diamond equation , Eq. (22), is not needed and {8 not invoked.
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III. NUMERICAL RESULTS AND CONCLUS1ONS

To demonstrate our results, ve solve a simple homogeneous medium
problem with 0 = 1.0, og = 0.0, Q = 1.0 everywhere, M = 4, vacuum boundary
conditions, R = 4.0, and for various values of Ar. In Table 1 we see the
second order origin flux with the Alcouffe-Miller correciion as opposed
to the first-order error given by the craditional approach. The errors
are calculated using the exact origin flux .98168. Ve demonstrate elimi-
nation of the flux dip with this latter method by also tabulating the
edge flux adjacent to the nrigin (r = Ar). For the fine mesh case, chang-
ing M to B or 16 does not alter the origin flux indicating
that for a pure absorber, the angular truncation error at the origin goes
to zero.

Vhen o 18 changed to .01, the depression in the flux persists, as the
mesh i1s refined even with the Alcouffe-lMiller correction indicating that
the depression is due to the discrete-ordinates approximation itself.

In conclusion, we have shown that a class of flux depressions may
appear due to the discrete ordinates approximation and cannot be climinated
with a convergent spatial difference scheme. The more common class of
depressions, due tc sparial differencing, may be eliminated in most cases
by Invoking the simple Alcouffe-Miller correction. This correction also
vields second-order fluxes for any fixed r. The first class of deprescions
appears to be important only when o is quite small.

TABLE 1

SAMPLE PROBLEM DFMONSTRATING DIAMOND DIFFERENCING

Origin Scalar Scalar rlux woerior In |
No. of ¥qual Flux at r = 4r oripin flux
- Mesh Int. | o AM Db Al nn AM
2 .B6165 | 1.00000 | 1.1861] 1.1450 12.2% | 1.87
4 95899 .98765 | 1.0112 1.0056 2,31 .h)
8 . 9800 .98320 | .98106 .98113 .17 .15
i6 . 98053 .98207 .981139 .98151 .12 .04
32 .98103 98178 . 98154 .98163 .07 .01
64 . 98134 .98171 .98162 .9Bi67 .04 -

DD - Diamond Difference
All - Diamond Difference with Alccuffc-Miller correction
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APPENDIX

We consider the problem of a spherical vacuum with a constant, lso-
tropic source extending to r = R and two angular directions (M = 2),
The solution vo Eq. (11), for the starting direction flux, 1s

4,0 = Q- 0. (A-1)

Using the Gaussian Quadrature, we find the flux for the direction
Wy - -1/7/3 by solving the equatfon (obtalned from Eq. (6)),

A, r1y2tn) (-2

In deriving Eq. (A-2) we have used Eq. (J0). Simplifying and uslng Eq. (8),
we obrLaln
d; 2 )
R

2
dr r VI

Uslng an integrating factor of r_2 we can write Eq. (A-3) as an intcgral
cquat fon;

(A-3)

K
(r) = r .2 . r2
"1 dr'{) Q(FT) + 2 :T{ wllg(r') ) . (A-4)

r

Inserting Eq. (A=1) Into Eq. (A-4) ylelds

2
3 -3 - r. . -
;](r) ' q{ R-(2-v3)r 3 Iy N } (A-5)

Uaing the angular diamond-=difference equat ton, Ey. (10),

() = W () =) =gl R - -2 -2 - J)r""} v (A=)
EYF ! V1/2 R

We pext conidder the direction kg = + 1/+3 and repeat the above pro-
cuedure.  Analogous to Eq. (A=4) 18

N Y o
U-z(l‘) 'f ur'! \l Q wh + ?'.'-_Vz(,- ?)
0 ! !

?
- Q{R + .]‘ 0B Y1 - 6)r - (VY - 1) -:( } ' (A-7)
Now {-om Eq. (9)

)
2 ,. , P A r . _
T2 - ) - () ”u’ (A-8)

|"'l

¢u>-}(%oﬂ+uuva-u{u+
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It is clear from Eqs. {(A-S) - (A-B)} that the flux is 1sotropic atl
the origin. Mowever, note that

9—3;(3)--0a1r-.211325a.

Also since

LLZ(L).< 0
dr

thls Is a maximum. Hence a scalur flux depression exists in the vicinfty
of the orlgin for this problem.

11 i not difficult to show that the exact solution to this problem
(the solution to Eq. (1)) is

T 2, 2
"'(l'.u) =5 (r'..+ \/N - r(1 - ) .

Then

1 . 2_2
i(r) = 1/ di, (ry) = :{R + ---2-;-'--- In (Il:-t—:)} .
-1

Note that now

ar Ir'() )
nnd
.2,
nfa

1
Q-r"'l‘-()

« {3,

o that there fa no depresslon o the exact sealar flux at the origin,
Note alre that the diserete=erdinates solutfon s oxact ot the origin,
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