LA-UR -80-3071

. . . .

CONF-801011 -- 55-

TITLE: ASSESSMENT OF THE SLOWLY-IMPLODING LINER (LINUS) FUSION REACTOR CONCEPT

AUTHOR(S): R. L. Miller and R. A. Krakowski

SUBMITTED TO: 4th ANS Topical Meeting on the Technology of Controlled Nuclear Fusion King of Prussia, PA (October 14-17, 1980)

MASTER

----- DISCLAMER -

If the display operation is not been there are any agency for any respectively find the basis between the hypothesis in the basis of the larger operation of the any agency (beam) and any of the display in the second secgential contrasts of the larger operation of the any agency (beam) and any of the display in the second seconduction of the second seco

By acceptance of this article, the publisher recognizes that the U.S. Go immunit retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

LOS ALAMOS SCIENTIFIC LABORATORY

.

Post Office Box 1663 Los Alamos, New Mexico 87545 An Affirmative Action/Equal Opportunity Employer

UNITED STATES DEPANTMENT OF ENERGY CONTRACT W-7405-RNG JS Jen

ASSESSMENT OF THE SLOWLY-IMPLODING LINER (LINUS)

FUSION REACTOR CONCEPT*

Ronald L. Miller and Robert A. Krakowski Los Alamos Sci ntific Laboratory, University of California Los Alamos, NM 87545

ABSTRACT

Prospects for the slowly-imploding liner (LINUS) fusion reactor concept are reviewed. The concept envisages the nondestructive, repetitive and reversible implosion of a liquid-metal cylindrical annulus (liner) onto field-reversed DT plasmoids. Adiabatic heating of the plasmoid to ignition at ultra-high magnetic fields results in a compact, high power density fusion reactor with unique solutions to several technological problems and potentially favorable economics.

I. INTRODUCTION

The slowly-imploding liner (LINUS) fusion reactor concept is one of several alternative approaches to magnetic fusion presently under active consideration.1.2 The primary proponent of this approach and center of experimental activity is the US Naval Research Laboratory (NRL). Additional modeling of the concept in the context of a commercial power reactor has been carried out at a number of US institutions. 3īn addition, a study of a similar device has been made in the USSR.⁸ The present LASL study⁶ involved the development of a comprehensive computer model of the liner implosion dynamics and the plasmoid response. This model is used to assess the LINUS reactor energy balance and determine potentially attractive design points, which were subsequently examined by a preliminary economics model for the determination of direct capital costs and the cost of electricity. In addition, certain LINUS nucleonics and mechanical design issues were addressed. While all of the abovementioned studies have invoked various design options, which will be identified and discussed below, the fundamental approach is common to all and is summarized here.

Imploding-liner magnetic flux compression is a well-known technique for achieving ultra-high (> 50 T) magnetic field strengths for various applications.⁹ At thermonuclear temperatures (10-20 keV) these high field strengths allow the confinement of high-density (> $10^{2.3}/m^3$) DT plasma for times (~ 1 ms) that are determined by the inertial continement provided by the liner at

Work performed under the auspices of the U.S. Department of Energy. peak compression (turnaround) and which satisfy the Lawson criterion. Electromagnetic systems exploiting this approach using small, thin, solid metallic liners with fast implosion speeds ($v \sim 10^4$ m/s) have been considered.^{2,10,11,12} The vigorous thermonuclear energy release (> 3 G.¹ in ~ 1 µs) that characterizes these fast implosions is expected to result in the destruction of the liner apparatus and nearby current leads. The economics of refabrication of the destroyed apparatus necessitates high-gain (i.e., Q > 12, where Q equals thermonuclear energy released relative to the liner kinetic energy) systems with potentially severe technological constraints in the areas of pulsed energy transfer and storage, plasma preparation, blast confinement and the economics of material utilization.

In contrast to the fast-liner approach, the LINUS reactor envirages a slower, reversible implosion (v $\sim 10^2$ m/s) of a larger (initial thickness ~ 0.4 m and length ~ 10 m) liquid-metal liner using mechanical or gas-dynamic drive. A field-reversed plasmoid¹³ (Compact Toroid) would provide the basic plasma configuration on which the liner would act, thereby eliminating well-known particle/energy end-losses associated with open field line systems. 14 The power cycle can be made reversible if the fusion-product alpha-particle energy gained by an expanding DT plasmoid in each pulse can be matched to the viscous and frictional losses incurred, and the initial driver energy is thereby fully restored. This reversibility allows economical reactor operation for low Q-values (~1.2) with nondestructive pulsed energy releases (~ 3 GJ in ~ 1 ms). In addition to providing the plasma heating mechanism, the liquid-metal (Li or LiPb) liner material itself would simultaneously serve the functions of: renewable "first-wall", capable of accommodating severe pulsed thermal loadings (> 50 MW/m²); tritlem breeding blanket; neutron and gamma-ray shield of the permanent reactor structural components; and primary heit-transfer medium. This combination of functions, when coupled with the high power-density performance of the high-beta plasmoid, leads to a relatively compact and potentially attractive scheme for fusion power.

The basic LINUS reactor operating cycle is illustrated in Fig. 1. In the initial state (a), the cylindrical liner is at rest (radially), and a high-pressure (~ 15 MPa) helium gas reservoir (~ 500 m³) provides the energy storage required to drive the liner implosion. The liquid-metal liner (T_o ~ 550 K) is rotated (100-300 rpm) in order to provide centrifugally a central burn chamber and to stabilize the free inner surface of the liner against Rayleigh-Taylor hydrodynamic instabilities at turnaround. The outer liner surface is at all times constrained by the implosion mechanism. As the plasmoid is wither created in situ or translated into the device from one end of the liner (Sec. III.A.), fast-acting helium isolation valves are opened, and the liner is imploded radially in ~ 20 ms. Radial compression ratios are ~ 10, the liquidmetal liner acts as a non-ideal flux conserver and "dynamic coil" during the implosion. The adiabatic compression of the DT plasmoid and associated magnetic field results in an ignited thermonuclear burn for a short (~ 1 ms) inertial dwell time at peak liner compression (c). During the burn thermonuclear neutrons are deposited in the liner material, which because of cylindrical convergence is ~ 1-m thick at peak compression. Provided that the radial dimensions are appropriately choson, the alpha-particle energy (pressure) added to the plasmoid can be sufficient to compensate for the mechanical, resistive and viscous losses incurred during the liner implosion and re-expansion; the configuration is thereby returned to its initial state (d). The helium reservoir is repressurized by the alpha-particle driven liner expension for use on the subsequent cycle. The expansion quenches the thormonucleal burn, and the spent from the system. plangold is flushed Recondensation of vaporized liner material on a cooler inner surface and the preparation of another plasmoid completes the LINUS burn cycle. These requirements suggest a minimum cycle time between implosions of ~ 1 s.

.

Fig. 1. Schematic representation of the UINUS reactor reversible operating cycle.

Tite liquid-metal liner is circulated continuously out of the reactor, through the primary coolant loop for heat removal and tritium separation and back to the reactor. A surge tank between the LINUS reactor and the steam generator would minimize adverse pressure cycling. The liquid-metal inventory in the reactor cycles completely in approximately five to ten implosion/expansion cycles. With a time-averaged gross thermal power of 3000 MWt and Li flow of 5000 kg/s the average temperature increase is 160 K between inlet and outlet manifolds. A LiPb system might be expected to require larger heat exchangers and higher pumping power than a Li system. Balance of plant (BOP) features of a LINUS power plant would be similar to most other fusion plants using a liquid-metal primary coolant. Plant output can be expected to be in the range 500-1000 MWe(net). The basics of the LINUS power cycle will be elaborated in subsequent sections.

II. REACTOR PHYSICS MODEL

The LINUS reactor design point is determined by dynamically coupled models describing both the liner and the plasmoid response. Inertial, flux penetration and evaporative heat-transfer phenomena couple the liner/plasmoid models to describe the overall reactor performance.

A. Liner Dynamics

Nodeling of the liner dynamics for LiNUS usually assumes^{5,6,7} that the liner material s inviscid and incompressible. Temperature-dependent liner thermal conductivity, heat capacity and electrical resistivity are used. In the present model6 mass continuity, momentum and energy conservation equations for the liner are solved subject to the time-varying heltum driving-pressure boundary condition at the outer liner surface and the time varying plasmoid pressure at t e inner surface. The rotating liner conserves angular momentum as it implodes. Nonlinear magnetic flux penetration into the liner can be included directly5,6,15 or by means of skin-depth approximations.9 Flux diffuses ~ 0.1 m into the inner liner surface during the liner implosion. Dissipation of flux in the liner adds to the irrevorvible mechanical losses and must also be overcome by the alpha-particle energy. Computer simulation of compressible liner dynamics using a full hydrodynamic theory has been performed¹⁴; these more detailed computations are used to calibrate the fasterrunning incompressible codes, the former level of computation generally being too expensive for reactor survey calculations. Generally, compressibility effects are monitored using ad hoc but reasonably accurate representations.5:6:17 Compressibility effects will require additional energy investment to achieve a desired compression ratio, but the need to supply this added energy each cycle may be offset by an enhanced liner dwell at maximum compression, the increased burn time leads to an increased thermonuclear vield and higher Q-value.

Energy stored in the compression of liner material, however, is released in the form of shocks which travel through the liner material and act on the permanent reactor structure, which must be suitably strengthened.

of An experimental study slow-liner 'mplosions dynamics without plasma is underway at NRL.^{3,18} Stable, and reversible liner compression/expansion cycles have been demonstrated for liner implosions onto magnetic-field payloads. Liner rotation. required to suppress Rayleigh-Taylor instabilities of the inner liner surface at turnaround, is achieved by rotating the entire implosion mechanism or can be achieved by means of tangential injection of the liner material.19 Either of these techniques may extrapolate to the LINUS reactor.

A typical liner trajectory during the implosion cycle is illustrated in Fig. 2. The scaling of the initial liner radius (~ 2 m), thickness (mass), rotational speed and compression ratio predict sufficient compression to achieve a self-sustaining cycle and to satisfy the nucleonics constraint of ~ 1-m liner thickness at peak compression (Sec. III.C.). The plasmoid separatrix radius is at all times close to the inner surface of the liner as required by the plasmoid equilibrium model (Sec. II.8.).

Fig. 2. Typical cylindrical liner implositrajectory. Inner and outer liner boundaries and the plasmoid separatrix radius are shown as a function of time.

Two distinct options are currently under investigation 38 liner~drive mechanisms: axial oppositely-directed pistons and a collapsing shell with mass approximately ten times the Li-liner mass. Choice of the appropriate drive mechanism is linked strongly to the choice of liner material (Li or LiPb), plasma preparation cechnique (Sec. J.I.A.) mechanical design issues (Sec III.B.). and The present model⁶ focuses on the second option.

3. Plasma Model

The DT plasmoid that appears most compatible with the LINUS reactor configuration is the Field-Reversed Configuration (FRC), which is The component of the Compact Toroid (CT) family13,20 that supports no toroidal field. This plasmoid geometry is illustrated in Fig. 3. Closed magnetic lines inside the magnetic separatrix provide thermal isolation and reduce transport losses. The availability of high-beta plasmoid equilibria for the FRC proposed for LINUS allows high power-density burns that are consistent with the high heat-flux capabilities of the LINUS "first-wall". The presence of an open field line buffer between the separatrix and the liner inner surface can isolate the plasmoid from contact with contaminating liner material evaporated during the burn, thereby acting effectively as a divertor. Flux diffusion into the liner reduces the thickness of the buffer layer and sets a limit on the initial plasma filling fraction.

The CT equilibrium implies²⁰ that the average plasmoid beta-value $\langle\beta\rangle_g$ within the separatrix radius r_g is given by

$$\langle e \rangle_{g} = 1 - \frac{1}{2} (r_{g}/r_{\omega})^{2} \ge 0.5$$
 (1)

The corresponding beta evaluated within the inner liner surface, $\langle 8 \rangle_{\omega}$, is ≤ 0.5 , but varies slowly during the implosion. An alternative plasmoid equilibrium may allow higher overall values of $\langle 8 \rangle_{\omega}$ if axial pressure is supported by endwalls, and the separatrix radius r_{m} equals the inner

Fig. 3. Compact Toroid (CT) plasma equilibrium configuration as used in LINUS.

liner radius r_{ij} . During compression of this configuration, $\langle\beta\rangle_{ij}$ drops sharply. This behavior may dictate the choice between one of two possible plasma preparation methods (Sec. III.A.). The plasmoid can be produced <u>ir. situ</u> using hollow, rotating relativiatic electron beam techniques²¹ or can be formed externally by a Field-Reversed Theta Pinch (FROP)²⁰ that subsequently is translated into the burn chamter through an open end.

.

. .

Studies of adiabatic compression of these FRC plasmoids and transport properties predict favorable results in the reactor regime.^{5,22,23} Accordingly, the present reactor model⁶ specifies that both particle and energy confinement times The are long compared to the implosion time. present model uses a three-particle (ion, electron and alpha-particle) point representation of the plasmoid equilibrium.²⁰ In the limit of ideal adiabatic compression, the plasmoid separatrix and length vary self consistently under compression of the CT plasmoid according to²⁰

$$l/l_{o} \sim (r_{g}/r_{so})^{2/5}$$
, (2)

such that the plasmoid contracts axially to about one half of its original length under full radial compression. The equilibrium model assumes that the plasmoid is prolate (elongation $1/r_{\rm g} > 5$), which for a minimum radius determined by the cycle reversibility requirement (Sec. II.C.) leads to fusion yields of ~ 3 GJ/pulse and timeaveraged gross thermal power outputs of ~ 3000 MWt for - 1 Hz operation.

The partition of alpha-particle energy between ions and electrons during incomplete thermalization is modeled using a time-dependent, point Fokker-Planck technique.²⁴ Bremsstrahlung and cyclotron radiation provide a surface heat flux at the inner liner surface, and the neutrons provide a volumetric liner internal heat source (Sec. III.C.), which in addition to the dissipation of magnetic flux in the liner can heat the inner liner surface to its boiling point (~ 1600 K) and evaporate ~ 0.1 kg of liner material. This evaporated material must be recondensed/evacuated between pulses.

C. Design-Point Determination Scaling of LINUS reactor performance has been considered with a view toward optimizing design parameters and minimizing the reactor size required to achieve self-mustaining cycles.^{5,25,25} An estimate for the minimum reactor size (i.e., minimum radius to give a reversible cycle) is given by⁵

$$r_{wo} = \langle \beta_f^2 \rangle_{w}^{-2/3} p^{-1/2} n^{1/3} (\rho t n a)^{-1/6}, (3)$$

where $\langle \beta_i^2 \rangle_{i}$ is the rms spatially-averaged value of beta at peak compression, P is the drive pressure, n is the electrical resistivity of the liner material, ρ is the mass density of the liner material and a is the radial compression ratio. For drive pressures P - 15 MPa, Eq. (3) suggests r, should be ~ 2-4 m for both the Li-liner/collapsing-shell and LiPb-liner/arialpiston systems depending upon the reversibility of the implosion.⁵ The dominant term in this is the requirement for a high-beta scaling payload ($\langle \beta_f \rangle \sim 0.4$) at peak compression. This scaling guides the selection of initial conditions for the simulation codes used to identify specific LINUS operating points.

Parametric and optimization studies are used to identify attractive LINUS reactor design points. These numerical studies generally confirm the scaling of Eq. (3). With the caveat that different simulation models were used by the different institutions involved, Table I summarizes a range of typical LINUS design points reported to date. These design points scope the range of potential LINUS reactor operation and are not necessarily optimized or directly comparable. The present model has been used to confirm the NRL design point summarized in column 4 of Table I and to project the LASL design point in column 5. Tradeoff and optimization studies are reported elsewhere.6

REACTOR TECHNOLOGY ASSESSMENT III.

A. Plasma Formation

Two methods have been proposed for preparing the initial LINUS plasma: relativistic electron beam techniques 2^{1} and the Field-Reversed Theta Pinch (FROP).²⁰ The choice of a particular approach will be dictated by the success of its development, and by the interface with the LINUS mechanical design.

In the first approach a DT fill gas is puffed into the burn chamber. A hollow, rotating electron beam is pulsed through an annular slit in one endwall of the device. Interaction of the beam with the gas produces in situ the desired field configuration and plasma heating to - 0.5 keV. The cndwall is equipped with a shutter mechanium to isolate the electron-beam generator from the reactor chamber during the implosion. In addition a higher-beta plasmoid with a portion of the axial pressure supported by the endwalls can be accommodated. The electron-beam generator energy would be on the order of 40 MJ per oulse (~ 1 Hz) with an efficiency ~ 50% to create a plasmoid with an energy of 20 MJ.

The FROP approach produces the plasmold externally to the liner and subsequently translates it into the burn chamber through an open end. The plasmoid size requirement $(r_y \sim 2 m_z - 10 m)$ are similar to those envisaged for the Compact Toroid Reactor (CTOR)²⁸, but, since the LINUS compression ratio is higher, the initial plasmoid temperature (~ 0.5 keV) and energy can be lower. The parameters of the initial LINUS plasmoid seem attainable by either

TABLE I							
SUMMARY	0F	LINUS	REACTOR	DESIGN	POINTS		

	USSR	MSNW	NRL	NRL	LASL.
Reference	8	-5	2	27	6
Liner materia]	LIPB	L1Pb	LiPb	Lí	Li
Driver scheme ^(a)	AC		AP	RCS	NCS
Plasma preparation method ^(b)	FROP		FROP	REB	FROP
Radial compression ratig		10	10	10	12
Drive pressure (10 ⁶ N/m ²)		13.8	20.7	13.8	13.8
Initial plasmoid conditions:					
● radius (m)	1.8	1.6	ι.9	1.4	1.4
length (m)	3.0	10.0	7.8	10.0	10.0
temperature_(key)	0.40	0.63	0.38	0.47	0.42
• density $(10^{20}/m^3)$		9.3		8.2	8.2
● average beta, <8>		0.8		0.75	0.75
 magnetic field (T) 		0.69	0.34	0.56	0.56
● energy (MJ)	15	40	13	20	20
Compressed plasmoid conditions:					
• radius (m)			0.08	0.11	0.11
length (m)		10.0	3.1	10.0	10.0
● temperature_(ke¥)			15	15	20
• density $(10^{20}/m^3)$			2400	2800	1 9 00
● average beta, <ß>		0.47	0.55	0.47	0.60
 magnetic field (T) 			54	59	60
Cycle time (s)	5.0	1.0	1.0	0.64	0.5
Neutron current (MW/m²)			30.5		259
Thermal power (MWt)	1600	3200	1790	170	335 0
Net power (MWe)	700	870	507	861	910
Plasma power density (MWt/m ³)			4000		6500
System power density (dwt/m ³)			4.1 ^(c))	4.1
Recirculating power fraction	0.06	0.19	0.15	0,14	.22
Net plant efflorency	0.47	0.27	0.28	0.28	0,27
Direct cost (\$/kWe)					1000
Cost of electricity (mills/kWeh)					60

(a) Axial piston (AP), Rotating Collapsing Shell (RCS), Monrotating Collapsing Shell (NCS), or Axial current (AC). (b) Rotating electron beam (REB) or Field-Reversed Theta Pinch (FROP). (c) Calculated using a volume including the helium gas reservoirs. If only the initial liner volume is included this number rises to ~ 20 .

preparation method but considerable developmental work would be required in either case.

B. Mechanical Dostan

Final selection of a reference LINUS reactor mechanical design rescs on the resolution and interaction of a number of physics and technology questions. The requirement for a manufve liner, as predicted by Eq. (3), can be met either with a LiPb liner or with a Li liner constrained by a mansive collapsing shell driver. Potation of the liver material can be achieved by rotating the implosion mechanism or by tangential fluid Injection into a nonrotating mechanism. Figure 4 illustrates a concept? for combining the features of the missive collapsing shell with ports for tangentful injection of Li. As the azimuthal segments of the collapsing shell move radially inward, they move together to decrease the circumference of the shell and displace the rotating liquid-metal liner inward. Alternate Regments are equipped with ports for inlet of new liner material and outlet to the manifolding of the primary loop hot leg. The segments would

have to be equipped with sliding seals to isolate the helium pressure reservoir from the liquid Li. Plasma preparation considerations may dictate either a burn chamber with open ends or one with endwalls to support higher values of average bets. Radial dimensions depend on reaching reversible cycle performance as given by Eq. (3) οr predicted by more exact numerical simulations.^b The length of the reactor is in part dictated by the elongation implicit in the plasmoid equilibrium and probably constrains reactor thermal output to be greater than ~ 300 MWt. Generic problems include the chemical compatibility of the liquid metal with the reactor structural material, cyclic fatigue of the liner drive mochanism, achieving vacuum levels in the presence of a free liquid metal murface at elevated temperature and inolation of the plasma source apparatus from the liquid metal and from funion neutrons. Specific design issues have been addressed classberg, 6:27:29:32 These include aliding liquid-metal scals, mechanical design of the implosion mechanism, hydrodynamic ("water shocks. hammer"), maintenance

Fig. 4. Conceptual collapsing-shell liner-drive mechanism with tangential injection ports.

considerations and the interface of the LINUS nuclear island with the BOP.

C. Nucleonics

Nucleonics performance of the LINUS reactor includes: the ability to achieve a tritium breeding ratio greater than unity, energy deposition as a function of radius in the liner material, and radial and axial leakage of fusion neutrons from the liner into the structural components of the reactor. Factors influencing the nucleonics performance include: isotopic composition of the liner material, thickness of the liner at maximum compression radius, and thermonuclear neutron source strength. These issues have been discrete-ordinates ranspor been addressed using ransport rodes³⁰ and Monte Carlo techniques. 6,31 Results from the latter scoping calculation are summarized in Fig. 5 as a function of liner thickness at maximum compression. For natural lithian netal and a maximum liner thicknesses in excess of 0.8 m, the triffin breeding ratio easily exceeds 1.4, due to the obsence of structural material in the liner. For systems of ~ 10-m length the dominant neutron loss channel is radial rather than axial streaming into the reactor end Valla. Radial losses can be reduced substantially for peak liner thicknesses above 1.3 m. The blanket energy enhancement relative to 14.06 MeV/neutron saturates at ~ 1.1 for L1 taicknesses near 1.0 m. Libb liners have comparable leakage and energy enhancement properties and higher tritium breeding ratios (< 1.9) because of (n, 2n) reactions with the Pb.³⁰ The volumetric heat source provided by the neutrons and gamma rays decreases exponentially from the inner liner surface with a characteriscic distance ~ 0.15 m.

Fig. 5. Summary of typical LINUS reactor nucleonics computations using the MCNP code.

Neutron heating dominates gamma-ray heating by an order of magnitude. Energy deposition near the inner liner surface increases the liner temperature and electrical resistivity, thus enhancing magnetic flux diffusion.⁶ Energy deposition times are comparable to the liner dwell time at maximum compression (~ 1 μ s) and terminate well before the liner has reexpanded and thinned, indicating that the reactor structure should be adequately shielded for the critical period at peak compression. Axial neutron streaming to an improtected endwall or to the plasma preparation device, however, could pose a problem. A surge of liquid metal has been proposed⁶ as a means of protecting the endwall for systems in which the plasmoid contracts axially.

<u>D. Economics</u> Several factors combine to suggest that the LINUS reactor will be economically competitive with other fusion approaches. The renewable liquid-metal "first-vall" allows higher wall loadings and higher engineering power densities than are possible with solid structural walls. This characteristic translates into lower naterial and space requirements for a fixed level of power output; hence, lower costs result. Also, the combination of several functions into the liner itself (e.g., confinement mechanism, plasma heater and primary heat-transfer medium), each requiring separate systems in other fusion systems, should lead to economies that are unique to the LINUS approach. The compact nuclear island may allow shorter construction times than the nominal 10 years assumed here.

Preliminary cost estimates for the LINUS reactor have been made. 6:32 Construction time and BOP costs are determined by scaling laws which are independent of the use of a LINUS nuclear island. Table II summarizes the result of one such estimate for the LASE design point of Table I. It is emphasized that absolute cost values are intended only for the intercomparison of Interim LINUS reactor designs and are not intended for absolute comparisons with existing

TABLE II

TYPICAL LINUS FUSION REACTOR ECONOMIC SUMMARY

ACCOUNT TITLE	MILLION	DOLLARS
Land and land rights		2.5
Structures and site		
faciliti es		90.0
Reactor plant equipment		460.0
Plasma preparation	12.0	
Reactor mechanism	15.0	
Reactor structure and		
support	13.0	
Reactor vacuum system	10.0	
Power supply and switching	67.0	
Main heat transport		
svstem	212.0	
Auxiliary cooling system	2.0	
Radwaste treatment and	••••	
disposal	3.0	
Fuel handling and storage	2.0	
Other reactor plant equip-	210	
ment	13.0	
Instrumentation and control	16.0	
Spare parts allowance	16.0	
Contingency allowance	92.0	
Turbine plant equipment	210	180.0
Electric plant equipment		140.0
Miscellaneous plant equipment		18.0
Special materials		30.0
Total reactor direct capital		2000
cost		918-0
Construction facilities.		
equipment and services (15%)		138.0
Engineering and construction		
management services (15%)		138.0
Other costs (5%)		46.0
Interest: 10-year		
construction (64.42)		798.0
Escalation: 10-year		
construction (33.8%)		419.0
Total reactor capital cost		2455.0

Assumed plant availability factor	0.85
Direct investment cost (\$/kWe)	982.0
Total investment cost (\$/kWe)	2627.0
Capital return: 15% (mills/kWeh)	53.0
Operating: 2% (mills/kWeh)	6.0
Cost of electricity (mills/kWeh)	59.0

energy technologies on the basis of present costs.33

IV. SUMMARY AND CONCLUSIONS

The LINUS fusion reactor concept results in a compact, high-power density device with unique solutions to several technological problems and potentially favorable economics. Furthermore, LINUS is an attractive option for utilizing the Compact Toroid plasma configuration. Simultaneously, several physics and engineering

issues have yet to be fully explored; issues which impact directly on LINUS reactor configuration, size and performance and, therefore, on its attractiveness as an approach to commercial fusion power. Specifically, these issues include: the choice of liner drive mechanism and liner material (Li or LiPb), the choice and performance of plasma preparation technique, the ability to achieve reversible compression/expansion cycles in the presence of nonlinear flux diffusion into the liner material, the ability to recondense and evacuate evaporated liner material and the spent plasmoid in the time interval (~1 s) between pulses, and the detailed design/compatibility of the liner-drive mechanism with the liquid-metal liner.

V. ACKNOWLEDCMENTS The authors wish to acknowledge useful discussions with R. L. Hagenson (SAI), A. E. Robson (NRL) and P. J. Turchi (R&D Associates). Supporting design calculations from G. E. Cort, T. O. Davis, D. J. Dudziak and P. D. Soran, all of LASL, are gratefully appreciated.

REFERENCES

- R. A. Krakowski, R. L. Miller and R. L. Hagenson, "Alternative Concepts for Magnetic Fusion," these proceedings.
- 2. C. A. Baker, G. A. Carlson and R. Α. Krakowski, "Trends and Developments in Magnetic Confinement Fusion Reactor Concepts," Nuclear Technology -Fusion, (to be published, 1981).
- 3. D. L. Book, et al., "Experimental and Theoretical Liner Research at NRL, SAI, and LASL," 7th Inter. Conf. on Plasma Physics and Controlled Nuclear Fusion Research, IAEA-CN-37-E-5, II, 93-104 (August 23-30, 1978).
- 4. M. J. Schaffer, R. F. Bourque, C. L. Haieh, R. E. Waltz and T. Yamagishi, "A Calculation of Linear Magnetic Liner Fusion Reactor Performance," Proc. 13th Intersoc. Energy Conv. Eng. Conf., 2, 1383-1368 (August 20-25, 1978).
- 5. D. C. Quimby, A. L. Hoffman and G. C. Vlases, "LINUS Cycle Calculations Including Plasma Transport and Resistive Flux Loss in an Incompressible Liner," Mathematical Sciences Northwest, Inc. report MSNW ceport MSNW 80-1144-4 (August, 1980).
- 6. R. L. Miller and R. A. Krakowski, "Reassessment of the Slowly-Imploding Liner (LINUS) Fusion Reactor Concept," Los Alamos Scientific Laboratory report (to be published, 1980).

- 7. A. E. Robson, "The Linus Reactor: Compression of a Compact Torus by a Liquid Metal Liner," Proc. US-JAPAN Joint Symp. on Compact Toruses and Energetic Particle Injection, Princeton, NJ, 208-211 (December 12-14, 1979).
- I. M. Artiugina, V. A. Zheltov, V. V. Kantan, A. V. Komin, V. M. Koren', M. V. Krivosheev, A. B. Mineev, and A. N. Smirnov, "Thermonuclear Power Station Based on a Reactor with a Partially Evaporating Liner," Voprosy Atomoni Nauki i Tekhniki. Seriia: Termoladernyi Sintez, <u>1</u>, 3, 62-71 (1979), (available as Los Alamos Scientific Laboratory translation LA-TR-79-42,(1979)).
- H. Knoepfel, <u>Pulsed High Magnetic Fields</u>, North-Holland Publishers, Amsterdam, (1976).
- R. A. Gerwin and R. C. Malone, "Adiabatic Plasma Heating and Fusion-Energy Production by a Compressible Fast Liner," Nucl. Fus., <u>19</u>, 155-177 (1979).
- 11. R. W. Moses, R. A. Krakowski and R. L. Miller, "Fast-Imploding-Liner Fusion Power," Proc. 3rd ANS Topical Meeting on the Technology of Controlled Nuclear Fusion, 1, 109-110 (May 9-11, 1978).
- R. W. Moses, R. A. Krakowski, and R. L. Miller, "A Conceptual Design of the Fast Liner Reactor (FLR) for Fusion Power," Los Alamos Scientific Laboratory report LA-7686-MS (February, 1979).
- J. K. Wright, R. D. Merson and B. Chambers, "Equilibrium Configurations of the Plasma in Theta Discharges with Reversed Trapped Magnetic Fields," Plasma Physics (Journal of Nuclear Energy Part C), <u>3</u>, 242-245 (1961).
- 14. R. A. Krakowski, "A Survey of Linear Magnetic Fusion Reactors," Proc. 3rd ANS Topical Meeting on the Technology of Controlled Nuclear Fusion, <u>1</u>, 422-439 (May 9-11, 1978).
- A. L. Cooper and D. L. Book, "Magnetic Flux Diffusion in Imploding Liquid Liners," Physics of Fluids, <u>21</u>, 34-41 (1978).
- 16. D. L. Book and P. J. Turchi, "Numerical Studies of Compressibility Effects in Rotating Imploding Liquid Liners," Naval Research Laboratory Memorandum report 3699 (January, 1978).
- A. E. Robson, "Fundamental Requirements of a Fusion Feasibility Experiment Based on Flux Compression by a Collapsing Liner," Naval Research Laboratory Memorandum report 2616 (July, 1973).

 P. J. Turchi, R. L. Burton, A. L. Cooper, R. D. Ford, D. J. Jenkins, J. Cameron, and R. Lanham, "Development of Imploding Liner Systems for the NRL LINUS Program," Naval Research Laboratory Memorandum report 4092 (September, 1979). 1

- R. L. Burton, P. J. Turchi, D. J. Jenkins, R. E. Lanham, J. Cameron, and A. L. Cooper, "Generation of a Rotating Liquid Liner by Tangential Injection," Naval Research Laboratory Memorandum report 4025 (June, 1979).
- 20. W. T. Armstrong, R. K. Linford, J. Lipson, D. A. Platts and E. G. Sherwood, "Field Reversed Experiments (FRX) on Compact Toroids," Los Alamos Scientific Laboratory report LA-UR-80-1585 (1980) (submitted to Physics of Fluids).
- 21. J. D. Sethian, D. A. Hammer, K. A. Gerber, D. N. Spector, A. E. Robson, and G. C. Goldenbaum, "Reversed-Field Configuration Generated by a Rotating Relativistic Electron Beam," Phys. Fluids, 21, 1227-1235 (July, 1978).
- 22. D. L. Book, D. A. Hammer and P. J. Turchi, "Theoretical Studies of the Formation and Adiabatic Compression of Reversed-Field Configurations in Imploding Liners," Nucl. Fus., <u>18</u>, 159-170 (1978).
- 23. S. Hamasaki and D. L. Bock, "Numerical Simulation of the Anomalous Transport Process in Radially Compressed Reversed-Field Configurations," Nucl. Fus., 20, 289-304 (1980).
- T. A. Oliphant "Fuel Burn-up and Direct Conversion of Unergy in a D-T Plasma," Proc. B.N.E.S. Conf. on Nuclear Fusion Reactors, Culham UK, 300-321 (September, 1969).
- P. J. Turchi, "A Technological Review of Stabilized Imploding Liner Fusion Systems," Proc. 7th Symp. on Engineering Problems of Fusion Research, 604-608 (October 25-28, 1977).
- P. J. Turchi, D. L. Book and R. L. Burton, "Optimization of Stabilized Imploding Liner Fusion Reactors," Proc. 10th Symp. on Fusion Technology, <u>1</u>, 121-124 (1978).
- 27. A. E. Robson, "A Conceptual Design for an Imploding-Liner Fusion Reactor," 2nd Int. Conf. on Megagauss Magnetic Field Generation and Related Topics (May 29 - June 1, 1979).
- 28. R. L. Hagenson and R. A. Krakowski, "A Compact-Toroid Fusion Reactor Based Upon the Reversed Field Theta-Pinch : Reactor Scaling

and Optimization for CTOR," these proceedings.

- M. Brennan, <u>et al.</u>, "Engineering Analysis for LINUS Imploding Liquid Liner Systems," Proc. 8th Symp. on Engineering Problems of Fusion Research, <u>II</u>, 893-897 (1979).
- 30. D. J. Dudziek, "Nucleonic Aspects of the LINUS Imploding Blanket," Proc. 3rd ANS Topical Meeting on the Fechnology of Controlled Nuclear Fusion, <u>1</u>, 254-261 (May 9-11, 1978).
- 31. LASI. Group X 6, "MCNP A General Monte Carlo Code for Neutron and Photon Transport," Los Alamos Scientific Laboratory report LA-7396-M, Revised (1979).
- 32. N. A. Krall and G. W. Stuart, "Evaluation of Alternative Fusion Concepts," Electric Power Research In citute report (to be published, 1981).
- 33. S. C. Schulte, W. E. Bickford, C. E. Willingham, S. K. Ghose and M. G. Walker, "Fusion Reactor Design Studies - Standard Unit Costs and Cost Scaling Rules," Pacfic Northwest Laboratory report PNL-2987 (September, 1979).

1

÷