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TKE LINEAR CIIARACTERISTTCfiETHODFOR SPATIALLY
DJSCRETIZING THE DISCRETE ORDINATES EQUATIONS

IN (X,Y)-GEOMETRY*

E. W. Larsen and R. E. Alcouffe
Theoretical Division

University of California
Los Alamos National Laboratory

Los Alamos, New Fexico 87545 USA

In this article a new linear characteristic (LC) spatial differencing
scheme fur the discrete ordinates equations in (x)y)-geornetryis described
and numericnl comparisons are given with the diamond difference (DE)
method. The LC method is more stable with mesh size and is generally much
more accurate than the DJI metLod OM both fine and coarse meshes, for
eigenvalue and deep penetration problems. The LC method is based on
computations involving the exact zalution of a cell problem which has
spatially linear boundary conditiorlsand interior source. The LC method
is coupled to the diffusion synthetic acceleration (DSA) algorithm in
that the linear variations of the source are determined in part by the
results of the DSA calculation from the previous inner iteration. An
inexpensive negative-flux fixup is used which has very little effect
on the accuracy of the solution. The storage requirements .~r LC are
essentially the same as Lhat for DD, while the computational times for
LC are generally less than twice the DD computational times for ~he
same mesh. This increase in computational cost is offset if one computes
LC solutions on somewhat coaiser meshes than DD; the resulting LC solutions
are stiil generally much more accurate than the DD solutions.

W’his work was perfcrmcclunder the auspices of the U. S. Department of
Lncrgy.



THE LINEAR CHARACTERISTIC METHOD FOR SPATIALLY
DISCRETIZING THE DISCRETE ORDINATES EQUATIONS

IN (X,Y)-GEOMETRY

I. INTRODUCTION

The discrete-ordinates equations have been used for many years to approxi-
mate the neutron transport equation in large-scale numerical calculations.
The traditional method of spatially diGcretizing these equations is the
Diamond Difference (DD) method, ~lthough newer methods have been proposed
[1-11], and one of these, the Linear Discontinuous (LD) method, has re-
cently been implemented in several production codes [3,4].

A detailed study of spatial differencing schemes for the discrete-ordinates
equations in various geometries has been undertaken at Los Alamos, and the
results for slab geometry have been published [7]. These results indicate
that for slab geometry, a new Linear Characteristic (LC) scheme outperforms
the DD, LD, and other methods. In this article we describe our gc~eraliza-
tion of this rethod to (x,y)-geometry and present the results of some
numerical comparisons with the DD method.

Roughly speaking, the philosophy of the LC method is to (i) represent the
transport boundary conditions and source for a spatial cell by linear
functions; (ii) solve the cell transport problem analytically by inte-
grating along its c aracteristic lines; and (iii) generate, directly
or indirectly from this analytic solution, linear representations to be
csed as boundary conditio~s for adjoining cells and to ccnstruct a scat-
teritlgsource for the next iteration. Step (iii) in this procedure is the
most important one, since the manner ir which it is implemented determines
the speed and accuracy of the nethod, as well as its interaction with
acceleration methods and the overall s~orage requirements of the code.

In slab geometry, “~haracteristic”methods following the above basic proce-
dure have been developed by several authors [6,7,9]. Similar methods have
also been developed by other authors for other geometries, although
generally they are based on computing cell-vertex fluxes rather than
cell-average and edge-average fluxes, as is done here. Lathrop’s
(x,y)-geometry Step Characteristic (SC) method [12] does utilize cell-
average and edge-average fluxes, although his method employs constant
(lather than linear) rcprcsentatior,sfor the source and boundary conditions
for each cell. Our (x,y)-geometrymethnd can thus be regarded as a highcr-
order versioo of the SC method.

The J.Cmethod has evolved from itlioriginal conception over the course of
numeLical testing, 111sec. 11 we describe the development of this method,
and in See, 111 we present the results of some numerical studies cGmparing
the LC and DD methods, tieconc;ude with a brief discussion in Sec. IV.

. ...- .,==,._ ..... ......... ... . ..... ..... . . .... . ..... .. . .- .. . ..-



11. THEORY

To describe the LC method in (x,y)-geometry, let us consider a typical
within-group transport problem for one spatial celi:

~+o$=savP#+~ay + (x - ;) Sx + (Y +,

O<x<h, O<y<k, p>O,q>O , (2.1)

$(o,y) = $L + (Y -;)eL , O<y<k,

*(X,O) = tpB + (x -~)6B, ()<x<h.

(2.2)

(2.3)

In an inner iteration, the source for each cell (right side of Eq. (2.1))
is prescribed and one sweeps from cell to cell through the system to
obtain improved values of $; these are then used to update the source
for the next iteration. Thus we shall discuss separately the problem of
sweeping through the system with a prescribed source, and the problem of
updating the source with che new values of +.

First we consider the sweeping part of
generate linear boundary data for adjoining
representations of the angular flux exiting
text of the cell problem (2.1) - (2.3), we
of the form

the problem. In order to
cells, onc must obtain linear
each cell. Thus, in the con-
require linear representatir~ns

, 0 <X <h ,

(2.4)

(2,5)

In the orignal LC method, these representations were det:rrniut’aLj’ the
following two-step procedure: (i) construct the analytic solution $(x,y)
of the cell problem (2.1) - (2.3); (ii) choose the representations (2.4)
.Jrd (2.5) to exactly preserve the zero’th and first moments of $ on the
right and top edges of the cell. (Thic procedure owes a debt not only to
Lathrop [12], but also to Vaidyanathan [6], who has emphasized the im~or-
tance of preserving spatial moments of the analytic solu~ion of cell
problems.)

Step (i) is carried out by integrating the transport equ.itionalong its
characteristic lines. The result can be writt~n

*(X,Y) = W(x,y) + P + (x
h

av -Z) PX+(Y - ;) Py (2.6)



where

[

[~L + (y - $ - ~ X) ~L] e-mip, PY>W ,

W(x, y) = (2.7)

L! ) @B] e-W)q[aB+(x-$-q Y ,py<r;x, .

and

,P .5 ,
Ya

s
av

z pPx rlP
P =—- —

av u ( T
+2

u ) -

‘L = ‘L - ‘av
+;P

x

‘B =@B-Pav+; Py

,BL=eL-py ,

(2.8)

(2.9)

(2.10)

(2.11)

.

Step (ii) can now be carried out using this analytic form of $. All of
the integrations can be performed explicitly, since the integrar,dsinvolve
at most the product of a second-order polynomial and an ●xponential.

The most efficient coding of the method for a # O inv.lves first computing
the constanis in Eqs. (2.8) - (2.11) and then manipulating and ev~luating
Eq. (2.7). However, this procedure is invalid for u = O since all of the
constants in Eqs. [2.8) - (2.11) become infinite as rr + O. (Mathematic-
ally, this occurs because of a removable singularity at a = O. The
angular flux $ actually depends coritinuouslyon u as u + d.) We handle
this problem by utilizing a separate block of coding which treats
specifically cell problems for which u = O. Also, we t:eat cells for
which O < u << 1 in a third separate block of coding, since rouudoff errors
wo(lldotherwise become infinite as u + O. Here we expand $ in powers of
u, keeping terms only up to Us; this block of coding is used whenevez

(O C min ‘h )‘k < .01 .TiT’m

The above mctho4 is not inherently positive, for the following rea~on.
If the source and bouudary cor,ditions for the cell problem (2.1) - (2.3)
arc uonncgative, then @ is nonnegative, aud so +R and *T will be nonnega-
tive. I[owever, the values of El and (3T can be such that onc or both of
the reptesentationti (2.4), (2,5F become negative at certain points. We



h~ve observed that these negativities can lead to negative cell-average
angular and scalar fluxes. To prevent this, we alter the values of

%
or e by the mi.limumamount so tt,atthe new representations are nomega-
tiveTalong the appropriate cell edges. For example, if k 16RI > 2
then we replace 0 by &eR, where { = 2 /kl~R1.

$$
*These adjustmen ~

guarantee that the ~inear representations (2. ) (2.5) will be no,:ega-
Live as the system is swept cell by cell, provided of course that the
sources and system boundary conditions are nonnegative.

The above nlethodwas tested on a variety of problems and was found
to give good results compared to DD. (Cell-average fluxes for the above
LC method were computed in each cell calculation using the balance
equation, and these were compared to the DD cell-average fluxes.
Jnt.egralquantities such as total absorption and leakages were also
computed.) However, the new method was found to be considerably more
expensive per cell calculation than the DD method.

In an effort to reduce the calculational cost of the new method, we
examined a number of schemes in which the first spatial moments of $
are approximated in Eqs. (2.4) - (2.5) rather than computes exactly.
This led to the following modification Lf the LC method.

Consider again the ctillproblem (2.1) - (2.3) znd suppase for definite-
ness that

(2.12)

Then the characteristic line which emanates from the lower left corner of
the spatial cell intersects tne top edge of the cell at the point x = ph,

Y k.= We define JR and OR as

J
k

$R=; t!’(h,y’)dy’ ,

G

(2,13)

‘R = + [$(h,k) - 41(h,0)] . (2.14)

To define 6
1’

we note thaL the boundary conditions on the left ?dge of
the cell in luence $(x)k) for O < x < ph, while the boundary conditions
on the bottom edge of the cell influence $(x,k) for ph < x K h. There-
fore, we compute separate linear representations of $(x,k), analogous
to the one above for $(h,y), but for the two intervals O c x < ph and
?h < x <h; then we choose the primary linear representation of $(x,k),
given by Eqi (2.5), to exactly preserve the zero-th and first spatial
rnomeutsof this piecewise linear representation. The result is:

J
h

4T = P$lL + (i - p) $rrR= ~ $(x’)k) dX’ ,

0

(2.15)



1 [$(ph- O,k) - $(O,k)] P3‘T=fi

+~~h [Y(h,k) - $(ph+O, k)] (1 - p)3

1
— [$TR-+ h/2 *TLI 3P (1 - P) , (2.16)

where

J
h

1
‘TR = (1 - p)h

+(x’,k) dx’ .

ph

Then OR and *T - given by Eqs. (2.13) and (2.15) - are the exacta;~r;’th
moments of ~ on the right and top edges of the cell, while 6
given by Eqs. (2.14) and (2.16) -

T -
are suitable approximations toRthe first

moments of +. (These approximations result in aLout a 20% sal-lngsin
computational effort with very little loss of accuracy.) The linear re-
presentations (2.4) - (2.5), together with the formulas (2.13) - (2.16),
the treatments for u = O and O < 0 << 1, and the fixup described above,
describe the sweeping pert of an iuner iteration in the LC me~hod.

The second ?art of an inner itera~].onconsists of updating the source.
This was originally done in the LC method by constructing, for each cell
and discrete-ordinate direction, the linear representation (given below
in the context of the ~ell of Eq. (2,1))

4J(X,Y) :$ av + (x - !2; 4X
+ (Y -;) *Y, ()<j(<h, o<y<h,

(2.17)

where +, , ~., and @ are determined from the zero’th and first-order
balanced~quat!ons, us~ng I+L, OL, C?tc., as the zero’th and first-order
moments of $ on the cell edges. (in additicn, ~’ and $V are multiplied
by a suitable fautor O < ~ ~ 1 if the represe%tatiorr(2.17) becomes
negative, so that the resulting representation is nonnegative in the celL.)
These representations are folded into arrays which, upon the completion
of the inner iteration, give the zero’th and first (or, approximations of
the first) spatial mcments within each cell of those al:gularmoments of
$ which are needed for the scattering law. This proccduA-eis straight-
forward and completely analogous. to the way the boundary fluxes are
treated, au,lit gives good ~esults for problems with scattetiug. More-



over, it interacts well with rebalance [13]. However, it requires the
stcrage of three times the number of source arrays as in the DD method,
and for reasons which we do not fully understand, it interacts poorly with
diffusion-syntheticacceleration (DSA).

To contend with these two serious difficulties, we completely altered the
above strategy of updating the source for the next inner iteration and
after some experimentation, settled on the following procedure, which is
intimately connected with DSA. In a cell calculation, we now compute $
at the clutgoingvertex and, using the balance equation, @ out we do
not compute $ The vertc~ fluxes are folded into a;v~rray which,
at the end o? ~h~ %ansport sweep, gives the scalar vertex fluxes, while
the cell-average fluxes are treated just as in the DD method: they are
folded into arrays which, at the end of the transport sweep, give those
cell-average angular flux moments which are needed for the sca~tering law.

Thus, at the end of the transport sweep, cell-averaged angular flux
moments and vertex scalar fluxes are available. (This is precisely the
information which is required of the DD method by DSA.) Now a diffusion
problem is solver!in which the above information from the transport sweep
appears as inhomogeneous terms [14]. The result of this diffusion calcu-
lation are vertex scalar fluxes, which we denote for the cell in Eq. (2.1)
as $
with!!b~!!!: !TL~~~od $

,~Thetransport vertex scalar fluxes are denoted
l?e%S denote the cell-average source for this cell

as compute~ using th~ value~vof $ which were obtained from the transport
sweep. (s ~ if scattering is anisotropic.) Thenis a function of an~ e
the linearas?ourcewhich we use for Lhe next inner iteration is

S(x,y) - S:v [a + (x .;)p+(y-; )Yl

. A

~ ‘TR + ‘BR - iTL - &
P ——
‘h@TR+$BR+@TL+ObL ‘

. . . .

2 ‘TR - ‘BR + ‘TL - ‘BL
Y=-–

k ‘$TR+ ‘$BR+ $TL + ‘$BL

(2.18)

In addition, we multiply ~ and y by iIsuitable factor O < { < 1 it’the
bracketed term in Eq. (2.18) becomes negative, so that che rcsulti/18
term is nonnegative in the cell. Then the sollrceS for the next inner
iter~tion will be positive unless thl: 8catteving cross-sections are
negative due to to an improper spherical ha.nnonicstrunca~ion.



The above LC method generally interacts with DSA at least as well as the
DD method, and moreover, the storage requirements ioc the source reduce
to these for DD plus one array for the veruex scalar fluxes. (Essentially,
the number of required source arrays has been reduced by one-third.) In
addition, there is about a 15% savings in computlonal effort since @x and
$J no ionger have to be computed.

On the negative side, there is a minor loss of accuracy, but this is sub-
stantially outweighed by the advantages listed above.

111. NUMERICAL RESULTS

Here we present some numerical results from two three-group, isotropic
scattering problems, the first a k-eigenvalue problem and the sec>nd
a shielding problem. Due to their size and the characteristics of their
cross sections, both problems are somewhat difficult for the DD method.

111.A. Eigenvalue Test Problem

The syster, is shown in Figure 1. Dimensions are given in centimeters.
Regions I, II, and III are a fiss,on, absorbing, and a scattering-shielding
region respectively, and the cross secLions are given (with dimension cm-l)
in Table 1.

A series of ~ive calculations were performed using the DD and the LC
methods. In each calculation the S

f
angular quadrature approximation

was used and the number of (uniform spatial cells in each region was
varied as shown in Tabl{ 2. (The fine mesh is indicated in parentheses
in Fig. 1.)

In Table 3 we present the ei envalues
-i

for each case as computed with a
convergence criterion oi 10 . We also give the total number N of
inter.itionsand computation time T (in seconds) taken to converge the
solution to a (greater) 10-” error. (We do this because 10% is a more
typical convergence criterion for eigenvalue problems.)

The fine mesh (Case 1) was chosen so that in the fission region a
spatial cell is less than 0.1 mfp across; for this mesh one can hope that
the solutions arc nea:ly spatially converged. This is seen to be true
for the LC eigenvalue, but not for the D9 eigenvalue. Also. the inter-
action ~f the LC rncLhodwith DSA is seen Lo be at least as good as that
with DD. In interpreting the calculation times, we caution that neither
the LC n6r DD methods are fully optimized as to computational efficiency.
For example, Lhe DD code is TWOTRA.N-DA,which has the algorithm for either
an (x,y) or an (r,z) solution; this is less efficient than a straight
(x)y) algorithm.

111.B Shielding Test Problem

The system is shown in Figure 2 and the cross sections for regions I
and 11 are given in Table 4. A spatially flat source in the inner shaded
region, with the normalize!! spI -trum 0.739, 0.261, and 0.0 for groups 1, 2,
and 3 respectively, drives the ~ystem.



This problem was solved numerically on a coarse and a fine spatial mesh
(the number of cells for each mesh is indicated in parentheses in Figure
2), ~ith an S6 quadrature Set, and with both the DD and LC ❑ethods. The
convergence criterion was 104, and in certain cases the solutions did
not fully converge. The net groupwise leakages through the top and right

The% and ‘!)
edges of the system ( Cor each method and spatial mesh arr
shown in Table 5. C resu ts are observed to be quite stable with
coarsening of the mesh, whereas the DD results are less so, particularly
in the horizontal direction where the spatial cells are large as
measured in ❑ean free paths.

The number of iterations, the error if not fully converged (in parentheses)
and the computation times are given in Table 6.

It is puzzling that the DD solution is fully converged on the coarse mesh
but not on the fine mesh. Howe’/er,this erratic behavior of the DD
solution fOi large meshes is well-known and is one of the ❑uti-~ationsfor
seeking a more stable and accurate differencing scheme.

1A add ~hat Lllcabove coarse mesh 1s ab.~t. as coarse as it can be for botil
methods to converge. For inscarlce,if the number of intervals in the
outer region is reduced from 15 LO 13, the DD method fails Lo converge and
if it is reduced from 15 to 10, I.henboth methods fail to converge.

Finally, we compared the cell-average scalar fluxes for the twc methods in
the cells along the right edge of the system. (See Figures 3 and 4.) The
LC fluxes decrease monotonically from cell to cell in the upward direction
while the DD fluxes display an overall decrease, but coupled u-itn an
oscill~tory behavior. This, together with similar observations from
other problems, indicates that the LC pointwise fluxes ar~ more stable
and accurate than the DD pointwise fluxes.

Iv. DISCUSSION

In this article we have described the development of tileLC method in
(x,y)-geometry and have also piven some numericai comparisons with the
DD method. The LC method (coupled with the DSA algorithm as described
in Sec. 11) shows coli:iderablepromise of giving accurate and stable
results on spatial meshes which are coarser than those appropriate fcr
DD, especially for problems which are difficult for I)D. The LC storage
requirements are vLrtually the same as DD, and the LC computation times
are often about equal to and rarely greater than twic~ the DD computation
times, for the same mesh, and for problems in which both methods converge.

Nevertheless, ~he results qiven in this article should be viewed as work-
in-progress rather than as definitive. The final form of the LC method is
not seti:ledfor the follow~rg two reasons.

First, the interaction between LC and DSA is not properly understood and
not fully ir~ned out. We expected DSA to inLeract better with LC than
with DD, but we have fuund problems in which the in~eraction with LC
is erratic (and, in fact, worse than with DD). Also, there are more
difficult problems (charact.erizcdby very large cell sizes) in which
neither LC nor DD (with DSA) converges. (However, as the cell sizes
increase, LI)is normally the first of the two methods to fail to converge.)
To contend with these difficulties, it may be necessary to introduce
modifications in both the LC and MA algorithms.



Second, the LC method has not been tested on anisotropic scattering
problems, and it ❑ay be necessary to introduce further changes in the
method to achieve high accuracy. This possibility arises because the
lines: variation of the source in a cell is presently determined solely
by the vertex scalar fluxes.——

It is likely that the LC ❑ethod, as strictly envisioned in this article,
cannct be practically applied in c~rvilinear geometries. This is because
the analytic solutions of cell problems consist of furlctionswhich >re
more complicated than a polynomial times an exponential, and which cannot
be explicitly itegrated. Thus, unlike the situation in (x,y)-geometry,
analytic expressions for the cell-edge and cell-average fluxes are net
available. High-accuracy numerical integrals of course are available, but
the extra computational cost would probably render the method uncompeti-
tive. The T.Cmethod of this article can however be easily extended to
triangular flesh (x,y)-geometry problen:. It can also be extended to
(x,y,z)-geomt rv, although here algebraic difficulties occur which ❑ake
the method appear somewhat less attractive.

In summary, the LC method in (x,y)-geometry requires more work to attain
an optimal form. ‘rhcmain difficulty appears LO lie in the interaction
between the LC and the DSA algorithms. The goal, which we hope can be
achieved, is a method which gives accurate and stable results for general
types of problems and for relatively coarse spatial meshes.
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Table 1. Cross Sections for the Eigenvalue Test Problem

F?e~ion
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5.0

0.2163
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1.1228
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0.9328
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0.0399
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0

0

0

0
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0

Table 2. S~tial Meshe: for the Eigenvalue Test Problrm——

Case R~ion I Regierii~ Region 111—

1 24 8 24

2 12 4 12

3 6 2 6

4 3 1 3

5 1 1 1



Table 3. Results for the Eigenvalue Test Problem—

LC DD .—

Case
k k

e~f N T eff N T——

1 0.603616 18 50.20 0.603496 19 30.03

2 0.603606 2G 9.26 0.603129 129 16,70

3 0.603526 24 2.93 0.601650 25 2.33

4 0.603102 30 1.34 0.595217 37 1.60

5 0.583862 44 1.24 0.550890 33 1.56

Table 4. Cross Sections for the Shielding Test Problem.—

Grou~@!!!2@l— ‘T ~g+g ‘g-l+g ‘g-2+g

I 1 0.2656 0.16 0 0

I 2 1.1745 1.101 0,1052 0

1 3 3.2749 3.2565 0.G73 o

II 1 0.2163 0.176 0 0

11 2 0.3255 0.3236 0.0399 0

II 3 ].1’lz~ 0.932U 0,9828 0



Table 5. Leakages for the Shielding Test Problem

+? %

Coarse Fine _ . Coarse Fine —

Group LC DD LC DD LC DD LC DD—.

1 8.74E-8 5.73E-8 8.88E-8 8.30E-8 9.86E-5 9.22E-5 9.89E-5 9.76E-5

2 4.69E-8 3.66E-8 4.85E-8 4.78E-8 6.19E-5 5,70E-5 6.22E-5 6.1OE-5

3 9.90E-8 1.16E-7 1.00E-7 9.66E-8 1,42E-4 1,31E-4 1.43E-4 1.40E-4

Total 2.33E-7 2.1OE-7 2.38E-I 2.27E-7 3.02E-4 2.81E-4 3.?”,E-4 2.99E-4

~-able 6. Number of Iterations, Error% and Con,putation..... ..— —.-
Timcs%=h~-Shielding Test Problcm -——

Croup

Coarse Fine— ——

LC _ DD LC DD ,_

(J :10 20 37

33 69 14 74 (3E-3)

74 (3E-4) 55 :13 74 (2E-3)

116 154 67 1115

124.7 67.7 J25.O 341.6



Figure 1. System for the Eigenvalue Test Problem
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Figure 3. LC(— ) and DD ( x x x ) Cell-Average l?l~weson Right
Edge of Shielding Problem (Coarse Mesh).
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Edge of SIlielding Problem (Fine Mesh).


