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EFFECTIVE HAJIILTONIANTHEORY: RECENT FORMAL

RESULTS AND NON-NIJCMAR APPLICATIONS*

B. H. Brandow
Theoretical Division

Los Alamos National Laboratory
University of California

Los Alatnos, NM 87545

I. Introductio~

Effective Hamiltonian theory is actually quite an old subject, dating back to a

1929 paper of Van Vleck,l
2

and a subsequent refinement by Kemble. Their approach,

the so-called cbllonical transformation or unitary transformation method, is widely

known throughout all branches of quantum physics, from high-energy theory to quantum

chemistry, The alternative is to use degenerate perturbation theory. This is avail-

able in several different forms, most notably those of Kate, 3 Bloch,4
5

and des Clcrizeaux.

The past 15 years have seen an intensive development of ‘;he subject by nuclear physi-
6“8

cists, based on one of these forms of degenerate perturba~ion theory.

At first sight, the various degenerate perturbation formalisms all seem more com-

plicated than the unitary approach, their interrelations seem rather obscure, and

moreov~’r they seem totally unrelated to the unitary method. It is now recognized,

however, that most of the perturhative formalisms which lead to Hermitean effect-l’..?

Hamiltonians are, in fact, completely equivalent, and are connecLcd by simple idcnl I

tiFs.9-]1 We will focus here on a point which is far less obvious: the fuct that,

SUbJect to an important ravt!at, these Hermitean perturhstion formali~ms are aclual]y

idenLicrnl , term-hy-trrml to the unitary trantiformation approach, when thr latLrr’s ef’”__.__— ..—.

fectivr I!amiltonian Is expanded 8$ n perLurbtit+on series. The StUC!y of this f:nlinr(’-

tion also has Lhc important benefit of revealing the relative mrrits of thcsr np-

prndrh(’~ for prbrtirul tipplicationsm Thts conclusion is thut the ~ppro~rh fumilii~r to

nuclrar physit’ifit~ in by f’nr L% mofit. powerful and PfficiPnt nPP, •~pc(’ia~]y for muny-

hody applirntion~.

Another im].~rtnnl rprcnt devclopmrnt con(.rrns th~ roupled-rll]~trr fornml{sm for

many-body ny~trm:t, Thi~ f’orm of mally-body th[’ory WURoriRillnlly drvrlnprd by Co(’strr

and Kiimmel ] 2 for rlosed-uhell systrms. (Wrr Lhc yrnr~, both Co?strr
1:)

coworher~]”

HII(I Kihmml and

have worknd on cxtenslonrn ICI I’pvn-shrll nystems, tiIIJ Zaholitzky all(l Ey
1‘)

hav? dour uomc higtlly sophi~tlctitrd nurlrur rJIlru]nLioIIH utiin~ this approach. Qu~lr
16

recently, kow?vor, Ilindgr(’rl hns dvvclopcd a hunuliful]y clenn formulation 01 the!

coupled-rlu~tcr method for op~’1]-stwll Nytit~mN, Although not esnentin]ly dif[vrrnt

f“rom lIM prevlouN work, it IIIIN t}w imlortant pt(lilfto~lunl ndvnntngPH of lmih~ clrar,

rllnrirw, and qtlltr ~rlit’1’ill . We fihflll ollt. lin~’ tllr m:lln feiltlllf?ll of i,indgrrll’;, !orml1141-

.. ---- . ..- . .. .. .. . ~..”

*Work alIpIJorLd hy US [)~pnrlnl(?nt of Enrrgy



tion. This alternative to perturbation theory may well be advantageous for certain
17syntemn, 6s it auggesta different clasaes of approximations; it certainly deserves

much further development.

Although the many-body linked-cluster tom of degenerate perturbation theory

wac first developed for nuclear physics applications,
6-8

it is clear that this is, in

fact, ● very general technique for deriving ●ffective Hamiltonians for the lew-energy

excitation of g many-fermion system. (This formalism has also been extended to

he 18) I shallhandle the elementary excitations of the boson system of liquid .

briefly describe three recent applications where this formalism has contributed sig-

nificantly to the understanding of other many-body systems. Thene applications are

(a) the derivation of ●ffective spin Hamiltouians in magnetic insulator systems; (b)

derivation and ab initi~ calculation of rffective n-electron Hamiltonians for planar——

conjugated hydrocarbon molecules, and (c) understanding the so-called valence fluctu-

ation phenomenon exhibited by certain rare-earth compounds.

The present formal mntters are reviewed in considerably more detail in Ref. 11,

together with application (b). Application (a) is covered in depth in Ref, lq, whrrc-

as application (c) is quite new, and is yet only pnrLially published, 20

11. Degenerate Perturbation Theory——

We shall iirst outline what we regard as the most simple and efficienl [ornmla-

tion of degenerate perturbation theory. Wc present only Lhc key equationx, and rcf~”r

the reader LO Ref. 11 fur further details.

The simplest version of degenerate pcrturlmtion throry is thr Brillouin-Wignrr

form, wher~ thr ●ffective interaction matrix is P~P, and~i~ drtcrmincd !rol

11=0

Hrrr P and Q art’ Lhe USUMI projection opcrtilors OII1O the “model” and “virtunl” sulJ-

Epnms (P + (/ = 1), N = 1[0 + V, and e : E-llu. The effective Hamiltonian oi thi~ tor-

mula~iun iu P(ll(, +~)P. Its eigcnvn]u~~ E art’ Adrnlica] 10 cerLaln eigrnvn]urs of

Lhu complete Hamiltoniun II, aml llM cigenvrrt.or~ repr?amt Lhr “model pro,jrrl ion~” W

of t.hr corresponding rornplrtfl eigrnvertorh Y’l For later usc wc hnvr UIMO introdurrll

the wave oprrator II, which hn~ thr property thut W = fl(PW).

From A prnrtica] Rttindpoinll this formulation haM Lhrtv’ s~riouo drawbuck~, MIIS1

ohvicma ia thaL~dcprnd~ 011 tlw (initially unknown) eigrnvnluc E, and furtherrnorv

thin oprrator mu~t br r~-del+rminea for each of lhc d[’~irtwl rigcnstu~ea with difirrrnt

CIRF!CIW]IIWI ~. SoroIId, [or many-body aysLemN thr! Hrlllollin-Wi#nrr cxpanuinn (2.1)

Iilck# thr importsnt linkrd-~lustrr proprrt.v, (k;v~n for rululivcly frw-body syfiltwu;

Lhifi proprrty rernainn vit.ti]; tier lhf. 11,) FlmIlly, Lhc tihovr rti’rctivr Hnmiltoni;!ii

han a non-lkrwi,tean JalJert, ninre ittt eigruv~ctorw nr~” not ❑utuully ortho~anal, (’l’h[’y

mrc ❑erely thr proJccLAonn W 01” the ~’um)l~tc niurnvl!(lnr~ WI) ‘I%IN la undc~lretihlr



because the various phenomenological effective Hamiltonians which one would like to

explain are invariably Hermitian.

The first two of these deficiencies can be removed by expanding the ●nergy depen-

dence cf?in a Taylor aeriesi This ●ventually leads to the implicit ●quation

w=2~t-wlrBY=++ .
r=O r

dEr E.
(2.2)

This~replaces PY P as the ●ffe=tive interaction aiatrix. The Rayleigh-Schroedinger

(RS) expansion for N ‘, i,e. the ordinary power series in V, can now be obtained by

first solving (2.2) recursively, in terms of matrix products of the various v;%

then replacing the latter by their perturbation series, thus:

y=y+y (-yl+y [-yl’+y[-yl[-yl +&(~)4
o 1 0 2 0 11 0 r

= WV+ PV:VP+ PV:-V> VP+ PV$-:V(-P) vP+ol’’(v4) .
0 0 0 00

Here e E E - H, and Ii. comes from PHOP, asbuming Ho exactly degenerate within P.

(This ~estr~ction ia only for simplicity; it can eusily be removed.) Finally, w may

be replaced by a “Hermitized” effective interaction matrix,

where ~ = (lt Q fl has a well-drfined M expansion which follows from the preuucdi~lg

●qudtions, This~ operator hns the same ●igerwalucs aa~, but ita eigcnv~ctors arc

now prcci~cly orthogonal,

The M expansion for thix
4,5,11

mcthod~, hut the present

expansion (2,1) is obviously a

chalacter

forp, thmt

the scrips

plF Ruf”, II

sinr~ onr is rxpandln~ Lhe denominators (E. + AE-lln)-l]. One firuls, therc-

(2.1)-(2.3) pres~nt mnny opportunities for intinlLe partial sumnation of

n Lechniqur of Rrenl iqmrlanu! for praclical applications, (SW for ~x:]m-

) ThP ]asl step (2,4), on the oLher hand, i~ by far thr most complirattul



)+ =U-’HU , (3.1)

where U is to be chosen such that

Q)#P=O . (3.2)

The desired effective Hamiltonian is then P~P. Unfortunately, (3.2) does not suf-

fice to determine U or P~P uniquely, since arbitrary unitary transfontrations wi~hin

the P subspace are still allowed, It seems most reasonable to add a requirement that

U should have as little effect as possible within the P subspace (an’, likewise for the

Q subspace). Kemble2 suggested that U should be expressed in a matrix-exponential form,

U=eG, Gt=-C , (3.3)
whereby this somewhat vague “minimal effect” requirement can be incorporated via th~

simple subsidiary conditions

PGP= O,

One may then express G as

terms in H for each order

tJGQ = 0. (3.4)

a formal expansion in powers of V, and collect Lhr resulting

in V. The condition (3.2) can then be imposed separately

for the terms of each order in V [subject also to G+ = -G and (3,4)] Lo determinq LIIr

successive terms in the G expansion.

The net result of this procedure is to gen~rate a I?aylci gh-Schrocdingrr f!xpon-

sion for the effective HamilLor,iar! P~12. xIn common wiLh the proceeding P(f-f + )1’
o

this should genera, e some subset of lhe exact eigenvalurs E, but it is not at all ob-

vious whether these two effective Hamiltonians should have Lhr same srts of mcrd.’l

eigcn~ectors. These effecLivc Hamiltonians mighl wr]l differ by a unitary Lriin:;ffjl”m,l-

ti(ln within P, in whirh case their perturbiitivo expnrrsion; would also hr diffrrerlt .

IV, Formiil Eqyivalrrrce of Lhe Perturbtitlvr and lJniLary Allproach~:—— --- . . . .. . .... .. . . .. . . . —,-—. .. .. . ..... . .. . -.. .—.--. ..—------ .— ------

IL turns out that Lhe ~ffcctivc Hamiltoniarrs uI’ Srr~-~ons 11 and 1]1 arr IIC.~ IIIVI”(IIY

unitarily t=qUiV~ieftt; they rrrr actually ide[lti~ill. Thut is, Lhvir rrspeclivr lhtylrIgh-.,. -. - - ----- .,..—,--,. .. .. ... .. .. . ..

Schroedinger cxpansionk tire iderltiral. I’his wclromr r~sull was firsl rc’(”ogfllvt’11 lIy

Klein)q and was lutur proven in a quite different mnnnei hy JtrRrnsrn.
31 (Klrin’s

proof unforLunaLely contains sorer errors; M rnrr~cted I’rool co’lsisls bl twu pdrls,

given in appmdires in Refs. 11 and 19.) II) rrlrosprcL, Ofll.m r~,lll !$!’C ltlilt I)(ltll Ittollf!i

are based on tht.’ idea (Section 11 1) that Lhp 1 rnnsformdl ion 1 rorn II 1(J thr rl 111’1 iv!’

Hamiltonian should havr “rrin:m;ll cfi~’~mt withir] 1’.” The l)ruofs tilsu sh,lrr u commnn

strategy: a precis~ definition is ~iv~’11 lor this “minim;ll t*ff~(.t ,“ thiri rrqllir~’mrnl

is shown to h~v~ a uniqur ~oluliorr, oo(f Lhcn rarh of Lhe t’ffel”livr Hamiltolli;lrls is

~hown to satisfy thi~ requirerncnt.

J#rRenMrn’s proof
.i!l,ll

i~, hasml on thr rrquirt?mrlll Lhtit NW should hr !I(’rrtri[t’ill].
i(J

(To motivutr this choic(~, consid~r thr onr-dimensional CUKC?whf’rr [1 L r . ;,I*II~ lli*r -

miticiLy rrquires Lhul U = ~ 1. Thr -1 pos~;lhillty is LII(*II ~’llmil)tilud h:f rrqUIrIIIN

continuity as V * O.) It turns out that thr uuh[;idi:lrv renditions (3,4) ;Irr :;ulli-



cient (although not necessary) to make PUP Hermitean.
11

It is less obvious how to

apply this requirement to P(HO +~ P, since no 11 is visible here, There are, however,

sorne simple identitiesll which show that
t -$ (JHQ)((-JQ)-4,P(HO +~)P = (0!2) (4.1)

(0+!2)-$, which is now obviously Hermitean.whereby UP = Q(O+CI)-+, and thus PUP =

Klein’s proof is based on the following variational problem: Let {u] be the set

of d eigenstates which are described by the d-dimensional model Hamiltonian (d = di-

mension of P), and let {Wa) be the corresponding set of complete eigenvectors (eigen-

vectors of H). Let {Bu) be a set of d vectors which lie entirely within P. These

Ba’s are required to be orthononnal, but are otherwise arbitrary; the infinity of

possible choices for {Ba) are therefore relaleci by unitary transformations within P.

The Wu’s are also required, here, to have unit norms, but uf course they do not lie.—

entirely within P, The problem is LO find thr basis set {Ba} such that the quantity

~#a - Vu Bu - ~o; attains its absolute (i.e. global) minimum. The solution of this
22,19vector variational pronlern is known to be unique,

.
and the sets of modrl eig~n-

vertors of thr perturbative and unitary cffeclive Hamiltollians both satisfy this con-

diLion (as proven, ~espectively, in the apprlldices of Refs. 19 and 11). Firially,

siliru the eigenval.ues and eigcnvertors of these model Hamiltonians are idrntira] , tllc

operators themselves much he identical.

J#rgcnsen’s proof lenrfs tn imporLallt insights shout thr re!ative merits of thr

pc?rLurbativt* and Ilt]itilry approach~s, As descrihrd in Sction 111, th~ unitory iipproil~ll

has a simplicity anti clcganc~ which has appralt?d to ~eneralinns of physicists. in

reality, however, Lhi:; simplicity is only tin illusion. Bryon( the lowest orders Lh(’

r{’cursivr procedurr for dcLcrnllning G iilld PM P twcomrs rxce’edinKly L~dious, mId

of”iers no grnrrtil illsight~ of’ lIIP tyIJP nPe( “(l for infinitt~ partial sununationx. Two

r[”aso[ls for this romplrxity r:ln now ho seen. Onr is that thr unitnry ~pl)~oi~(~ll IJIISL

nrwssarily includf’ Lk compl ic:ilrd “tirrrnilis.ltion asp~’et” 0! (2.4). Thr nthl’r is
ithat thr prrtu!butiol) srrirs for [11’ = (I(fi+fl)-’ , ns (;(”lermirle[l by thr methods 01 .5vi.-

tion 11, do~s nnt h~vr iin (~x[)ollrr)tii)l-lik~ characlrr, thl]s it is “UllllJtll)”ii]” (i-r.

Inc’lfiuicnl) tfj Itl(u:l on thr (nlalrix) loRariLhm 0! U, *S is dour in Lh(’ Va!l \’ltI( k-

U(! must not Ietivr tlilfi SIII)](*(l witllollt mmllt i(lllir)g iIII ifm!)ol”lallt CiJV(’ilt . ‘rlII~ origl-

orffrrs in V. Thrrr htivr lJfo(In a numbrr 01 applications, hOW(IVrI , whirh employ ii SIIC-

cr~~icm 1)[ unil:lry trunslormnl ions,

[1‘ = U, 1J2 U.l --- = f’
‘1 ‘;2 ‘;:!

● r --- 1 (4.2)



this procedure is the work of Foldy and Wouthuysen,
23

whose object was to eliminate

the small components of the Dirac equation. ) Explicit calculation shows that this

gives differen~ results from the methods of Sections II and :11; specifically, PU’P -

PUP- ~(V3) and P~P - #--@V4). Such differe~ccs have sometimes led to con-

fusion, a6 pointed out by Friar.
24

v. Coupled-Cluster Formalism for Open-Shell Systems

Elementary manipulation of the Schroedinger equation leads to the operator

identity

[(l, Ho] = Vfl - fXAl , (5.1)

(It ~s to be understood that O ❑ flF, i.e., that 0 acts only on the P subspace, ) This

is one of the two basic ingredients of Lindgren’s formulation.
1?

His other ingredient

refers explirit.ly to the many-body na~ure of an open-shell many-fermion system, as

~ollows.

For closed-shell systems, it is well known6 that the wave oprrator (l can be

expressed as

O=eQ , (5,2)

n=l ~n, N treing the tctal nwnbrr of particles. Fach Qn corresponds 10 thewhere Q = ZN

sum of all linked but ET perturbation diagrams which lead to LIIF creation ~f Ii
— —.

particle-hole pairs (starting from the closed-shell conf~guraLion O.). ThtI catel synl-

bol is a reminder that ~ is a second-quantized operator, with a partirl~ creation or

annihilation operator attached to the rnd of each outgoing particlr or holr line asso-

ciated with an individual on compcnent amplitude. Linclgrell noLcd that this represr[l-

tation is inadequate for open-shell syatms, and that it should be replfired by

where { ) indicates

tors , Failurr to do

recognized by Fiinsnel

r=O

norm~l-ordering oi the various creation and tinnihilation oprra-

this Woulil Irad LO many spurious terms.
11

(This pulnt wiIs a]KrI
14

and cnwnrk~rs, but W:IS not clearly ~tated,)

It is e.lsy to see that systematic use of (5.1) ah M rel’ursion formulii will gflIIrr-

ate the Rayleigh-Schroeding?r perturbation expansion for 0. FollowinR this procedur-r,

Lindgrm wati Able to I)rovr hy inducLion that the perturbation-theoretit: 0 doeN indctul

haw Lhe form (5.3), where ●ach term in R is fully connertpd, unct is altio “rJpen” in

the srnse of always lt=ading to states ir Lhe Q subspnc~i (It then follows thutw=

PVll is fully linked. ) In a simi!ar manner, Lindgren thrn obtained a forma) ●quation

for Q itself. Thi~ translates into an inhomo#jenPouti 6iet of equations for thr varioilr+

cluot~r amplitudes within Q. If onr adopts sonrr uuit..al)lr (physically motivfilrd) trurl-

calion of th~~e ●quations. it bwcom~s PosHitJle LO obtainthe “most rrlevant” #mpIitudrN

dirrct]y, without uuinR perturbation th~ory. ThiN is the open-mhell tinulo~ O{ ~ht’

coupled-clumter technique.



VI. Recent Non-Nuclear Applicatioils —

_ Effective Spin Hamiltonians for flagnetic Insulator MaLerialsA

Magnetic insulator materials inciude nearly all halides, most oxides, and a num-

ber of sulphides of the 3d (transition) and 4f (rare earth) metals, as well as some

of the 5f (actinide) metals, plus many other ionic compounds of these metals; thous-

ands of examples are known. Their magnetic behaviors can generally be described by

effective Hamiltonians of the form

(b.1)

where the couplings J. .
lJ

are typically found to be antiferromagnetic and of fairly

short range. This is the so-called Heisenberg spin Hamiltonian, and effort% to under-

stand its microscopic origin date back to Lhe late 1920’s. The so-cdlled superex-
25change theory of Anderson IS the standard in this field, and gives a good qualitative

and semi-quantitative account of the physiis. But this theory is restricted to an

isolated pair of magnetic ions in a non-magnetic host crystal [two Ni’s in flgO, two.——

Cr’s in A1203 (= “ruby”), etc.], All previous atLempls to extend this (or any other)——

theory to a crystal with a macroscopic number N of magnt’Lic ions had mrL w’iLh diffi-

culties of the unlinked-cluster typr: terms involving hlgl] powers of N. This is knwn

historically as the nonorthogonality CiiLi3SLrOphC, first nhservecl hy S14ter
26 i,, ~9,J()

1

and it is quite possibly the first tmlinkcd-cluster problem to bc rcrogniz~d SIIICe lhr

development of wavr mechanics. IL W3S, Lhereforr, quiLe gratifying Lo find Lhat [ho

fold~d-diagram expansion resolves this problem in a clean, generdl, ~nd comp]eLt} m.ln-

ner,19 A curious ft-tiLur@ of this appliratil)ll is that lhP ~pproprlaLr H now ronLdills
o

t~~o-t)ody tifi well as ont=-body Lrrms, Aparl from sorer miller refinemellLs, howrver, Lhis

was simply a mdtLer oi emlmrldlng Antlrrsoll’s lwo-sitr prrLllrbat ion throry inLo thr 1111I

many-horly form~+lismm

tin n-El~rtron Hamillonians. .. . _



cules, and it is now a s~andard textbook subject for organic chemists. Nevertheless,

many theoretical chemists have rejected this as “dirty phenomenology, with no theoret-

ical justification,” and they will have nothing to do with this scheme.

There i~, of course, another school of theoretical chemists who have been at-

tacking this problem with various formal techniques , and in recent years their efforts

have been evolving toward,s the folded-diagram expansion of Ref. 6. I am convinced that

the latter (or its coupled-cluster counterpart) really is the optimum formalism for
23,11

the n-electron problem, and I have therefore written some pedagogical reviews

directed towards these chemists. At the least this provides a sound formal jusLilica-

tion for the phenomenology, and efforts are also underway by several investigators to

calculate the parameters from “first principles.”

c, Valence Fluctuations in Rare Earth Com~ounds. ——.— .—— —— ———— —___ -—- —--

“Valence fluctuaticm~” is the name of a many-body phenomenorr first recogrrizrd
29

about Len years ago. 11 is seen in a number of rare t?arth compounds, sorer “t”lassi~””

examples hein~ SmS, SmR6, and TmSe. At low temp~ralurt!s ess~nlial]y itll el~’[Lr(jllil

properties become quite anomalous, indica..ing a novel Lype of many-body grnllnd SLiIIIi.

The suhjert is compltlx and still poorly undrrstoorl, Suffi(-e it Lo say thirt lhis Is

closely related LO the Ko[Ido effect, and Lhr most popular modrl for theorrlil .11 sLudy

is a dense latLic’e of Kondo-]ikr ions (artu~l 1S Arld(hrst~rl-}lamilLoniafl inns) (’mllrdd~.{! in

a simplr meLal, It is Mlso somewhat analogous to Lhf’ BCS ploblern, to thr PxLcrlt Lh;lt

:1 “zrroth order” description ii,v~lv~s an enormous degpnrrilry, ‘~hcrrl)y SL rnng l’o[ll)~’r,l-

live e!fr~cts can rrsult Irorn a wetik residual interaclioll.

Pursuing this KS anitlogy. we ronstruclrd simplr variatinndl wi~!~rfuncLlon:, for

Lhe ground states of variolls model systems,
2(I

The central prohlrm was LO ev,ilIi,iLtI ttl(”

nccrssary many-body ●xpecLaLion valuvs, so that paramrtrrs (“ou)d hr oplimizrrl ilnd tllr

physirs extracted. The grtiphology for lhc abovu spin-Hamiltonic~rl l}rot~lrm turrl(’d (lilt

to tr~ wrll-sujlcd for this Lasti, irnd tht’ various ●xpccttit ion VJIUVS wrrr fourid to h~vft

simple analyti~ forms. Thr rrsultirlK physics] output lS (’onsi%Lf!llt with mull! of 1I1o

ohsrrv~d phenomrnolngy.

These rxamplcu MuuHrst Lhiit l)IV ~“!!rctivr Hamiltoni.in formirllsm iliJx mu(l) I)(lti’ll-

tial for oth~r fruiLful applicatinrl~,
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