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RAYLEIGH-TAYLOR STABILITY FOR A SHOCK WAVE-DENSITY

DISCONTINUITY INTERACTION®

Gary Fraley

Los Alamos National Lahoratory

ABSTRACT

Shells in inertial fusion targets are tvpically accelerated aud decclorize!
by two or three rhocks followed by continuous accelecrations The anmalez i
solution for perturbation growth of a shock wave striking a deneiow
discontinuity in an inviscid fluid is investigated. The Laplace transforr .7
the solution results in a functional equation, which has a simple snluti-e ¢«
weak shock waves. The solution for strong shock waves mav be glven bvy a poanr
series. It is assumed that the equation of state is piven bv a gamma law. The
four independent pararmeters of the solution are the gamma values on eac' sid of
the material interface, the densitv ratio at the interface, ant! tie o
strength. The asvmptotic behavior (for large distances and times) of th.
perturbation velocity is given. For strong shocks the decav of the perturhating
away from the Interfare 1s much weaker than the exponential decar of  as
incompressible fluid. Thne asvmptotic value s given by a constant ters an! .
number of slowly decaving discreet frequencles. The number of frequencies |«
roughlv proportional to the logarithm of the densfty discontinuity divided b
that of the eshock strength. The asvmptotic veloclty at the Interface s

tabulated for represcentative values of the Independent parameters.  For weal

-————
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shocks the sol 1ion 1s compared with results for an incompressible fluid. The

range of density ratios with possible zero asymptotic velocities is given.



1. INTRODUCTION

A wvell known example of a fluid instability is the Rayleigh-Taylor tvpo,
caused by the acceleration of a heavy fluid by a lighter one. The growth rate
of an inte:r.ace perturbation is given in ChnndrasekharI for incompreasible
fluids. It is probably the effect which will limit the performance of inertial
fusion pellets. A typical pellet design consists of one or two dense shells
surrounded on each side by lover density nater1a1.2'3 As each shell is first
accelerated and then decelerated, one surface will be unstable. The initial
acceleration is usually by shock waves. For example, vhen the outer shell
accelerates the inner one, a shock wave is reflected back and forth betwec:
them. At each reflection a shock is transmitted into the dense material. 1t
will eventually overtake an earlier trarsmitted shock. A rarefaction w...
returned, and this terminates the series of 1isolated 1=pulsive ' --°
accelerat.ons with a cortinuous form of acceleration. A rarefaction mav alsn he
returned vhen a transmitted shock hits the outer edge of a shell. There ar.
typically two or three shock accelerations of an interface before the serles is
ended. When the i-ner shell is decelerated, the situation is similar with o'
shock wave being reflected between the inner surface and the center of svmnc:ry,

The purpose of this paper is to investipate the analvtic propertice
perturbation growt: when a shock wave strikes a density jump. The initiad
conditions consist of two uniform materials with plane svmmetrv. A shock wave,
whose direction is normal to the interface, is incident from one mide. 7'«
interface is assumed to have a perturbation. The amplitude im sma1l compared t.
the perturbation wavelength, so a linear analysis is adequate. There appears t .
be a simple analytical solution only for weak ghocke (Section IV). The soluti .n
for strong shocks iz piven by a power series. The perturbhation equations were

solved nunmerically for three cases by Richtnyer (1960).4
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The interface perturbation wvelocity fo- an incompressible fluid in the

limit of iwpulsive acceleration is given by

x=-1
=31 ° (1

s k'o"d

vhere k is the wvave number of the , erturbation, Z,,» the initial amplitude, v,,
the velocity change of the interface, and x the denrity ratio. This gives the
genar:l scaling of the perturbation growth, and it is useful to compare the
shock verturbation results with it. Awvay from the interface the perturbation
decavs as exp(-kiz|). It is a localized phanomenon, falling off to 1/, onc
vavelength fromn the interface. The shock perturbation differs in that it fall:
off much wmore alowly, as 2'3’2 (Section IV). The shock interfiac.
perturbation velotity begins at zero and reaches an asvmptotic value ahou: th.«
time a sound wave travels one wavelength of the perturbation. The asvopratic
velocity is important as it determines the rate at which the materials mix wi:!
each other. For example, injection of high Z material into the deuteriu-.-
tritium fuel may quench the thermonuclear burn. A comprchensive survev of tl.c
asymptotic velocily was undertaken. A computer code was written which su=-~..!
the pover serier solution and plotted the resulte. Thix var done for muvera!
thousand cases. About 200 of these are given in Fign. 2 and 3. An interesiins
quention wag for wvhat parametern the velocity changed ripn. This waul! r. 1,
there would be paramcters vhere the velccity war zero or very small. The
results show that this doer not occur for denulity ratlosn greater than abour 1.5
(Section V).

Heat flow and viscosity are neplected. In that case the perturhation
srales with the wave number. Heat flow tends to damp out the perturbation /or

vavelengths less than somc maximum value. This may be roughly calculated bv
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comparing a characteristic damping time to a characteristic hvdrodvna=ic ti-:,
the wavelength divided by the speed of sound. The use of viscosity and electron
thermal conductivity of a plllﬂls give the maximum wavelengths for significant

damping for viscosity and electron condition, respectively:

A = 107312p"127/2

A = 107371351271

The wavelength is in cm, densitv, g cn'3. and temperature in kel (=1.16 » 1“7
k). The heat capacity of an ideal gas is assumed. During the implosion thc
temperature iz less than a kilovolt, and wvaveleagths of interest greater tla-
10'3 cn, so damping is probably not significani.. Damping bv radiation is r r.
conplicated because of the wide variation of opacities. If we assunec an opti-m~
opacity, danping can occur at anv wavelength. This is because the mass of Lot
and cold material scales with the wavelength, the same &scaling as t'e
hvdrodynamic time. The optimunm radiation mean free path is somewhat less than a
wavelength. Each hot end cold region (one-half wavelenpth thick) receives

1

roughly & black body flux = oT"' - 102"1“' erg-5eC -cm"z. with a temperaturc

characteristic of the other region. The result is damping if

T > 0.4 p*h .

11. ZERO ORDER SOLUTIONS
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We assume 2 Y law equacion ol state on each side of the density
discontinuity. There is a slmple scaling with the absolute pressure and density
for these equations of state, and four inhependent parameters are left. These
are the values of Y on each side of the density jump interface, the density
ratio, x, and the shock strength. The initial pressure 1s p,. The incident
shock is from side b, with the pressure behind being pp. The final pressure is
Pce The initial density on side b is pp,. The densities on each side at the
moment the shock atrikes the density Jump at the origin are py,), and p |« The
densities behind the reflected s8hock and the transmitted shock are.,

respect.ively, pyq and p,n. We have the initial density ratia,

- Pal
°b2

The shock strength is characterized hy ¢,

Pn-"h(l_c)'

0 <Cec & ] ,

The four independent parameters are then v , vy, x, and ¢.
The conditions behind each shock wave are determined by the three enut' oo
conrerving mass, momentum, and enerpve The first two are

Pt
“(I-w(l-ﬁ) [}



and (3)

Pp = Pg = WgpeW ,

where the material velocity behind the shock, wy, and the shock velocity, W, are
with respect to the material velocity ahead of the shock. The subscripts b and
f stand for behind the shock and in front of the shock. For a Y law pas the

conservation of energy gives

Py  Pp *+ uing
Pg Pe + uzph

with

2 .

<]

+{ 1
] e

The equations for the reflected and transmitted shocks are molved simultancourslw
for the six unknowns: the two shock velocitier, the L. densities behind the
shocks, the velncity of the interface, and, p., the pressurc at the interface.

Therc mav be reduced to one equation for p.:

S .
p" p.-] ph pn m »

where ("



2
Pa + ¥y Py 1/2
2 ] '
Pc T ¥"Pp

Ae

pbz(l - ".2)(pb + ubzpa) 1,2
2

B

pa1(1 = up2)(p, + u,2p,)

The incident shock mav produce either a reflected shock or a rarefaction. It is

clear that the condition for a reflected shock is B(pc =- Pb) ¢ 1. For a weak

shock (c small) this reduces to

PpaYyp
PalYa

<1 .

For a strong shock (e = 1),

Punlyy + 1)
_h_‘.(_b___<1 .
Pal Ya + 1)

Equation (5) mav be solied by iteration.

Pe ™ pa(l + 8yc + n:cz) .

(F

For a weak ghock



T - (w:)”2

vhare 1 < a < 2.

II1. THE PERTURBATION EQUATIONS

The perturbation equations are simple. The complexity of the proble= conrx
from the bounds v conditions alnng moving houndaries. ¥e assunc an 1=f¢{q?
perturbation of the interface, z, exp(ikx). The initial velocity parallel tn
the shock direction and initial pressurs are zero in the first order of the

perturbation.‘

As the solutions will show, the source of the first order
perturbation is the initial periurbations of the shock fronts. 2Zero or!r

variables behind each shock include

Wy = material veloeity ,

=
]

shock velocity ,

dennity ,

)

¢ = aound speed



The last two are important for the perturbation solutiors. The sghock ju--

conditions may be used to give

B-
1+ u?

: 9,

wvhere € is the strength of each individual shock. It is determined by but nnt
in general equal to the € value for the incident shock, Eq. (2). Subscrirzs
which indicate the particular shock are not used wvhen the same analvsis pr-li.:
to both shocks. The velocities, wy and W, are with respect to The material
ahead of the shock. An inverted coordinate system is used for the reflectel

shock so that the velocities are positive. Because the initial perturbation of

4

the shock strength is 2zero, the shock front perturbations (t = &) depend o-lv

on shock velocities. They are

(1




vhere the zero subscripts refer to the incident shock. The minus sien (=) for
Zgp COmes from use of the inverted coordinate system.

Perturbation variables are p;, pressure, w;, z-velocity, and uj,

x-velocity. The shock direction coordinate is z;, and time is t;. Perturdatioan
equations are
aul ﬂtpl
Et1 - Po '
3H1 521
- .-, (1
oty Po

'ﬁ‘l' - -Ypo (1kU1 + —a—zT J .

These are in a system co-moving with material bhehind the shock front. The
pressure equation is for flow isentropic along a mass point. Entropy mawr varv
for different mass points. It is determined by boundarv conditions at the sliack
front. Entropy variation would enter into the pressure equation in the
convective derivative (e.g., wy 3p;/3z;), but this is a second order «ffect. Tt
is unnecessary to include the density equation hccause it does not couple to the
others.

It 48 convenient to go to scaled wvariables: z = kzp, t=kcty,
p- pllkpoc, us= lul/k, and w = ul/k. Rerultr are independent of wave numher in
the scaled variables. This shows that perturbation prowth scales as the wave

number. The scaled perturbation equations are



LI

it '

v __3p
Tt iz
ap v
E -3

The shock front position is 2z

The shock wave Jump conditions mav be differentiated t»

”
g ™ Wty Where w, = ul,'.

(1)

pive velnricoe

perturbations at the "romt in terms of the pressure perturbation.

W, = App ,

w, = Bpyp ,

wheru

A= '"h!

prf(l - D:)

ol = 2u") + ¢
B D .,

:ﬂr“:l - UL)

The requirement that acceleration st the

fiout gives

front

(1

he perpendicular to the



- -1k\1dlls s
(14

iul
.5t—1 - -1kUd“1 L]

where z; . is the shock front perturbation. 1In the scaled variabler

w e uc-lnlp , and

du
H-AIP »
with .-
By m Bl m 1w
(1 = u*g)
A -M\‘- -ﬂ
1 o'd 35 °

The final form of A, and B; come from fdentities foom the jump condition:

LY
reduce the boundi.ry conditions to the two paramcters, u* and t.

IV. METHOD OF SOLUTION
Solution: are found by taking Laplace transiorm. in timee This reenls

twvo modes of solution (pressure mnder) with



p(s.z) = a(s) axp(Lyz) + bis) exp(2;z)

w(s,z) = =La(s) exp(2yz)/s ~ £)b(s) exp(L)z)/s , (18

u(s,z) = a(s) exp(2,2)/s + b(s) exp(f;z)/s

wvhere

with the convention that &; = =5, s larpe and positive. There {+ a third n ==
compressional mode (zero pressure contribution) that ‘s indcependent of ti-..

This means it is impartant for asymptotic velocities (laree t). The equat! -
u+ e, ('
The Laplace transform in tim- a'onp the shock front (r'i ®= wel) with tranetore
variahle r pives
wilr) = =w uylr)/r . Clea

The initial value of wq Ix put to zero. Tt mav be shown that the solutis- {-

independent of thir inftial value.
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A Laplace transform of all the modes muac he talan alnang the shock frorn: to
satisfy the boundary conditions. The moving boundarv results in each mode being

dafined for a different value of the transform variable. For example °the
[ ]
pressure solution of the first mode is

p(z,t) = [ do u(s) exp(st + w_t.r) , (19)

because z = w.t alung the shock front. With r = 8 + w.L,(s)

plz,t) = | ar %; exp(rt)a(s) 2
and the transfora of p is clearly a(s.) dsy’dr, where r = a2 + w ka(s2ty 7ry
liritx of intepration of r must bec the sami: as for s. This 1s satisfied becas
w. ¢ 1. Similarly the transforn for the second mude is b(s)) ds) dr .-
r=s) +wvlss). We also have

r+w r- + ¢
BI'

and [




(22)
" e AGa* +b") + 2
-.— + .b_ + “3([‘) - l t »
Iz .l 4
wvhere

ds
a* = a(sy) 'Erz ,

* ds)
b b(ll) -F ’

ani z, = wez‘l(t = 0)., Variables a and b may be solved in terns of u-.
solutinn is simpler ir terms of v,:
2 2
ua(e)(r® = 0) = [woAqu () + zo/rlr"
vhere (2

A3' 2“1'1*31)

- B2(1 - b))

a(l - ug)

For variablen f = Loa and g = Lb

f(ry) = hp(rdus(r) = wer /2r o
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g(s)) = hy(rdu,(r) = wez, /2r
with

hz(f) = (1 - Bl)rz - % B - BI:I’ ’

hl(l') = (] - '1)!2 ‘-; B - ﬂllf .

Boundarv conditinns at the origin are continuity of wvel~city perje-tl- " -
to the interface and pressure for the solutions. Becaucr the fluide r.
inviscid, they may slip with respect to one another parallel tn the interfa-.
It ir necessary to use a comnon transform variable 8 = s,c, = spcp. Reme='uric:

the inverted coordinate svster for side b, wr have

fn + Ba - fh + &h
[ R

and T

whers



by
-rl-l
r

£(s;y) = g(s;) -::—24'-;-“::t (27)
1

for each side. Thure sre two equations with two unknowns, @.8., g, and g,. The

difficulty is that esch unknown is defined at two points. Because of the

complicated way the points are related to each other, and the preseice of

variable coefficients, no direct analytic solution wvas found. However, there is

one obvious method of solution. If g; is known at sy y(sy; = 8/cy), with
'l - [(1 + ﬂ)lz + Zuc lez + lls-l ’ (2“)

1 =a, b, then f;(s;) may be determined, and through them, g, and gy« It may be

useful to use as an independent variable
y=s; + Jllz +1 , (29)

vhere y(s;) = y(-l)c-l. C=(1+ wc)uo'l, and o, = 1 - w.. We solve for g, and
8, in a neighborhood of infinity in a nower serles in 1/s. Rapeated
application. of Eq. (26) and (27) enlarge the area of solution cluser to the
origin. Near the origin the solution aweens across the imaginary axis. It mar
br analytically continued across the #xis. A (primary) sinpularity at s; will
produce a (secondary) singularity at sa. Any oripinal sinpularity generates an
infinite set of mecondary singularities. 1t is mimpler then to continue the
solution onlv up to the fmaginarv axin. The solution in the left half plane mav
be continued up to the imaginary axis in the rame wav as i{n the right half
plane. Thin producen a dircontinuity in the solution on the {imapinary axis near

the origin. Primary singularities are either branch points (mquare roots) at
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84 = 1 or roles where h. has a zero. It turns out h) has no zeroes when the
solution is continued only to the imaginary axis. Let sides J and k he
determined by d =~ Cj/Ck > 1. The secondary point of side j for 814 " i is off
the Riemann plane and produces no secondary branch point. The secondarv nnint
for side k may lie on the imaginary axis, c < Isl < €y and a series of
secondary branch points is generated. From Eq. (29) it is clear their nncitinns

are at

Yo = 1(d +/a2 -1 cm |

n.l' 2' [ ] . (".

1 -1
Bkn * 3 1¥kn = Ykn ) -

It is terminated by requiring that

The domain |v| € 1 represents the continuation of the solution across the axis.

All secondary points of s, = i are off the original planc. The branch peints

give the asvymntotic behavior of the solution for large t and =; f1 has a bran.®

point only at 8y "= i} f, has a branch point at S " i and at the sccondare
have

points; g, and n1vbrnnch points at the secondary points and at s, = 4, { = j,k.

Excert st the points where l(si) = 0, each branch point plves an ausvemnt i

solution (laree t) proportional to

exp(iwt 2 l.(u)z)t_:’/2



s v ,

L£(s) = /1 +2 .

The asymptotic solution is qualitatively different for each side. On ride 1,
the coafficient of z is negative real. On side k it is imaginary. On the =id.
vith greater sound speed (j) the polution decays exponentialiv, while it is
oscillatory on side k. The asymptotic behavior due to the branch point ot

8, = i ig similar to that of
I=¢dsexp (at+71+s22z) .

This is inteerated by changing the variable of integration to v and expa=il-.

the exponential. The intepral is reduced to the residue at v = 0, piving

T = 7 Jl(“tz'z:

Equation (28) shows that A; tends to infinity for weak shock waver. ¥ith

R(sp) » goe) ™

where g, = 0(z,) = 0(B), g is second order in B.  Asx will W
shown, hz is of order 82 and h; of order une. Correct to a fourt™ order err

in R,

f(sy) = zg(halr)/hy(r) = 1) o,



and correct to a third order error
£(n)) = =2,r") ) where 23= 'é""c z,. (31)

The value of g(s,) may be found from f, and f,, and this gives the weak shock

solution. The velocity for the third mode i

Hl.I3 - T

-3(!‘) . - cl' - ) £ (“cASUIA + !tf-ll)
r“ - a
-aA w,.2
- — 3 [re(s)) + 23] - ¢t . (3o
(ré = a)h(r) 2 - a

With
By = (r + w, /t° +8) 87

X
vy has a branch point at r = {8 172) on side k there may be addit{ona) bran!

prints 1f g has singularitics for |8l D 8”12, cCorrect to fourth order in ¢

1 "= -

(r? - u)ﬁl(r) r‘ - a

The contributi-n of the poles at r = 2w, will be discussed Taters With Ay e

Eq. (23) and hy(r) = -l/Z(r +/r? + B)z for mmall A, the discontinulty pives



walt,) = 22.(1 - uz) ‘ r/r2 +8 exp (rt“) dr

= 22,0 - w2 832 2 (1Y (32)

with

R = Bllztn = Bllz“c-lz a

For large =z

Wy ® exp (iﬂllzuc'lz} 32,

The mame asymptotic behavior occurs for stronpg shocks, except that on el
there wmav he additional frequenciesx. The golutiun difiers significantly fr.-
the incompresaible casre where the perturhation is localized at the interface.

The recursion relation for the power series mav be obtained by expansion in

a pover series in By:

¥ ] -(21+‘)
Vel ot e, ==Th- " %y .

P o 8,CaPan (T = Ky 27 (ry) = mpepop, (1 = gy B2 ' (5y) (4
=(22+]
b ( )

- Pgs

We have
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-1 '1 -
2f, = Plypp, '8 Vo

2, = -Plzpbo'ls'l -Vy

and a similar relation for side a. Eq. (27) relates f(s,) and g(s;) 2
2hyf - 2hgp + 2z3(hy = h)r 1 =0 .

The 1ritial expansion is in y = 5; + J312 + 1.

q
Playy = S T 10 g2l
ve o+

1
V(sy) =, B v oA
2 n "
hl(f) = -fly‘ - f: + C'f3y * »
h:(f) - fJY- - f, - C:fly-:
£y = 82 11 - laglrer - 42
fn-» ?"';’I = u?r‘

f3 = 0,4 (20201 4 w) - 117801 - w7 .
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P(s;) and V(sy) are the same with y + yC_l. This appears to give a simpler
recursion relation than others (and less of a truncation error problern fcr

numerical calculations) because s is rational in vy, s5; = 1/2(y - y'l). For side

b Eq. (27a) gives

£1(By = Ay) + fZC-z(nm-l = Ap-y) - f3c-2(nm-2 = Ap-2)

+ €72 [£5(B, + Ay) - £2(Byog + Ap)
37)
- ¢2¢, (3 + )]
1 m=-2 An-2
~2,(6.C1 + 6,c7Y) =0

vhere

2841
. 2 (m + £)!
AII'I- (2':.+1).,P£ (2£+ 1)!(m—2)! i

e o 228 1(n 4+ 1)
N N S HCE

zy = p,czp03,
For side a results aie the same with the exception that the coefficient of 7~ i-

(§oC )"t + 72"



and

P‘ * P‘dIZl_zm A

V; > 'nglzl-zm

-1
dl - CbC. .

The singularities of the solution lie on ijl = ], and so the power geries usinp
Anj and ij converges everywhere in the complex plane except right along the
discontinuity. Application of Eq. (26), typically once, but somerimes sever;!
times gives the solution on the discontinuity in terms of it off the

discontinuity where the power series may be used.

V. RESULTS

Probably the most important parameter of the solution is the asymitotic
velocity at the interface. Thic controls the rate at which the twn materials
mix with one another. The interface velocity is zero at t = 0, then mav behave
in a damped oscillatory fashion before settling down to its asymptotic valuc.

The latter is determined by the pole at s = 0, Eq. (26), and we have
Wag = "fa(s = 0) - g (s =0) . (3R)
In terms of the solution at 8)(sy = 0) = 2wc8'l.

Vas = 2(pgaRs " PopRp)/ (Pog + Pop)



vhere

1

R= (:t - = A38787))/{2 +3 Ay) .
2 2

To a fourth order error

Re= It,(z +-;-A3)

Avay from the interface part of the solution behaves like exp(z) and part like
exp(=z). The poles of the third mode (r = fw.) cancel the positive exponentia’

and add the same to the nepative exponential. The net result is
w..(z = 0) exp (=2) .

This 1is identical to the incompress’ble solution. The nignificant par: ot the
asymptotic veloclty avay from the interface im then given by the third madi,
discussed in Section 1V,

It is convenient to ure a normali ed velocity,

Vau = Wag/vg,.7,

v compare with the fncompressible solution, Fq. (1) In the weak she b=,

we have an explicit solutton. Ulizing Fqu. (1), (7), and (i0V) gplves

x -1 . -1
Yan T I 10 Flxyvdyy, Ay

vhere



YaPal

TaPp2

y=|

F(x,y) = [(y - 1)2 + 4(x2 + y)y™Hx + 1) = 2x = 291 /(x + 1)(y + 1) .

The condition for a shock is y > 1, F is plotted in Fig. 1. It is positive a:
y * 1, has a negative minimum, and then increases. Eq. (39) often pives a pnnd
approximation even for strong shocks. A rule of thumb (see Fig. 2 and 1 {c

thnt the second derivative of Ugg With respect is € is nepative, s i

a-
«‘ther clese t Eq. (39) or somevha: smaller. An interestinpg questi -
v'~ther u,, has negative values for a given densitv ratias. Thi~ =-.- .
v, roximately determined by comparing the absolute value of the mini-=:~ ..f
Tix,y) with (x - 1)(x + l)". The conclision s that negative valies arne
rrnfined to a < 1.5, Figures 2 and 3 plot u,, as a function of shack stre-.:',
€. Density ratior were x = 1.25, 1.5, 2.0, 10.0, 100.0. The density ratin far
each curve mav be picked off hy {its value at ¢ = 0, In Fip. 2, v * LS. T
values of Y, (1.5, 2.0, 5.0) range from 3 soft equation of state to a verv har!
one. In Fig. 3, Tp ® 2.0. Rusults are similar to Fip. 2, except that '
velocity for a strong shock (1 €« }) ik usually larger. This s conkfsteat w;i’

the linear approximation, Fq. (39). One curve {s missing tn Fipg. ? bhecause the

parapeters give a rarefactin: inktead of a reflected shock wave.



1.

-28-
REFERENCES

S. Chandrasekhar, Hydrodvnamic and Hydromagnetic Stab{litv, Ch. X.,

Clarendor Press, Oxford (1961).

G. S. Fraley, et al., "Implosion, Stability, and Burn of Multishell Fusiz~
Targets,” Los Alamos Report LA-5783-MS (1975).

G. S. Fraley, Phys. Fluids, 19, 1495 (197é).

R. D. Richtmyer, Communications on Pure and Applied Mathematics XIII, 29"

(1960).

L. Spitzer, Phvsics of Fully lonized Gases, Interscience, New Yorw (]G .,




0.8
FX,Y)

04

0.0

-04

1.0



0.0

1.0



1.0

bc

bc¢

0

1.0
08~
04+

0.



