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ABSTRACT

This paper descr.ihesa ccmputer simulat.i.onapproach to
modeling material balanc:esand to deriving the limitc of error
attributable to mcasurerncntprocedures. A new probability
distribution is presented which is usefu- in the computer
simul.atioils.l’hisdistribution permits the investigator to
asse’ssthe sensitivity of iniLial distributional assumptions
on the computed litnits‘oferror. The simulation e.pproachis
illustrated with a case stuclyexample.

1. INTRODUCTION

In this paper we discuss the statiskic:lltreatmerltof the
numbers arising from the process of nuclear nccountahilit.y.
Our goal is to decide whether a given amount of matcria].un-
accounted for (MUI?)is actually missing from the facility or
is ~yfment.~y missing b~~~~lseof combinec? m~asurement erzors.

If-e MUF falls within certain computcxllimits, we con-
clude that i~ is within measurement error. If outside thcsa
limits, we conclude that some material is mi~~ir.g. Our ap-
pro~ch in calculating these limits on mca~urement error is
first to model the given process. This involves a,]alyzingt?le
flow of material iiithe process and the associated measure-
ment instruments and practices (including calibration tech-
niques). We model each mcamrement in t-hoproccsa with D ran-
dom variable whose expected value is the true value to be mea-
sured and whose probability distributing reflects Che likcl.y
variability in the observed val.uc. NC then Ci~131Cl}’ a computer



program to simulate the process and to generate many realiza-
tions of the MUF. Given the simulated BIUFSfrom a model
which assumes no missing material, we readily can sec the
variability which can be expected in the normal.course of
Cvcnts. Tntervals containing the middle 95% and 992 of the
genaratecl llUE’values yield rcasonahle estimates of the
“warnin(j”and “out of control” limits, respectively.

A much simpler approach to estimating these limits is +-o
assign a standard deviation (OU precision) to each m=:asure-
ment in the process and then ko assimilate this information in
an overall standard d.eviati.onby propagation of error. ~~~ile
th+s gives an estimate of the va”riancc,it is not known how
to use such an estimate to form a confidence interval for the
wean. The usual puactice of taking 2 or 3 estimated standarcl
devia~ions on cith:>rside of the mean as “warning” or “o’Itof
control” limits depanilsheavily on the assumption of normality.
Although this approacl]is easy to carry cut, the resul~ing
limits may be poor estimates of the overall m~asuretocnkerror.
l!requcntly,measurcrncntsare the product of two valuas (fa
example, weight and concentration) which can lead to non-nor-
m,~lprobability dist.rihut+.ons.Z!nothermnjor diffii:ulkywith
this approach is it~ inability to bundle calibration crrcrs.
Since calibration curves are estimated from the measurement oi-
standards (material with a “known” value) , the mere assignment
of standard deviations to individual IflEXLSLlr~llHltS doos not
ac’c-uratelyincorporate calibrtntionerrors.

The simulation approach requires considerable expertise
in HOCIUILIUJa given process~ but.lends to rcasonahl.eestimates
nf the ovcrr.11measurement error. A desirable fcal.ureof t.l~;s
approach is that we cdn test the effect of our distribution:!l.
cns.sumintio~lsou our cskimatcs cf mcazuremnu~ error. In particu-
l.nr, we cal~invcstjgtltethe ef~ects of departures;from tlJe
Imrmal dis~.r:ibul-.ion[assumption. This tC$5t is performed by
cxercisinq our computer model for a variety of assumcx?probab-
ility Clist,rihutions.l~ore:.chcomputer run, the estimated
measurement.error is obtained. l’hecompl.cteset of these
estimates indicates the effect of the distributional assllmp-
tj ms. In the dcsirnlde situation, the sc:tof estimates do
not vary dramatical].yso that we “canconclude th~ttthe results
are not sensitive to Lhc initial assumptions. Scxl.s.itivity
anjmlysisis an esscm:.ialtool in ev:llumtingthe simulcltim
mcxlcland asi+cssingthe appropriateness of the estimates of
TIlcXISLIJTC!flC!Il~ G?~~12~s

In section 2 w ckscribe a new family of symmtric uni-
variatc probability distributions which can anha.nccscnsit.ivi-
ty analysis studies, as clescribedabove. This family is par-
ticularly umfu]. in an:llyzinggu_mtjtativaly the effec~ of
dcp:[cturesfrom normality on the cskfmntcs of n~casurcment

-----——-- .. .

error. The proposcxlft”.mi.lyincl.uclcsas spscial caHQs the ulli-
fol:m,llldnorrn,mlprobability distrj.butions,wh’lchart!ccmmnnly
ugcd in nllcl~saraccountrlbility. The kurt.osjsof khc famj.ly
(i.e., tk fourth stnf’J~lrClizedmumen~) which is an indicakor
of tail wui.~qlltrvarie~ from 1.8 (tlm ~lnifc)rm)to 3.0 (the
normn.1.)to 5.4 (a heavy-tdiled clislxibutjnn). lJ~ilct?r the
family j.nclurlcsa bmml Spectrum of probability cli::tl:il>ukioll~i



llanfiomvariates from the proposed family are easy to generate,
and thus, they can be used In the com.putcr simulation model.

The simulation approach together with the new family of
di~tributions leads to robust eskimetcs of the overall mcasur-
mcnt error. In section 3 wc describe in detail a ca~e stndy in

which measurement errors for a particular procesg were est..i-
matc:lby simulation. Wa conclude that our approach leads to
reasonable cstimat3s of overdll measurement error.

?. . ?ROPIZRTH;SOF TIE HEW DZSTRINJ’TION

The proposed distribution has probability clensityfunction

for N > 1/2, -~ ~ x ~ ~. 11is the distribution function of a
ganma random variable with shape parameter u - 1/2 and scale
paramatnr 2. lh.utIeYcJusproperties of this distribution ore de-
rived in [1, 2]. Properties of importance to nuclear materialu
simulation apglicat.iolw are enumcrat:cclholow.

1. A random variable X with the density f ~s symmtric
and all moments cxish. In particular, the mean of X is V, the
variance is az, the nl:ewncss is O, and the kurtosis is
1.8(N + 1)/(;.

Tlm kurtosis can :Isslmneany value in the interval
[1.8,2;.4). For a specified kurtosis, say 13a,set
a = 1.8/(62 - 1.8). ~

3. A rang?+ of distributional properties is obtnined by
appropriate clmice of pnrarn::ters. FOE u = 1.5, a normnl dis-
tribution ific}!]taincd, As a tends Lo infjnjtyr f approaches
a uniform d.iniri.bution. More genwdlly, the probability in the
tails can be rqu].ated by the rhoict: of u: large m gives light
tails, a near 1.5 giv~~s medium tails, and heavy tails arc ob-
ta~ned for a near 0.5.

4. The proposed distribution cm km aasily cjcwicr~kedon
a digital computer. One algorithm is aS follows: Generate
a gamma variate xl with shape pzuramter a and ccnle parameter
2. Then, generate conditionally a uniform variate x2 on tho
interval (-#xl, ~xl). A random variate with clensity f is
t(l.5u)cJx~ + p. Rccmnmendations for the appropriate gnmma
qc’:lcratianalgorikhm arc given in [3].

5. By u~inu a computer simulation program for a I“angu of
a valucs~ one can a~sess the ef:ectu of almost any Eypc of
symmetric ncm-normaliky on the simulated results.

3. CASE STUDY

In this seckion we describe tho metlwklology for computing
limits of error (LE) in a process for recovering uranium from
mctnl scrap. We first describe tha phyfiical material. We
then di~cuss the material balance arc~as mil k.hcmeasurement
deviceG and pract.icc~. Finally, we pre~cnt results from n
computer aimul~l~ion model which i~ used ko cstinatc LE.



3.1 Physical I.i.lterial-—. ...——-. .

A park of the uranium reprocessing operations at the Los
Alamos Sc.ienkificLaboratory consists of recovc~ing uranium
from turnings created in machininfluranium metnl. After
burning to eliminate oily residues, this mfl~.c~i~l is stored in
c~ns in a vault for possibly several months. Periodically,
several cans al-ermwvecl antitheir conkents ~.iissolved.
Ulhimatcly, ~~i~?Ly ~1~~~ u~~nium ~~ide is ~~~cipihir~d.

3.2. ~~Clt~l:i~].~:,~~a[lces~lilf;.hasure~wnt:;— ..-.—— —. ...

~f~ctil~c:~ntrflteon t~~~~#lteri~~L b?l].a?lces in th rec~~~~y “
proce~s. lleforea can is placed in the vau].t,its Conteilts

. .
~1~:~ bu~~euq LO PLn oxi~~: dl:fl il non.-d~.st]:uctlvtn Las.sily 3.s per-
formed using a rcanrlc)mclriv~rdevice. This device is calibrated
with st~nda~:dsOL.250q, 500g, 100Cg, 1500g and 2000g uranium
per can. T~:ereare flvc replications per can during the
calibration ru~.. Each can in the vault usually rontains 1500c3
to 2000g uranium. Onc material balance a.ca is c?cfined~Jy

considering a processing batch of 4 or 5 cans. Ths correspond-
ing WTI’ is the cliffercncebetween the total uranium assays at
the tir?csCC putting the cans in tl’.;vault and taking theriout
of the vault..

l’hebah.chcan usllal.lybe completely dissolved in a nitric
acid solutiou. The vf)lumeof the solution is typically 30 to
40 litcra and is obtained from reaclinggraduate:lcylinders
(especially dcsiqneclfor radioactive solutions). The conccn-
trati(;nis dctcsmincxlfrom a non-de~~ructive uranium solution
Cass{aydevi.cc(U:~AD)using a 20 ml sample. The calibr~tion
standard; usl.:cifor tl:.i.:;device arc 1!;0,250, 300 and 350 gram
uranium L.:r Iitcr solutions with.five repl.icat-.iollseach. Tile
prodl.ctof the VOI.U’,llE?arrdtha collcuntrak.ionyield an estimate
uf the uranium i.nsolu+:.ion.The second matc:rialbalance area
is clefinedby til~material as it leaves the vault and the
uranium in the solution.

The problcm is to derive LE for each of the material
balance a~(~ii!~ clcfinedin section 3.2. Under the assumption
of no hold UP or divcrsinn, the corresnondinc~MUI’Scan be
rnodelecl,as ‘fr)llows:

()

x.-a
NUI’1= : ~~

i=l %

n
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:1 b2



‘i =

n=

th
ranclom driver rneasuremcnk for i can as it mtcrs
the vault

random driver measurement for i
th

the vault
can as it lcavc?~

ai~bi = estirtsted calibration constants assuming a lin~ar
relationship Si = bi~i + ai

V = volume Illeasurement

.
c = cnnccnlxation m.aasutiemenk.

We can tr:caEeach of ths measurements nnd estimates as random
variables, with a variance derived Erom historical or designed
experimentation. For investigating particul w MUFS, we use
th.uobserved measurements as the means of the ra]ldom vnrflablcs.
J?orthe estimatml calibration ‘cor.s&anks,” wc simulate readings
for the standards and fit a line to them. The slope of the
fitted line is bi; the intercept is ai. Since the sets of ran-
dom driver meaaucwants are talwn numths apart, different cali-
bration ccnstants are s.fmmlatcd for the repeated meamrements
on a batch of cans.

The next. step in the methodology is to fiimulatc in a cam-
putc:r’po’jr~l the models for iWIFla!ldMUF2, Naturally, we lwe
the prupcmcd distribution of section 2 to model t.hcindi~riilual
random Var~Lilbl@S. From the IJ~CVhU5 paragraph, Lne valuc:sof
IJand Uz are dete~nnincd, and the par,lmeter a 5ivcc us a dqrec
of freedom in a sensitivity analysis. In particular, we c;L1l.
select, say,five l:urtmis values 1.8, 2.5, 3., 4. and 5.3 wit:l~
correspo?lding n values ~, 2.57, 1.5, 0.818 and C.511. Ev(.?zl-
tllally,we con’paue five sets of cstimntcs of LE. Tha det~lils
are apparent fro:$the submqucnt csumplc.

Consiclm fu~ illustration~fcnw cans with initial ranclom
driver mcummmnsnts lG38g, 167Gg, l“}23g and 1.7059and with
later random driver measurements 1735g, 1719g, 17.1.9g,and
15112g,rcspcctiveJ.y, The MUI’ for t!lismat.erirl balance area
is 63g gain. ‘lhe solution assay is 65C4g with a volume mea-
surement of 26.24!. Thus, the second makerial balance area has
a TtUE’of 271g 10ss. Are these NUE’S.witnin their limits of
error?

Our :ip~l~OFICll to tilequestion is to simulate five repljmca-
tions of 1000 samples of MUF1 and :IUF2. Each set of 1000
values is scrted~ ancl the 5t.11,25th, Y/5Lh and 995th observa-
tions l)~ovi(l~ cstiimates of the 0.5, 2.5, 97.5 ancl 99.5 pcr-
cantiles. Denote the four c=timatcs aS pi, qi, ri and sir re-
spectively, where i is the replication. Since the limits arc
symmetric, we can justify cfitimatcs of the 95% warnings ..limits
aS + [median lClil+ median ri]/2 and tllc 99% OUt Of cmntrd

lim~ts as + [median Ipi I + mcclian Si]/2. Cr.rtainl.y,other
eSt5.m~tcs &wIlil be pro~wscd, but OLIJ:c?xpnriencc! j.nCliCEiteE!these



to b= robust.
The rcHulting b:i,~iwtcn he simulation run are glvcn

in Tubles I and II.
From these simulntfon results, wa can observe that the

63c!HUF gain and thc2-llq MtlF Iosq arc within their r~I%rJCl!t~VC
1,~ :- c)r all distributions sampled. We concluda the MUFS repre-
HC!.Lmaterial a&yflrc~~21vmissing bccaum OE combined measure-— ..-.-
rncnt errors. We a~%a r.okice that tha LR e~timatos are reasona-
l)ly stable om-cr the ranql:Of distributions E~lil~l,f2C7.

4. CONCLUSIONS
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[31
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