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DIFFUSION-SYNTHETIC ACCELERATIONMETHODS
FOR THE DISCRETE-ORDINATESEQUATIONS*

Edward W. Larsen
University of California

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

The diffusion-synthetic acceleration (DSA) method is an itera-
tive procedure for obtaining numerical solutions of discrete-ordinates
problems. The DSA method is operatically more complicated than the
standard source-iteration (S1) method, but if encoded properly it con-
verges much more rapidly, especially for problems with diffusion-ljke
regions, In this article we describe the basic ideas behind the DSA
method and give a (roughly chronological) review of its long flevelop-
ment. We conclude with a discussion which covers additional topics,
including some remaining open problems and the status of current
efforts aimed at solving these problems.

~~~~~was performed under the auspices of the U.S, Department of
Energy.

~- .—IIIR{I 41Mtlt

I‘1\
\.

NSMUJIIIN(II 1!1’.““1’I I’ INI!)IIII)



DIFFUSION-SYNTHETIC ACCELERATIONMETHODS
FOR THE DISCRETE-ORDINATESEQUATIONS

I. INTRODUCTION

The diffusion-synthetic acceleration (DSA) methodl-29 has, in recent
years, emerged as a powerful and reliable tool for obtainin
convergent solutions of discrete-ordinates problems. la$20,z%,;;ry ‘apidlyHowever,
the method has had a lengthy and uneven development. 1-27 Many of its basic
ideas were first proposed by Koppl (1963) in a 8eneral transport setting,
and then were specialized to discrete-ordinates problems by Gel.bard and
Hageman2 (1969). But soon afterward, Reed3 (1971) showed that, in its then
current form, the method was numerically unstable for problems having spatial
cells with optical widths larger than only about one mean free path. This
instability was severe enough that it prevented the method from being of
general use for practical problems. However, Alcouffe14 (1977) later
explained the source of this instability, showed how to overcome it for
the diarnond-differenced discrete-ordinates equations, and demonstrated for
the first time that DfjA could be used to affect a dramatic decrease in

the total computing effort on practical problems. More recently, Larsen25
has generalized Alcouffe’s ideas and developed a procedure which has pro-
duced stable DSA equations for every spatially difference form of the dis-
crete-ordinates equations on which testing has been performed.

In spite of the long twenty-year effort that has preceeded this
article, there are still open problems concerning the DSA method.
Briefly, the present status of the methcd is as follows:

(a) A simple Fourier stabili~y analysis now exists to explain both
the basic ideas behind the DS4 method and how to determine the spatial
differrncing to make the method numerically stable.

(b) The devr-lopment of stable DSA equations for general differencing
sch~mes in general geomett’ieu, although straightforw~rd, cnn become quite
complicoied nnd detailed.

(c) Important open qllestions remain, particularly c~n~~rning the
existcnre of fast and rfficient ways to tiolvc the DSA equations refcrrr(l
trJ in (h).



We begin, in Sec. II, with a description of the standard source-
iteration (S1) method for both the analytic transport and diamond-dif-
ferenced discrete-ordinates equations. We do this to establish notation,
to introduce the Fourier analysis, and to motivate the reasons for attempt-
ing to develop the IISA method. Then in Sec. iII we develop the DSA method
for fixed source problems, again for both the analytic transport and the
diamond-differenced discrete-ordinates equations. We conclude, in Sec. IV,
with a discussion of further aspects of the DSA method, open questions, snd
the focus of current research efforts.

II. SOURCEITERATION METHOD

The S1 method can be described by the equations

(Q)(x)+Q(x) t&+4) (9.+$)(X,P) = c 00
~ ax (X,IJ)+ o (1)

(2)

where c c 1 and we treat boundary conditions, for now, as unspecified.
This method has the following physical interpretation: with a starting

(o)(x) ‘g)(x) i; the scalar flux due to all particles whichguess $0 = o, i$o

have undergone fewer than 2 collisions after being emitted by the source Q.
For a nearly conservative (c S 1) and optically thick systenl, most of the
part$cles undergo e very large nmber of collisions; thus, on the basis
of its physical interpretation, one can expect the S1 method to converge
slowly for this type of problem.

To examine this in more detail, let us define

(~+$)(x,p) - * (f-$)(x,p) ,J~+*)(x,p) = *

(l+l)(X) - $:1)(X) ,Jf+l) ()() = *O
o

(3a)

(3b)

MCIthe djfferrnce between successive iterates in Eqs. (1) - (2). Then
Eqs. (1) and (2) describe a stablr, convergent method if and only if

(I+*] and
V(2+$) and O~g) tend to zero aa J? tendn to 00, Equationg for W

@(fi) can be obtained by subtracting Eqn.
o

(1) and (2) for successive values

of 1, yielding



(4a)

(4b)

We seek a separation-of-variables Fourier mode solution of these equations
of the form

Ii=fl, - m< ~< m

Jg+++x,p)
iAx= u?a(A,p) e .

(5)

Here w is the eigenvalue , which is a function of the parameter A, The quan-
tity

P =af’ Iwl (6)

is termed the spectral. radius; p mea~ures the slowest possible reduction
In the error from one iteration to the next, By the above remarks, the
iterative method (l), (2) is stable and convergent if and only if p < 1.
Also, if two convergent methods have different values of p, then the
method with the smaller p will generally converge faster.

Introducing the ansatz (5) into the two Eqs, (4) and solviug for
the two ~!nknowns, a and w, we easily obtoin

a(A,p) = ~ +ciAp——..—.— t

!
1

b~(’
(.1J.1...--. -.

l+A~z “
o

(7)

(8)



Thus the maximum value of IuJI, which occurs for A = O, is p = c, and so

Lhe method (l), (2) is stable and convergent for c < 1. [With more work
it can be proved that for a finite system, the A = O mode, a(O,p) = c,
cannot be present , and thus the methold (l), (2) is stable for c ~ 1.]

The S1 method thus has poor convergence properties for A ~ O and
c = 1 (an optically thick, nearly conservative system). This agrees with
the physically motivated statements in the beginning of this section.
We also note that for ~ value of c, the most slowly converging modes
correspond to A ~ O and are nearly linear functions of p:

a(A,p) = c (1 - iAp) forAZO .

Next, let us consider the S1 method for the diamond-differenced
discrete-ordinates equations:

(9)

(lOa)

(lOb)

(1OC)

m= 1

The notation is standard; the subscript. m (1 ~ m ~ N) refers to the m-th
diucre~e-ordinete direction, the zubs~ript k refers to a cell-average
quantity for the k-th spatial cell (xk-+ < x c xk+~), the subscripts

k t. & refer to edge quantities for Lhe k-th cell, h = xk+4 - Xk-+, and

the angular weights Wmare normalized to satigfy

N

1 =
z

w
m’

m= 1

(11)

To determine the convergence properties of the iteration method
(10) wc define, as before,



~p . g+#) .(Q-$)
- vm~ s

etc. , and we obtain the equations

Pm

(
#+!J -

)
(~)~(fl++) + J:*)

K m,k+$ m,k-$ = ‘*Ok ‘

N
J2+1) = z ,$2++) w

Ok mk m“

(12)

(13a)

(13b)

m = 1

Into these three equations we introduce, analogous to Eqs. (5]: the separa-
tion-of-variables Fourier mode ansatz

(14C)

and solve for the three unknowns am, w, and bm. We obi.ain for am and w,

c
a = —.—.——.—..—

m 1 + ipm
(

Ah
~ tan ~-

)

(15)



N

z w
W=c

m
22’’’ Ah2”

(
=1 l+pmfitan~

)

(16)

[Equation (16) was first derived by Reed.3] Since a and w are periodic
functions of A with period 2n/h, we need only conside? A on the interval
IA! :n/h.

As before, we find that the maximum value of IuJI, which occurs for
A= O,isp= c, and so the discretized S1 method (10) is stable for
C<lo (For finite systems, it is stable for c < 1.) Also, as before,
the most slowly converging modes, which correspo~d to A Z O, are nearly
linear functions of p :m

a z C(l
m

- ipmA) for

To summarize, the S1 method for
ordinates equations has the desirable

A?@ . (17)

tlie diamond-differenced discrete-
Property that it is stable for all

mesh sizes ithis fact seems to have la~ge’ly been taken for granted, but
it is IJy no means obvious) , and the undesirable property that its conver-
gence rate is severely problem-dependent: as c tends to one and as the
system increases in optical thickness, the error reduction from one
iteration to the next becomes arbitrarily small. This creates two prob-
lems: the number of iterations required to achieve a givel~ bound on the
error tends to irlfinity , and at the same time it becomes increasingly
difficult for a computer cede to determine when to stop iterating so
that this error is actually achieved. (This can lead to the phenomenon
of “false convergence”,) However, the most slowly converging components
of any solution are conveniently characterized as slowly varying in
x and nearly linearly varying in p. This type of solution, which can
roughly be described as “diffusion-like” ! provides both the motivation
and the starting point for the DSA method,

111. DIFFUSION SYNTHETICACCELERATION

The guiding principle behind the DSA method car be stated as follows14:
retain Eq. (1), but replace Eq, (2) by new equations which produce the exact
scalar flux $ if the exact angular flux is a linear function of p.

8
To do

this, let us efine

(18)



where PO(P) = 1, PI(P) = p, P2(p) = (31.12 - 1)/2, etc., are the Legendre
polynomlnals.

We begin with Eq. (l),

and compute its zeroth and first Legendre moments, obtaining

Now we define acceleration equations as:

(1+1)
d$l
&- (x) + (1 - c) $&+])(x) =Q(x) ,

(2+3)
W2

(Q+l)
dOo

(Q+l)(xj =() .2
j~(x)+ ;-#x)+ol

(19)

(20a)

(20b)

(21a)

(21b)

Equations (21) have the following properties: (a) they are two equations for

‘Q+l)S (b) upon convergence, they agree with Eqs.the functions $$Q+l) and $1 ,

(20), and; (cl if the the angular flux is a linear function of angle, then
$Q+W = O and Eqs,

(Q+l)
2

(21) determine @$Q+l) and $1 exactly, To proceed, we

subtract Eqs. (20) from Eqs, (21) and obtain

~f(Q+l)

-# (x) + (1 - c) f$+l)(x) = ( (l+$)(X) “ $:%X)) ,c +0 (22a)



(22b)

(23)

We note that Eqs. (22) are similar in form to the standard P equa-
tions.30 Finally, we rearrange Eqs. i(22) and obtain the dif usion equation

~ df$g+~)
~; l+%X) = - - —

3 dx
(x) .

The DSA method for the
Eqs . [19)) (18) with n

analytic transport equation is now described by
= O, (24a), and (23) with n = O, i.e.,

(24b)

(~++)(x) + Q(x) , (25a)$fl+$)(x,p) = co.

(25b)

~ d2f$E+1)

-~-#x)+O-c)f, (
(g+l)(x) = c (&+$)(x) - +$%x)) , (25c)

$(fl+l)(x) s$:~++)(x) + f:~+l)(x)
o

(25d)



Performing the same Fourier stability analysis on this method as was
applied to the S1 method in Sec. II, we obtain

[

A2

IJ

1 ?2(@
lu=c P+3[1 -C) 1 + Azpz ‘p “

-1

Therefore,

1

Ij

P2(I.J)
lull ~c

1 + Azljz
dp

I
~ (0.2247) C .

--

(26)

(27)

(The bound on the integral was obtained numerically.) Thus, the IISA method
for the analytic transport equation is stable and convergent foz all
O<C<]. Plots of wversus A for the S1 method [Eq. (8)] and the DSA
me~hod–[Eq. (26)] are given in Figure 1 for c = 1. Here it can be seen
that the DSA eigenvalue is zero for A = O, as it was designed to be.
However, Figure 1 additionally shows that the DSA eigenval~e is less
than the S1 eigenvalue for all values of A.

Equations (25) - (27) were first derived by Gelbard and Hageman2,
who used a procedure, proposed originally by Koppl, which is substantial-
ly different from the procedure used above. (Other analyses, based on
Kopp’s procedure, have been performed by Wings and Allen and Wing.6’16)
One of the unsatisfactory features of this earlier procedure that it
provides no clues as to how to numerically difference Eqs. (25). Thus,
for example, if one selects the diamond-difference scheme for Eq. (25a),
then one is apparently at liberty to difference the remaining Eqs. (25b,
c,d) in an arbitrary way. However, while in principle this is true, it
turns out that afiy obvious choice of a differencing scheme produces an
iterative method which is unstable for large enough spatial meshes.
Reed3 first demonstrated this analytically and numerically for a simple
centrally-differenced form of Eqs, (25b,c,d):

.

(28a)

(28b)

$(2+1) . J:+) (!2+1) .
Ok + ‘Ok

(28c)



For this method [i.e., Eqs. (lOa,b) and (28)], we obtain, as in Sec. II,

(29)

For any h, the most rapidly converging modes are the “flat” (A = 0) ones:

u)(o) = o , (30a)

while the most poorly converging modes are the “oscillatory” (A = n/h)
ones:

I
(30b)

Thus for h2(2c - 1) > 4/3, the expression on the right side of Eq, (30b)
exceeds one, and this iterative method is unstable.

Equations (30) provide an interesting contrast to the S1 eigenvalue
given by Eq. (16):

w(o) = c , (31a)

w(:) = o (31b)

Here the most rapidly convergent modes correspond to A = n/h, while the
most poorly convergent modes correspond to A = O; this is just the op-
posite of Reed’s method [Eqs. (30)]. We infer that in one important
sense, Reed’s numerical discretization of Eqs. (25b,c,d) succeeds: it
does make the A ~ O modes converge more quickly, as it was designed to
do. However, in another more critical sense it fails because the oscil-
latory modes, which converge very rapidly f~r the S1 method, now coverge
more slowly or even diverge,

After Reed’s results were published it became clear that while
Eqs. (25) were potentia~ useful as a basis for a practical accelera-
tion method (because they did, even for the discretized case, cause a
more rapid convergence of the A ~ O modes), the following essential q~es-
tion remained to be answered: g for a specific discretization of the trans-
port equation [Eq. (25a)J, does there exist a discretization of the re-
maining equations [Eqs. (25b,c,d)] such that the resulting method is stable
for all h, and if so, how can one determine it?



Alcouffe~~10’ls*ld answered this question in the affirmative for the
diamond-difference scheme. His logic (paraphrased, so as to make sense
in the present context) was as follows. if the cause of the instabi-
lity is an improper spatial differencing of Eqs. (25b,c,d), then this
difficulty might be removed by making the differencing of these
equations more consistent with that of Eq. (25a). To accomplish this,
suppose we have a direct algebraic procedure which, starting with the
analytic Eq. (25a), allows us to derive the analytic Eqs (25b,c,d). Let
us then apply this same algebraic procedure, starting with the discretized
,q. (25a), and attempt to derive discretized forms of Eqs. (25b,c,d), If.

such a procedure is possible, there is no a priori guarantee that it
will produce a stable method. However, it will at least produce spatial
discretizations which are fully consistent with the discretized Eq, (25a).

Actually, Alcouffe wcrked with a set of acceleration equations that
were different from, but algebraically equivalent to, Eqs. (25). However,
the logic is the same for both sets of equotiofis.

A direct four-step procedure for deriving Eqs, (25b,c,d), developed
by Larsen25, is described by Eqs. (19) - (24). We shall now apply this
procedure to the diamond-differenced discrete-ordinates equations [Eqs.
(lOa,b)] .

[1] To begin , we take the zeroth and first (discrete) Legendre
moments of Eqs, (lOa,b). This produces the following four e!l’lations:

(32a)

Here we have defined

m= 1

n =0,1 . (32c)

(33)

etc. This step partlllels the derivation of Eqs, (20) from Iiq. (19),



[2] Next we define acceleration equations as

(34a)

,n =0,1 . (34C)

This step parallels the derivation of Eqs, (21) from Eq. (20),

[3] NOW we subtract Eqs, (32) from Eqs. (34) to obtain a numerical
form of the PI equations:

where

(35’)

(35C)

(36)

etc. This step parallels the derivation of Eqs, (22) and (23) from Eq. (21).

[4] Finally, we rearrang~ Eqs, (35) to obtain a ~ingl~ equation for
f(fl+l)
O,kt$’

To do t,his, we use Eqs, (35cl to eliminate the cell-overa~ed unknowns

in Eqti. (35a,h) and then manipulate the resultin~ equations ovrr two adjacent
cells, obtain~ng



1
-~ (~(fl+l)

(), k+3/2
~f(f+l)

(),k+l/2 +
pl)

O,k-1/2 )

~(i+l) (1 f(l+l) - #Q+l)=-_
lk 3h 0,k+4 )O,k-~ ‘

(37a)

(37b)

(37C)

This step parallels the derivation of Eqs, (24) from Eqs, (22),

The fully discreti.zed method now consists of Eqs, (lOa,b), (33) with
n = O, (37&,b), and (36] with n = O. An al ebraically equivalent form of
this method was first derived by Alcouffe; 19 the form pregented here was
first derived by Aull,17’ls’20 For this method we obtain, as in Sec. 11,

[

(
2 N

~ tnil y’
h )

lx
1- 3p2

UJ=c
m.-.. ..-— . . . .. . . ..—.. .. ...

‘-2’” Ah(i”’
------

(

, Ah2wm’ (38)
+3(1 -c)Jm= 1 1 + P:(: tall ~-fi tan ~--

)

N

p-

1 - 3p;
Iwl :C ... . . .. . .. . .. ..

tnn Ah 2 ‘m
~ (0.2247) c . (39)

m = 1 l+p:(:
2 )

(The bound on the sum wa~ obtninrd numcricull~, and hold~ for all A, h,
and N,) ThuH, the correct~y dicicrctized method iti unconditionally
stable (i.e., p K 1 ior 811 0 < c ~ 1 and all h).



To summarize, the DSA method in both its analytic and its correctly
discretized form produces more rapidly convergent discrete-ordinateB
solutions than the standard S1 method for all spatial ‘eshes. The dif-
ference ‘Letween the convergence rates for the two methods is most dramatic
for diffusion-like problems, for which the error in th~ S1 method can
decrease arbitrarily slowly from one iteration to the next, whereas the
DSA method has the property that for all problems at most 1.54 iterations
are required to reduce the error by a full order of magnitude. (We refer
the reader to references 14, 21, 22, and 26 for numerical results which
conf~rm thepe theoretical predictions.)

Iv, DISCUSSION

Here we shall discuss some additional topics concerning DSA.

1. In the preceding sections ws have described the DSA method as
a device for upeeding up the convergence of the A 2 0 (or, nearly linear-
in-angle) modes. However, there is another way to view the method. It
cai~ easily be shown that the standard S1 method [Eqs. (10)] leads to a
numerical solution which satisfies the particle balance equation only
upon full convergence, and never at the end of each iteration. [See
Eq. (lOa).] However, the DSA method has the property that. at the end of
each iteriition, the an~ularly integrated balance equation is satisfied in
every cell. [See Eq, ~34a),] Thu~ the DSA method-can be viewed ah a
linear fine-mesh rebalance method. Milleri2’ls and Rhoades tind
Tomlinson19 have given a more complete discussion.

2. In che earlier sections we have discussed neither the derivat:
of boundary conditions to go with the diffusion equation that ha, to be
~~~~cd in ea ch DSA iteration, nor how to determine the initial scalar f’

The derivation of these equations however is strai~htforward and
i~ described in Reference 25. The guiding principle is, as before:
orEanize the diffusion Part of the iteration so that the scalar flux is

on

Ux

computed exactly in one iteration if tht~ angular flux is li~ear in angle,

3. More124 has shown that for highly anisotropic-sc~ttering problems,
the DSA method can be significantly improved if one accelerates both the
zeroth and first angular moments of ~ from one iteration to the next.
This can be done with very little extrs work; for example, see Eqs. (37c)
and (36) with n = 1. A discussion is also given in Reference 25.
Currently, an effort is being made to determine the benefits of accele-
rating more than only the zcroth and first angular moments uf ~ for such
problems,

4, The lesson which arises from the work of Reed” and Alcouffe14
is that for the DSA method to attain unconditional s~ability, the dif-
fcrenced forms of the transport. and diffus~on equatiorts must be consistent.,
In Sec. 111 we derived the difference form of Llie diffusion equation
[Eq. (37a)] from the difference form of tbe transport eullation [Eqa.
(lOe,b)]; theBe equations ale consistent only if ooth O( Eqs. (lOa) and
(lOb) hold for every direction in every cell. Howev(*r. it negative flux
fixups tire included in the trai~sport pnrt of the cni ulation, then Eqt
(lob) is not used for those v~l,ues of k and m for which the fixup is itl-



voked and Eqa. (37a) and (lOa,b) are no longer fully consistent. If too
many fixups are used, the DSA method can destabilize, just as can happen
with the unaccelerated iii method. An important open problcm concerns the
elimination of this type of instability; a full discussion is given in
Reference 26,

5. In the preceding sections we have only discussed linear ac-
celeration methods, Nonljnear methods have also been proposed and
implemented,4’8’ 11’12’14 ‘is’21 but these methods typically become in-
operative if spatial meshes are large enough that negative scelar fluxes
arise, To cure this, a negative flux fixup could be used in the trans-
port part of the iteration, but then the accuracy of integral quantities
may suffer and other stability problems can arise (see the above para-
graph) , However, nonlinear methods can possess certain advantages; we
refer the reader to References 14, 15, and 21, Also, we note that a
fair amount of work on nonlinear acceleration methods has appeared ‘-n
the Russian literature. ‘1 34 However, these methods are not accelera-
tion methods in our sense of the word because the numerically generated
scalar fluxes from the transport and diffusion calculations do not
generally agree upon convergence and neither of these generally agrees
wittr scalar flux obtained by solving th? unaccelerated tran~port equation.
(This is because the spatial differencing of the transport and diffusion
equations is not required to be consistent, ) However, a 11 three results
do converge to the correct answer in the limit of arbitrarily small
meshes. Reference 31 provides the simplest description of the method,
which is equivalent to the Variable Eddington Factor method d]scussed by
Miller. !5 The issue of numerical otability is not discussed in Refer-
ences 31 through 34,

6. Linear and nonlinear versions of DSA havo been applied to eigen-
value problems with success; for detailJ, see References 14 dnd 23. Work
on the linear DSA method for eigenvalue problems in twc-dimensional
geometries is currently under way,

7. A fo~!r-step procedure for deriving stable I)SA equations is de-
scribed above iN Sec. 111, In slab geometry, thi# procedure is wc)rknhlr
and ha~ led to unconditionally stable DSA methods for numerous discreLe-
orrlinatcs differencing schemes. In other geometries, however, it is
possible that only the first three steps of this procedure can bc carried
out; the olgrbraic complexity of the system of PI acceleration equat~ons
resulting from step [3] can be Buch that collnp8r down to a singlr dif-
fusion equation, as in step [4], is impossible, For example, in X,y-
geometry, the step [3] system of P

4
occcleration equations ari~ing from

the diamond-differcnced discrete-o dinates equutions cnn be collripscd
down to a single nine-point diii’usion equnt.ioo difference on cell ver-
tices, but this is not true in general for wrlght,cd diamoud srheme~,
Stability analyses k=wcver have shown that if onp could solve the P

Asystem of acceleration equationR in place of the tiinglr di!fusion e IIa-

tion, then one would have a stahlr and ~j’fertive ac(e]rration method,
in thi~ situation, two approache~ arc posNihle: (1) drvrlop rft’icirnt



ways to ~olve the P system of equations, or (2) attempt to simplify the
P system, without ~acrificing stability, so that it can be collapsed.
[It has been shown pcssible in slab geometry to weaken the rather strict
requirement that the scalar flux be computed exactly, in the acceleration
part of the iteration, if the angular flux is linear in p. This leads
to a simpler set of P equations, and with the same ~tability properties
as before. 27 Unfortu~etely, this idea has nnt yet been successfully
extended to twodimensional geometries. ]

However, even in sit:.ations where collapse of the P equations to
a single diffusion equation is possible, iit turns out tha a much larger
proportion of the computing effort goes into the djffusion part of the
iteration in two-dimensional geometries than in oue-dirnensional geometries,
and special techniques have to be used to minimize the cost of performing
the diffusion calculations .ss’s8 Therefore, whether the “acceleration”
part of the iteration is a single discretized diffusicn equation or a
system of discretized P equations, the central queution for two-dimen.’
sioncl 8eometries is: f~r general problems, can the acceleration equations
be solved economically enough to make the resulting DSA method a signi-
ficant improvement over the standard S1 method? The main research efforts
currently under way are focused on this question, and the outcome of this
research will determine whether the DSA method fulfills its potential as
a generally superior and more economical iterative method than the
standard S1 method for practical two-dimensional problems,
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Figure 1: w Versus A for the S1 Hethod (Upper
Curve) md MA Method (Lower Curve)
for c = 1.0.
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