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DIFFUSION-SYNTHETIC ACCELERATION METHODS
FOR THE DISCRETE-ORDINATES EQUATIONS*

Edward W. Larsen
University of California
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

The diffusion~-synthetic acceleration (DSA) method is an itera-
tive procedure for obtaining numerical solutions of discrete-ordinates
problems. The DSA method is operationally more complicated than the
standard source-iteration (SI) method, but if encoded properly it con-
verges much more rapidly, especially for problems with diffusion-like
regions. In this article we describe the basic ideas behind the DSA
method and give a (roughly chronological) review of its long develop-
ment. We conclude with a discussion which covers additional topics,
including some remaining open problems and the status of current
efforts aimed at solving these problems.

*This work was performed under the auspices of the U.S. Department of
Energy.
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DIFFUSION-SYNTHETIC ACCELERATION METHODS
FOR THE DISCRETE-ORDINATES EQUATIONS

I. INTRODUCTION

The diffusion-synthetic acceleration (DSA) method!”29 has, in recent
years, emerged as a powerful and reliable tool for obtaining very rapidly
convergent solutions of discrete-ordinates problems,18'20128:29 = youever,
the method has had a lengthy and uneven development.!”27 Many of its basic
ideas were first proposed by Kopp! (1963) in a general transport setting,
and then were specialized to discrete-ordinates problems by Gelbard and
Hageman? (1969). But soon afterward, Reed® (1971) showed that, in its then
current form, the method was numerically unstable for problems having spatial
cells with optical widths larger than only about one mean free path. This
instability was severe enough that it prevented the method from being of
general use for practical problems. However, Alcouffel4 (1977) later
explained the source of this instability, showed how to overcome it for
the diamond-differenced discrete-ordinates equations, and demonstrated for
the first time that DSA could be used to affect a dramatic decrease in
the total computing effort on practical problems. More recently, Larsen?®
has generalized Alcouffe's ideas and developed a procedure which has pro-
duced stable DSA equations for every spatially differenced form of the dis-
crete-ordinates equations on which testing has been performed.

In spite of the long twenty-year effort that has preceeded this
article, there are still open problems concerning the DSA method.
Briefly, the present status of the methcd is as follows:

(a) A simple Fourier stabjliiLy analysis now exists to explain both
the basic ideas behind the DSA method and how to determine the spatial
differencing to make the method numerically stable.

(b) The development of stable DSA equations for general differencing
schemes in gencral geometries, although straightforward, can become quite
complicated and detsiled.

(c) Impoirtant open questions remain, particularly concerning the
existence of fast and efficient ways to solve the DSA equations referred
to in (b).

The purpose of this article i8 to give a complete presentation of the
theory described in (a), a flavor of the detail referred to in (b), and a
more eaplicit description of the open questions described in (¢). Our goal
is simplicity and unity of presentation. Thus, we describe the theory in
the contexy of linear DSA methods (which are amenable to the Fourier
stability nnalysis) and one-dimensional slab geometry, Nonlinear methods
and certain nther ropics will only be mentioned briefly.



We begin, in Sec. II, with a description of the standard source-
iteration (SI) method for both the analytic transport and diamond-dif-
ferenced discrete-ordinates equations. We do this to establish notation,
to introduce the Fourier analysis, and to motivate the reasons for attempt-
ing to develop the DSA method. Then in Sec. III we develop the DSA method
for fixed source problems, again for both the analytic transport and the
diamond-differenced discrete-ordinates equations. We conclude, in Sec. IV,
with a discussion of further aspects of the DSA method, open questions, and
the focus of current research efforts.

IT. SOURCE ITERATION METHOD

The SI method can be described by the equations

(2+%)
b2 8T = e oM 4 e (1)
1
oV = %f oy (2)
-1

where ¢ < 1 and we treat boundary conditions, for now, as unspecified.
This method has the following physical interpretation: with a starting

guess ¢éo)(x) =0, ¢éz)(x) is the scalar flux due to all particles which

have undergone fewer than £ collisions after being emitted by the source Q.
For a nearly conservative (¢ = 1) and optically thick system, most of the
particles undergo a very large number of collisions; thus, on the basis

of its physical interpretation, one can expect the SI mcthod to converge
slowly for this type of problem.

To examine this in more detail, let us define

v oy = W o - B W G (3a)

oM (x) = ¢32+1)(x) NI (3b)

a8 the differrnce between successive iterates in Eqs. (1) - (2). Then
Eqs. (1) and (2) describe a stable, convergent mcthod if and only if

g L ()

082) can be obtained by subtracting Eqn. (1) and (2) for successive values
of £, yielding

+
and tend to zero as £ tends to ®, FEquations for W(z b and
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We seek a separation-of-variables Fourier mode solution of these equations
of the form

¢é£)(x) = w'cei)\x

}j_:J-]’ - < )\ < ® (5)

(2P Ax

yH) = wza(A,p) ei

Here w is the eigenvalue, which is a function of the parameter A. The quan-
tity

p =7 ul (6)

is termed the spectral radius; p measures the slowest possible reduction
in the error from one iteration to the next. By the above remarks, the
iterative method (1), (2) is stable and convergent if and only if p < 1.
Also, if two convergent methods have different valuves of p, then the
method with the smaller p will generally converge faster.

Introducing the ansatz (5) into the two Eqs. (4) and solviug for
the two unknowns, a and w, we easily obtain

B("o“) = e S ’ (7)

_ d
w C_[ i (8)



Thus the maximum value of |w|, which occurs for A = 0, is p = ¢, and so
the method (1), (2) is stable and convergent for ¢ < 1. [With more work
it can be proved that tor a finite system, the A = 0 mode, a(0,d) = c,
cannot be present, and thus the method (1), (2) is stable for c < 1.]

The SI method thus has poor convergence properties for A = 0 and
c £ 1 (an optically thick, nearly conservative system). This agrees with
the physically motivated statements in the beginning of this section.
We also note that for any value of c, the most slowly converging modes
correspond to A £ 0 and are nearly linear functions of pM:

a(A M) 2 c (1 - iAy)  for A 20 . (9

Next, let us consider the S[ method for the diamond-differenced
discrete-ordinates equations:

i =

m(¢(2+¥) . lb(»‘l'*’a)) ll,(!Z“:) ¢(2)

h m, k+y m,k-% mk + Qk ’ (10a)

(82 2) _ 1/, (2+h) (2+%)
bo ¥ = F (ke * Vmky) (10b)
¢((,ﬁ+1) = Z ¢(w") - (10¢)
m

The notation is standard; the subscript m (1 < m < N) refers to the m-th
discretLe-ordinate direction, the subsrript k refers to a cell-average
quantity for the k-th spatial cell (xk_& < x < xk+8)’ the subscripts

k t 4 refer to edge quantities for the k-th cell, h = xk+¥ - xk-&’ and
the angular weights w, are normalized to satisfy

1= Z Yo . (11)

To determine the convergence properties of the iteration method
(10) we define, as before,
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etc., and we obtain the equations

Hi 7, (2+%) (2+%) (2+%) _ (2)
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Yok T2 (Wm,k+a * wm,k-%) , (13b)
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Into these three equations we introduce, analogous to Egs. (5), the separa-
tion-of-variables Fourier mode ansatz

iAx
¢ét) = w’ee k , \ (14a)
1
X = 7 ey ¥ Xy

iAx
W;ﬁ+5) = wzame k , ] (14b)

{ Ax
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and solve for the three unknowns an W, and bm. We obtain for a. and w,

C
a = (15)
m 2 Ah !
1 + ipm(ﬁ tan E—)



w=2cC

(16)
m=1 1+pi(%tan-)2

[Equation (16) was first derived by Reed.3] Since a and w are periodic
functions of A with period 2n/h, we necd only consider A on the interval
IAl < n/h.

As before, we find that the maximum value of |w], which occurs for
A =0, is p = ¢, and so the discretized SI methiod (10) is stable for
c <1, (For finite systems, it is stable for ¢ < 1.) Also, as before,
the most slowly converglng modes, wnich correspond to A 2 0, are nearly
linear functions of y

R
o

a 2 c(l - ipmA) for A=

(17)

To summarize, the SI method for the diamond-differenced discrete-
ordirates equations has the desirable property that it is stable for all
mesh sizes (this fact seems to have largely been taken for granted, but
it is LY no means obvious), and the undesirable property that its conver-
gence rate is severely problem-dependent: as c¢ tends to one and as the
system increases in optical thickness, the error reduction from one
iteration to the next becomes arbitrarily small. This creates two prob-
lems: the number of iterations required to achieve a given bound on the
error tends to infinity, and at the same time it becomes increasingly
difficult for a computer ccde to determine when to stop iterating so
that this error is actually achieved. (This can lead to the phenomenon
of "false convergence'.) However, the most slowly converging components
of any solution are ccnvenieatly characterized as slowly varying in
x and nearly linearly varying in pg. This type of solution, which can
roughly be described as "diffusion-like', provides both the motivaticn
and the starting point for the DSA method.

III. DIFFUSION SYNTHETIC ACCELERATION

The guiding principle behind the DSA method car be stated as follows!*
retain Eq. (1), but replace Eq. (2) by new equations which produce the exact
scalar flux ¢  if the exact angular flux is a linear function of M. To do
this, let us geflne

1
oW () = %f P 6V o an , (18)

n
-1



where Po(p) =1, Pl(p) =W, Pz(p) = (3u2 - 1)/2, etc., are the Legendre
polynominals.

We begin with Eq. (1),

(2+%)
p 8w 6P P e = 0P rem (19)

and compute its zeroth and first Legendre moments, obtaining

(2+%)
46
e 00+ 6"V = oM + e, (202)

(2+%) (2+%)
, 40, , 99

2 2+l o+ d" P =0 (200)

Now we define acceleration equations as:

d¢(2+1)

E?l (x) + (1 - ¢) ¢é£+l)(X) = Q(x) ) (21a)
(2+%) (2+1)

, do dé

L2260 12000+ 0PV 20 (21b)

Equations (21) have the following properties: (a) they are two equations for

the functions ¢(2+1) and ¢(2+1); (b) upon convergence, they agree with Egs.
0 1

(20), and; (c) if the the angular flux is a linear function of angle, then
¢§2+§) = 0 and Eqs. (21) determine ¢32+1) and ¢§£+1) exactly, To proceed, we

subtract Eqe. (20) from Eqs. (21) and obtain

df(,Q+])

e 0+ (-0 M = (o - o) (22a)



df(9,+1)

12w+ eV =0 (22b)
where
fr(12+1)(x) = ¢r(l£+1)(x) _ ¢I(1£+§)(x) . (23)

We note that Eqs. (22) are similar in form to the standard P

equa-
tions.3°

Finally, we rearrange Eqs. (22) and obtain the dif%usion equation

d2f (2+41)

s 0+ -0 o0 = 08P - oM w) s

(A

(2+1) 1 df52+1)
+1 _ 170
£ (x) = - 3 @ (x) . (24b)

The DSA method for the analytic transport equation is now described by
Eqs. {19), (18) with n = 0, (24a), and (23) with n = 0, i.e.,

(%)
b 2T o+ 6P P w2 oMo e (253}
1
055 ) = %}[ NI CRT IR T (25b)
-1
g2¢(2+1)
-1 R+ a -0 P = 6P 0 - 0P ) (25¢)
0V = W0 + M) (254)



Performing the same Fourier stability analysis on this method as was

applied to the SI method in Sec. II, we obtain

A 2,(W)
w=_c dp
[ A2+ 3(1 - ¢) ] 1 + AZpZ
Therefore,

S N )
W dp | < (0.2247) c

lwl < ¢

(The bound on the integral was obtained numerically.)

(26)

(27)

Thus, the LSA method

for the analytic transpert equation is stable and convergent fox all

0 <c <1. Plots of w versus A for the SI method [Eq.

method [Eq. (26)] are given in Figure 1 for ¢ = 1.

(8)] and the DSA
Here it can be seen

that the DSA eigenvalue is zero for A = 0, as it was designed to be.
However, Figure 1 additionally shows that the DSA eigenvalue is less

than the S1 eigenvalue for all values of A.

Equations (25) - (27) were €irst derived by Gelbard and Hageman?

)

who used a procedure, proposed originally by Kopp!, which is substantial-
ly different from the procedure used above. (Other analyses, based on
Kopp's procedure, have been performed by Wing® and Allen and Wing.®'16)
One of the unsatisfactory features of this earlier procedure that it

provides no clues as to how to numerically difference Egs.

(25). Thus,

for example, if one selects the diamond-difference scheme for Eq. (25a),
then one is apparently at liberty to difference the remaining Eqs. (25b,
c,d) in an arbitrary way. However, while in principle this is true, it
turns out that any obvious choice of a differencing scheme produces an
iterative method which is unstable for large enough spatial meshes.
Reed® first demonstrated this analytically and numerically for a simple

centrally-differenced form of Eqs. (25b,c,d):
(2“1) § : dj(!lﬂx)
’
m

1 (f(2+1) - (1) (2+1))+ 1 - o £

" 3h7 \ “0,k+1 Ok 0,k-1

o) - ¥, ((4)

(28a)

<¢(2+&) ¢(2)) ,

(28b)

(28¢)



For this method [i.e., Egs. (10a,b) and (28)], we obtain, as in Sec. II,

I BCECS O Y
(% cin 7_\_}2‘)2 + 3(1 - ¢) mz=:1 (cos ZM)Z + “:'(% im %)2 m

(29)

For any h, the most rapidly converging modes »re the "flat'" (A = 0) ones:

w(0) =0 , (30a)

while the most poorly converyging modes are the "oscillatory" (A = m/h)
ones:

n| _ c
|w(5)| T (30b)
3h i

Thus for h%(2c - 1) > 4/3, the expression on the right side of Eq. (30b)
exceeds one, and this iterative method is unstable,

Equations (30) provide an interesting contrast to the SI eigenvalue
given by Eq. (16):

w(0) = ¢ . (31a)
w(g) =0 (31b)

Here the most rapidly convergent modes correspond to A = n/h, while the
most poorly convergent modes correspond to A = 0; this is just the op-
posite of Reed's method [Eqs. (30)]. We infer that in one important
sense, Reed's numerical discretization of Eqs. (25b,c,d) succeeds: it
does make the A = 0 modes converge more quickly, as it was designed to
do. However, in another more critical sense it fails because the oscil-
latory modes, which converge very rapidly for the SI method, now coverge
more slowly or even diverge.

After Reed's results were published it became clear that while
Egs. (25) were potentially useful as a basis for a practical accelera-
tion method (because they did, even for the discretized case, cause a
more rapid convergence of the A = 0 modes), the following essential ques-
tion remained to be answered:® for a specific discretization of the trans-
port equation [Eq. (25a)], does there exist a discretization of the re-
maining equations [Eqs. (25b,c,d)]} such that the resuliing method is stable
for all h, and if so, how can one determine it?



Alcouffe?’10°13714 gngyered this question in the affirmative for the
diamond-difference scheme. His logic (paraphrased, so as to make sense
in the present context) was as follows. If the cause of the instabi-
lity is an improper spatial differencing of Egqs. (25b,c,d), then this
difficulty might be removed by making the differencing of these
equations more consistent with that of Eq. (25a). To accomplish this,
suppose we have a direct algebraic procedure which, starting with the
analytic Eq. (25a), allows us to derive the analytic Eqs (25b,c,d). Let
us then apply this same algebraic procedure, starting with the discretized
i.3. (25a), and attempt to derive discretized forms of Eqs. (25b,c,d). If
such a procedure is possible, there is no a priori guarantee that it
will produce a stable method. However, it will at least produce spatial
discretizations which are fully consistent with the discretized Eq. (25a).

Actually, Alcouffe wcrked with a set of acceleration equations that
were different from, but algebraically equivalent to, Eqs. (25). However,
the logic is the same for both sets of equations.

A direct four-step procedure for deriving Eqs. (25b,c,d), developed
by Larsen?®, is described by Eqs. (19) - (24). We shall now apply this
procedure to the diamond-differenced discrete-ordinates equations [Egs.
(10a,b)].

{1] To begin, we take the zeroth and first (discrete) Legendre
moments of Egs. (10a,b). This produces the following four equations:

1/, (2+%) (2+%) (2+%)_ _,(2)
p (*1 ks~ Oen) %ok D= o) 4 (32a)

2 (2+%) (2+%) 1 [ (2+%) (2+%) (2+%) _ }
3h (¢2,k+a - 0k ) * 3 (06 ki - % k-y )t o © =0, (32b)
(2+%) _ 1 [ (2+h) (2+%) _
®nk T2 (¢n,k+5 * ¢n,k"ﬁ) ! n=0,1 . (32¢)
Here we have defined
N
D DR LI
m=

etc. This step parallels the derivation of Eqs. (20) from Eq. (19).



[2] Next we define acceleration equations as

1 (o) (B ), Loy gD

1,k+k 1,k-% Q (34a)

2 (2+%) (2+¥) (2+1) (2+1) (2+1) _

3h <¢2,k+a 92, k- g) ('¢o Ktk - %0 K-k ) ) =0 , (364b)
2+1) 1 /. (8+1) |, (8+1) )
( i ( n k+;ﬁ + ¢ k_g y D= 0, 1 . (34(:)

This step parallels the derivation of Eqs. (21) from Eq. (20).

[3] Now we subtract Eqs. (32) from Eqs. (34) to obtain a numerical
form of the P1 equations:

1 (e (241) (2+1) (8+1) _ [, (2+%) _ (&) "

b (Fleh ~ Ty )t (1m0 g = c(og" ~ag’) L Gse)
1 /. (2+1) (2+1) (2+1) _

'H(fe,k+g " f0, k- J+ £ =0, (35b)
(2+1) _ 1 /.{x¥1) (2+1) -

o =3 (B ey *fogen) 0 n=0,1, (35¢)

where

(241 (2*1) (2+Y)

nk - ¢ ¢nk : ' (36)

etc. This step parallels the derivation of Eqs. (22) and (23) from Eq. (21).
(2+1)[41 Finally, we rearrange Eqs. (35) to obtain a single equation for
fO ket To do this, we use Eqs. (35¢) to eliminate the cell-averaged unknowns

in Egs. (35a,b) and then manipulate the resulting equations over two adjacent
cells, obhtaining
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t 3 (fo,k+3/2 * 2, we12 Y fo,k-1/2>
- ¢ (2+%) (2+Y) (2) (2)
=3 [(°o,k+1 * Pk )' (¢o,k+1 * Pok )l , (37a)

(2+1) _ 1 (2+1) (2+1) )
fok T2 (fo,k+5 *EG K-k ' (37b)

(D) | 1—(}(£+1) f(2+1)) (37¢)

1k = 7 3n\o,k+k ~ T0,k-%

This step parallels the derivation of Eqs. (24) from Egs. (22).

The fully discretized method now consists of Eqs. (10a,b), (33) with
n =90, (374,b), and (36) with n = 0. An a1§ebraically equivalent form of
this method was first derived by Alcouffe;!% the form prerented here was
first derived by Aull.17°18°20 For thig method we obtain, as in Sec. II,

2 N
(Z tan Aﬂ) 1 - 3“2
W= ¢ |- ‘hom 2l U S (38)
T2, A ) - 227, TAhjZ Ym
<h t.an2 + 3(1 C)J m=1 l+pm<h t.uxxz)
Therefore,
u 1 - 3u;
SRR P e TR I
m\h 2

(The bound on the sum was ohbtained numericully, and holds for all A, h,
and N.) Thus, the correctly discretized method is unconditionally
stable ({.e., p < 1 for all 0 < ¢ <1 and all h).

The above four-step method has been successfully applied to a number
of spatial differencing schemes for the discrete-ordinates equations in
slab geometry.28'26  In other geometries a difficulty for non-diamond
transport diftferencing schemes can arise; we discuss this in the next
section (see item 7).



To summarize, the DSA method in both its analytic and its correctly
discretized form produces more rapidly convergent discrete-ordinates
solutions than the standard SI method for all spatial ‘eshes. The dif-
ference Letween the convergence rates for the two methods is most dramatic
for diffusion-like problems, for which the error in the SI method can
decrease arbitrarily slowly from one iteration to the next, whereas the
DSA method has the property that for all problems at most 1.54 iterations
are required to reduce the error by a full order of magnitude. (We refer
the reader to references 14, 21, 22, and 26 for numerical results which
confirm there theoretical predictions.)

IV, DISCUSSION
Here we shall discuss some additional topics concerning DSA.

1. In the preceeding sections w2 have described the DSA method as
a device for speeding up the convergence of the A 2 0 (or, nearly linear-
in-angle) modes. However, there is another way to view the method. It
ca;i easily be shown that the standard SI method [Eqs. (10)] leads to a
numerical solution which satisfies the particle balance equation only
upon full convergence, and never at the end of each iteration. [See
Eq. (10a).] However, the DSA method has the property that at the end of
each iteration, the angularly integrated balance equation is satisfied in
every cell. [See Eq. (34a).] Thus the DSA method can be viewed as a
linear fine-mesh rebalance method. Miller!2'15 and Rhoades and
Tomlinson!® have given a more complete discussion.

2. In che earlier sections we have discussed neither the derivation
of boundary conditions to go with the diffusion equation that ha. to be
s?bxed in each DSA iteration, nor how to determine the initial scalar flux
¢ The derivation of these equations however is straightforward and
i8 described in Reference 25. The guiding principle is, as before:
organize the diffusion part of the iteration so that the scalar rlux is
computed exactly in one iteration if the angular flux is lirear in angle.

3. Morel?4 has shown that for highly anisotropic-scattering problems,
the DSA method can be significantly improved if one accelerates both the
zeroth and first angular moments of ¢ from one iteration to the next.

This can be done with very little extra work; for example, see Eqs. (37c)
and (36) with n = 1. A discussion is also given in Reference 25.
Currently, an effort is being made to determinc the benefits of accele-
rating more than only the zeroth and first angular moments uf § for such
problems.

4. The lesson which arises from the work of Reed® and Alcouffeld
is that for the DSA method to attain unconditional s.ability, the dif-
ferenced forms of the transport and diffusion equations must be consistent.
In Sec. III we derived the differenced form of the diffusion equation
[Eq. (37a)] from the differenced form of the transport eauation [Eqgs.
(10a,b)]; these equations are consistent only if voth oi Eqs. (10a) and
(10b) hold for every direction in every cell. However, it negative flux
fixups are included in the transport part of the cal ulation, then Eq.
(10b) is not used for those values of k and m for which the fixup is in-



voked and Eqs. (37a) and (10a,b) are no longer fully consistent. If too
many fixups are used, the DSA method can destabilize, just as can happen
with the unaccelerated 51 wicthod. An important open problem concerns the
elimination of this type of instability; a full discussion is given in
Reference 26.

5. In the preceeding sections we have only discussed linear ac-
celeration methods. Nonlinear methods have also been proposed and
implemented,4'8°11112+14518121 py¢ these methods typically become in-
operative if spatial meshes are large enough that negative scelar fluxes
arise, To cure this, a negative flux fixup could be used in the trans-
port part of the iteration, but then the accuracy of integral quantities
may suffer and other stability problems can arise (see the above para-
graph). However, nonlinear methods can possess certain advantages; we
refer the reader to References 14, 15, and 21. Also, we note that a
fair amount of work on nonlinear acceleration methods has appeared in
the Russian literature.3! 34 However, these methods are not accelera-
vion methods in our sense of the word because the numerically generated
scalar fluxes from the transport and diffusion calculations do not
generally agree upon convergence and neither of these generally agrees
with scalar flux obtained by solving tk> unaccelerated transport equation.
(This is because the spatial differencing of the transport and diffusion
equations is not required to be consistent.) However, all three results
do converge to the correct answer in the limit of arbitrarily small
meshes. Reference 31 provides the simplest description of the method,
which is equivalent to the Variable Eddington Factor method discussed by
Millar.'® The issue of numerical stability is not discussed in Refer-
ences 31 through 34.

6. Linear and nonlinear versions of DSA have been applied to eigen-
value problems with success; for details, see References 14 and 23. Work
on the linear DSA wethod for eigenvalue problems in twc-dimensional
geometries is currently under way.

7. A fonr-step procedure for deriving stable DSA equations is de-
scribed above in Sec. II1. 1In slab geometry, this procedure is workable
and has led to unconditionally stable DSA methods for numerous discrete-
ordinates differencing schemes. In other geometries, however, it is
possible that only the first three steps of this procedure can be carried
out; the algebraic complexity of the system of P, acceleration equations
resulting from step [3] can be such that collapse down to a single dif-
fusion equation, as in step [4], is impossible. For example, in x,y-
geometry, the step [3] system of P, acceleration equations arising from
the diamond-differenced discrcte-o}dinates ecquations can be collapsed
down to a single nine-point difrusion equation differenced on cell ver-
tices, but this is not true in general for weighted diameud schemes.
Stability analyses however have shown that {f one could solve the P
system of acceleration equations in place of the single diffusion e&un-
tion, then one would have a stable and effective acceleration method.

In this situation, two approaches are possible: (1) develop efficient



ways to solve the P, system of equations, or (2) attempt to simplify the
P. system, without gacrificing stability, so that it can be collapsed.
[it has been shown pcssible in slab geometry to weaken the rather strict
requirement that the scalar flux be computed exactly, in the acceleration
part of the iteration, if the angular flux is linear in Y. This leads

to a simpler set of P, equations, and with the same stability properties
as before.?? Unfortunetely, this idea has nnt yet been successfully
extended to twodimensional geometries.]

However, even in sit.ations where collapse of the P, equations to
a single diffusion equation is pussible, it turns out thal a much larger
proportion of the computing effort goes into the diffusion part of the
iteration in two-dimensional geometries than in oue-dimensional geometries,
and special techniques have to be used to minimize the cost of performing
the diffusion calculations.35’36 Therefore, whether the "acceleration"
part of the iteration is a single discretized diffusicn equation or a
system of discretized P, equations, the central question for two-dimen-
sional geometries is: fOr general problems, can the acceleration equations
be solved economically enough to make the resulting DSA method a signi-
ficant improvement over the standard SI method? The main research efforts
currently under way are focused on this question, and the outcome of this
research will determine whether the DSA method fulfills its potential as

a generally superior and more economical iterative method than the

standard SI1 method for practical two-dimensional problems.
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Figure 1: w Versus A for the SI Method (Upper
Curve) and DSA Method (Lower Curve)
for ¢ = 1.0,
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