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NONLINEAR HYDRODYNAMICS

We now come to a very sophisticated method for calculating the
stability and pulsations »of stars which make contact with actual
observations of the stellar behavior. Hydrodynamic calculaticns are
very simple in principle. Conservation of mass can be accounted for
by having mass shelle that are fixed with their mass for all time.
Motions of these shells can be calculated by taking the difference
between the external ‘orce uf gravity and that from the local pressure
gradient. The conservation of energy can be coupled to this momentum
conservatios equation to give the current temperatures, densities,
pressures, and cpacities at the shell centers, as well as the positions,
velocities, and accelerations of the mass shell interfaces. Energy flow
across these interfaces can be calculated from the current conditions,
and this energy is partitioned between internal energy and the work done
on or by the mass shell. We will discuss here only the purely radial
case for hydrodynamics because it is very useful for stellar pulsation
studies.

The one-dimensional initial value computer programs for calculating
stellar pulsations are {few in number. Christy (1964) published the
first description of & stellar hydrodynamics code. It was based on
techniques developed at Los Alamos in ecarlier days. We also used the
same  gencral methods and published a description in a paper by Cox,
Brownlee, and EKilers (1966). There have been several programs since,
and  their descriptions are given by Stobie (1969), Bakev and von
Sengbusch  (19609), Bendt and Davig (1971), Stellingwert (1974), Wood
(1974), Spangengerg (1975), Karp (1975), Castor, Davis, and Davison
(1977), and Vemury and Stothers (1978).

All these program: were written for studics of Copheids and RR
Lyrae varviables except for the Wood and Karp programs.  The Wood program
hags been used only for calculations of Mira variables, and the Koarp
program is actually the nova code developed by Kutter and Sparks (1972).
Mira pulsations have alzo bheen studied with the Christy code (Keeley
1970) and our Los Alamos DYNSTAR code.  The Christy code wor turther
nsed by Treimble (1972) tor helium star pulsations, and the Stellingwer!
vode was  bied some for & Scuti pulsation calculations, Hoth the

Stellingwert and the Los Alaimos codes have Leaturves that can seck



strictly periodic solutions by a relaxation technique, but this valuable
procedure for Cepheids will not be discussed here because it does not
work for the very slowly decaying pulsations of the upper main sequence
stars.

Appenzeller (1970), Ziebarth (1970), and Talbot (1971) have written
computer codes for the calculation of pulsations of very massive upper
main sequence stars. Later Papaloizou (1973), using essentially the
Christy techniques, has calculated the hydrodynamics of stars masses
between 70 and 210 solar masses. These calculations were not very
detailed and were not very definitive in their predictions of possible
pulsationally induced mass loss. Nowadays the facts seem to be that
stellar winds produce so much mass loss that even the lowest mass
considered by these authors, sixty solar masses, have very short lives.
It is still possible, however, that pulsation is responsible for the
very high mass loss rates seen in stars such as the Wolf-Rayet stars.

The Appenzeller, Kutter-Sparks, Gtellingwerf, Castor, and our
DYNSTAR codes are complelely implicit. That means that the equations
are time centered at least halfway across the time step, and therefore
the solution necessarily involves iterations for quanlities al  dhe
advanced time. The Courant time step limit (see Richtmyer and Morton
1967) is not necessary for these codes, and it Lthe accuracy allows a
larger time step, it can be used. The encrgy cquation is solved
implicitly, however, in all the above described numerical programs.

The current version of the DYNSTAR program will be described here.
As one might expect, all these above=mentioned programs have evolved or
died, and the published descriptions are generally not accurate. The
current DYNSTAR program, made completely implicit in 1975 is actually a
version of  an unpublished fortran code written by Carl Hansen  at
Roulder, based oo our published concepts, and some of his, and Tinally
shipped back to Los Alamos!

The starting confipgnration of the Lagrangian mass shells is that
given by the envelope wmodel code described in the fifth lecture.  The
figure there gives Lhe zone numbering, but that was to accord with the
Castor (1971) sysitem tor the linecar pulsation cigensolutions, For
DYNSTAR we relabel the zone interfaces with a number one lews than given
thereo  This means that the ouler mass shell center is vamed IR and so

it the onter (sariace) dinterface. The central ball radijus needs no



number because it remains fixed in space for all time and produces a
fixed luminosity.

Figure 1 gives the two basic equations for DYNSTAR. These are the
momentum and the energy equations., The equation for mass conservation
in our Lagrangian system is only an auxiliary one which gives the
specific volume of each mass zone at the beginning of each timestep and
during the implicit method iterations for the end of the timestep. The
hydrodynamic solution is really just a series of models spaced a
timestep apart, where this timestep is as large as possible to retain
accuracy of the solution.

Values of all the variables are known at time n. For the needed
values at the next time n+l, there is an 2xtrapolation of the quantities
and then a set of a few iterations to improve these values so that the
equations are accurately satisfied. Because we have what is called a
completely implicit method, there is no mathematical (Courant) stability
limitacion on the timestep as there is when the hydrodynamic behavior is

calculated explicitly.

1-D LAGRANGIAN HYDRODYNAMICS-TWO VARIABLES
MASS, MOMENTUM, AND ENERGY CONSERVATION

At = t"+] - ln; interface |; mass zone 1; 1 <1 < IR
M = ;T+5 + 280 - 28 r'l'“‘/(m)2 = 0
[ o= A0T+5 - AE?+% - v?** AVT*L =0

Figure 1. The basic equations of mass, momentum, and encergy conserva-
tion are integrated over timesteps for ali the Lagrangian
mass zones,
our so-called momentum ecquation is really an expression relating
the Inteiface positions, their velocities and acerlerations.  The basic
quantity s the acceleration which is time ¢ atered by averaging the
pressure gradient and the force due to the gravity of the internal mass
over the timestep.  The velocity at time ntl is that at time n plus the

acceleration at the mean Cime times the timestep.,  Likewise, the



difference in the interface radius between time n+l1 and time n, that is,
6r centered at time n+), is the velocity centered at time ntk times
the timestep. This velocity at the midtime is taken as the mean of its
value at time n and n+l. Combining all these things results in what we
call the momentum equation, and it is iterated together with all the
provisional quantities such as temperature, specific volume, pressure,
etc at time n+l until the equation equals zero.

Our energy equation is the first law of thermodynamics. Energy
flowing into or out of the mass shell by radiation, conduction, or
convection plus the energy introduced into the mass shell by nuclear
burning is partitioned between internal energy and work according to
this equation, Time centering of all these terms means that the
variables must be guessed and iteratively imprcved for Lime n+l, justL as
for the momenluim cquation. Convergence for both of the basic equations
is reached wnen the equations attain values small compared to their
largest terms.

The  momentum  equation  that  describes the zone interface
accelerition is given in Figure 2. Fraley (1968) has shown that to
conserve  encrgy exactly through the entire cenvelope model, it is
necessiry to define the mean square of the interface radius in the way
g'ven which involves both Limes u and n+l. Also it is necessary to use
tae acceleration due te gravity at a mean radius as  given again
involving the radius at both ends of the timesvep. The figure also siows
some  detail  abonl  the nonadiabatic term ol the energy equation.
Luminosity by radiation and conduction is caleulated with the normal
Rosseland diffusion cquation where the K oincludes both radiative and
conductive contributions.

These two cynations ol one system involve many variables, and we
choose two of them (T,r) tor ecach mass =acll ay our unknowns.  All other
variables,  such  as  the density,  the pressupe,  the opacity, the
suminosity, cte. can be calenlated with the shell mass and these two
dependent variables known, Iterations involve the correctjons to T and
rlor cach shell so thal convergence, that is, consistency of tae two
yasic equatlions, Is obtained over the timestep

Note that there are many other possible procedures of petting the
hydrodynamic solut jons sach as using morve equations amd more variables,

Phe Stellinpwert method has three equations (velocits aceeleration, amd



ID I AGRANGIAN HYDRODYNAMICS-TWO VARIABLES
ACCELERATION AND NONADIABATIC TERMS
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Figure 2. The acceleration and nonadiabatic terms are given for the
numerical hydrodynamics calculation.

energy) and three unknowns (T, r, and the velocity u). The Kutter-
Sparks system uses five. Thrse are the conservation of mass, momentum,
energy, the total of the radiative, conductive, and convective luminos-
ities, and the definition of velocity. The unknowns here are the T, r,
V, the total luminosity anu ithe velocity. Appenzeller (1970) uses Lhe
same cquations but assigns the unknowns as T, r, pressure, the total
luminosity and the velocity. The backward time differencing (not time-
step centered) that he used was very dissapative, however, even though
quite slable. The Castor variable zone mass (mixed Lagrangiau and
Eulerian) DYN code uses an explicitly determ? .ed mass together with an
implicit solution for T, r, and u using the equations of mass, momentum,
and energy.

I am not sure which system is the best. In these completely
implicit codes a matrix solution is made for each iteration as we will
soon Hee, I there are more cquations, there are more rows of the
matrix and more componenls of the correction vector. This certuinly
means more matrix operations. In our case, if the number of equations
Is reduced to only two for ecach zone, then the matrix is more simple.
Nevertheless, the saving In matrix operations is used up in the process
of developing all the terms of the derivatives as clements of our more

claboyate two equations.



For our two basic equations we need to assign boundar’ conditions
at the top and bottom of the envelope. The central ball has a fixed
radius and a fixed core luminosity which is the surface luminosity minus
any thermonuclear energy sources or neutrino losses in all the envelope

zones. At the surface the acceleration of the interface is taken as

-2
4n IR

R = Mo (0 - Pp) = gy (1)

There the luminosity is calculated by an approximate radiation transport
solution for the effective temperature as a function of the temperature
at the center of the last zone and the optical depth at that point.

™ =34 T (v, . 2/3) (2)

IR e IR

With this effective temperature, the luminosity can be calculated from
the normal black body luminosity formula

LI

} 2 .4
R-dmeoTe (3)

As we have indicated before, our implicit method requires
iterations to converge on values of the two dependent variables at the
advanced time, A Newton-Raphson procedure is followed as indicated in
Figure 3. The matrix we deal with consists of many derivatives of which
there are 2 with respect to T and 3 with respect to r in the momentum
cquaticn, and there are 3 with respect to T and 4 with respect to r in
the encrgy equation. Thus the matrix is 7 diagonal.

The notation used in the actuval program is also given in Figure 3.
Fach of the.ue derivatives is calculated each iteration k from sometimes
rather complicated formulas. These derivatives are obrained analytically
except for the derivative of the convective luminosity with respect to T
and r. These latter derivatives are done numerically by applying an
increment of Lypically 10-7 to T and r separately and then recalculating
Lhe convective luminosity. The difference in the luminogities divided
by the difference in the variahle (T or r) pives a partial derivative
whiclh is accurate enough to gnide the iterations to converg ace.

The Newton-Raphson method is applied by puttine the negative of the

energy and momeantum equations, called respectively Z2C and o, as



ID LAGRANCIAN HYDRODYNANICS - TWO VARIABLES
NEWTON-RAPHSON ITERATIONS

I+1 k I+1 k
Sk, s (oM oM 3
0’I B MI * .E (BT). 6T1 +._z (Br). 6r1 =0
i=I i i=I-1 i
1+1 k I+1 k
" ) 3E _
ZCI = EI +__Z (BT). 6Ti +--Z (ar). 6ri =0
i=I-1 i i=I-2 i

Band matrix solution for known M, E and derivatives at any iteration k

gives the vector 6T1, 6r1, 6T2, 6r2, ... 20,
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Figure 3. Details of the Newton-Raphson method are given tor the
implicit solution,



components of a right-hand side vector. The linear equations are solved
for a correction vector consisting of increments for the T, r pairs.
This matrix is portrayed in Figure 4. Since the matrix elements are
changing each iteration, considerable calculation is involved, but
usually only 4-5 iterations are needed to get convergence. If the time
step can be ten or more times that given by the Courant limit, the use
of this implicit iteration procedure is warranted.

We need now to discuss the guesses that ace made for the T, r
values for the advanced time n+l. In Figure 3, the momentum and energy
equations, that is, o and ZC for each zone, were time centered between
step n and n+l. A simple example of this is that in the energy equation
the dE is just the internal energy at time n+l minus its value at time
n. Consider now the momentum and energy equations at time n+t%, in order
to make our extrapolation or guesses for time n+tl. A Taylor expansion
of the two equations would result in almost exactly the two expressions
given at the tcp of Figure 3, and they both equal zero because these two
equations are here assumed to be zero at the mean time. The Taylor
expansion, however, involves only quantities at time n and none at time
nt+l. These equations at time n and their various derivatives are
somewhat different than they were in the implicit method itcrations
which involve time centered quantities. If the extrapolation is made to
the mean time, the derivative terms should be multiplied by %. Solution
for the correction vector, as described before, now allows them to be
applied to give a very good approximation to the configuration at time
ntl, and a good starting point for the iterations. We call this Taylor
expansion the explicit P step and the iterations as the F step of the
time step.

In DYNSTAR, all the time cenlered quantities ar~ exactly hall of
their time n value and hali of the time n+l value excepl for Lhe
luminosities. Following Stellingwerf (1975), we give Lhe n+l
Juminosities a weight of 2/3 and those at time n only 1/3. Presumably
this makes the integrations more stable without much loss in accuracy.
With our centering at exa ly at the Lime midpoint, the procedure is
marginally stable, and somelimes we have convergence trouble for large

Limesteps.
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Figure 4. The structure of the 7 diagonal matrix
for the correction vector is displayed
defined in the previcus figure.
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A very important thing to do when using the Newton-Raphson method
is to be sure that the largest increment in the T, r correction vector
is not so large that the solution iterati..s are upset and nonconver-
gent. In the normal case, the maximum, wherever it is in the zones, can
be as large as 30%, but sometimes a much smaller coirrection needs to be

tapplied so that the equations do not stray out of their radius of con-
vergence.

Time dependent convection is necessary to give realistic hydro-
dynamic solutions in most cases. Figure 5 presents the mixing length
equations with a modification for the rconvective velocity variation. As
used today, the increase of the convective velocity each time step is
0.1 or less times the velocity of an element (Av) after it has travelled
a mixing length. The decrease is given by the fomula for the lag, and
if the gradient becomes subadiabatic, the drag is multiplied by 1000.
These parameters do not matter much for upper main sequence stars,
because the surface convection zone is very weak and the core convection
timescale is perhaps 100 times the pulsation period.

All of the usual hydrodynamic codes, for pulsation or not, needl an
artificial viscosity to smooth out strong disturbances such as shock
waves. The use of the viscosity is simple. The pressure which consists
of gas and radiation terms as well as perhaps the convective turbulent
pressure term, is further increased by the turbulent eddy and artificial
viscosity terms. This pressure, used both in the momentum and energy

equations, is given as

SR CIRYAI L evsI]2 (4)

if [ ]} term < 0

qa; = 0 otherwise (5)
_FT dr
=y v Ac dr
(6)

Ve and Av = allp from time dependent mixing length theory



TIME DEPENDENT CONVEL.:1ON

Ifv > vt o0y Ay
c—- c c c
=g — 2 ar>o
P it1 T Fi-1
dp _ o AT
P T
if v <vw n
c c
+
vt 1. v + 1(v_ - vn) >0
c c c
n+l
T=v—_+vc ﬁmr
2 A
L ~ v3
c c
LF = 1

IFv <0 ég <0 use Av < 0

wilh AF 1000

Figure 5. The equations for the time dependent convection are based
on a lag of the convective element velocity in mixing
length theory.

We somelimes use a linear artificial viscosity where the square
bracket term is not squared, the threshold © is set to 0, and a factor
of the sound velocily (s added.

Material properties are nceded Lo carry out calculations. We have
already discussed the opacities, and the equation of state needed to
calculate them is also necded Lo calculate Lhe pressure and energy fo.
the mass shells in the hydrodynamics integrations. Bath tabular and
analytic formulas are used, the latter when il seems very necessary to

operate with smoolh opacity and equation of state derivatives as for



convection or just for ease of the iteration convergence. The standard
thermonuclear reaction rates of Fowler, Caughlan, and Zimmerman (1975)
and screening factors discussed by Reeves (1965) are used for any energy
source present.

Opacities vary rapidly with temperature and they are known only at
the center of the mass shells in our hydrodynamic calculations. Yet, the
radiative luminosity passing ‘rom shell tu shell is space centered at
the shell interfaces. Simple averaging of the opacities in adjacent
zones is not adaquate especially if the number of =zones is limited to
typically 50-100. Christy (1967) and Stellingwer{ (1975) have proposed
averaging procedures. Without giving che procedure here, we merely say
that wr use the Stellingwer{ method.

Selection of the time step is crucial for the calculations. If the
step is too small, results will be slow in coming. If the time step is
too large, the iterations will not converge. We have adopted a time
step selection procedure that retains tLhe previous time step if the
number of itecations for the last time step was reasonable, say six to
ten. For a larger nuwber ol iterations, the problem is having trouble
and the time step is cut by 15%. 1f convergence is very easy (in less
than six iterations), multiplication of the timestep by 1.15 is made for
the next one.

The typical way a pulsation solution is started is to use the
actual ecipenvecto trom the Pinecar nonadiabatic solution. This cigen
vector is rescaled from its usual normalization with a surlace amplitude
of 100%.  We start ltrom a hydrostatic and thermal equilibrium model and
apply the radius c.eenvector as the vutward velocity structure.  To get
the T, v configuration that obtains at this midpulsation posilion we
look al the imaginary part ol the T, r vector, which pertains to a tine
a quarter of o cvele emlier than the maximom radius Cime,  Iner menling
the temperatures, radii, and velocities now puts the amodel out  of
thermal and hydrostatic balance and the integration (with a not too
Large timestep) bepins.,

As an example ol the use of the hydrodynamic code, v here give
resu'ts of a calcutation ftor the f Cephei varioble o Yirgimis.  The
mats of the model is 115 solar mass, the etfective temperature s
20,000 K, awd the Tuminositly is 6.9 ~ 103, crps/a, This is exactly the

model discussed in lecture 1 for jty hinear theory pulsation solution,
vy i



This linear solution has been scaled here to a photospheric peul to peak
radial velocity of 24 km/s to allow for the limb darkening which affects
the 17 km/s observed amplitude.

Figure 6 shows the radial velocity variations for about 10 periods.
All eycles do not repeat exactiy in this calculation. Figure 7 is the

sradius variation from the hydrodynamic integration, and a peak-to-peak
variation of about 1% is seen. Since all the interior variations are
even smaller, and the decay e-folding rate for this fundamental mode is
only about one part in 10,000, it is reasonable to expect that this
model is behaving very vclosely to the result from linear adiabatic
theory.

Bolometric magnitude variations are displayed in Figure 8. Here the
amplitude peak-to-peak is 0.19 magnitude which corresponds to a much
smaller amplitude in the visual bhand. The surface effective temperature
variations of 650 K above anua below the mean of 26,00¢ K, given in
Figure 9, produce a varying lolometric correction of close to 0.11
magnitude (Code et al.1975) with the maximum correction occuring at the
hottest phase which is also the most luminious phase at minimum radius.
These corrections are =-2.63 at 26,650 K and =2.52 at 25,350 K.
Subtraction of this correction difference then produces somewhat more
than the actual few hundredths of a magnitude observed variation in the
Vfilter.

The kinetic cenergy of the motions varies as shown in Figure 10.
Twice cach cycle, al maximum infall and maximum expansion velocity, the
kinetic cnergy reaches a maximum. For other stars that are not so
adiabatic, there are phase Jdifterences between the maximum velocity at
different levels in the star, and the peaks and valleys of this kinetic
energy variation are nol so separated as in omr case where there is 2
range of three or more powers of ten.,

We  believe that  the supergiant  pulsations are all nonradial,
because we will show how very rapid the decay of o radial hydrodynamic

disturbance is in our final lecture,
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