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MULTIGRID SEMI-IMPLICIT HYDRODYNAMICS REVISITED

Joel E. Dendy, Jr.

1. INTRODUCTION.

The multigrid method has for several years been very

successful for simple equations like Laplace’~ equation

on a rectangle. For more complicated situations,

however, success has been more elusive. Indeed, there

are only a few applications in which the multigrid method

is now being successfully used in complicated production

‘codes. The one with which we are most familiar is the

application by Alcouffe [1] to TTDAMG, stemming from [2].

We are more familiar with th16 second application in

which, for a set of test problems, TTDAMG ran seven to

twenty times less expensively (on a CRAY-I computer) than

its best competitor. This impress$.veperformance, in a

field where a factor of two improvement is considered

significant, encourages one to attempt the application of

the multigrid method in other complicated situations.

The application discussed in this paper was actually

attempted several years ago in [4]. In that paper the

multigrid method was ●pplied to the pressure iteration in

three Eulerian and Lagrangian codes. The application to

the Eulerian codes, both incompressible and compressible,

was successful, but the ●pplication to the Lagxangian

code was less ●o. The reason givan for thir lack of

ruccens in [4] waa that tha differencing for the precwre



equation in the Lagrangian code, SALE, was bad. For

example, on a uniform grid with mesh size h, the

approximation to the Laplacian A in SALE is the skewed

Laplacian:
.

sk
‘h ‘icj = ~~7(pi-1,j-1 + ‘i-l,j+l + Pi+l,j-1

+ ‘i+l,j+l - 4pi,j) ; (1.1)

why this is a bad differencing is discussed below. In

[4] the differencing for the pressure equation was

changed so that on a uniform grid, the Laplaclan was

approximated

‘h ‘i,j

by the discrete five point Laplacian:

= _$l(Pj_l,j+ Pi+l,j + pi,j-1

+ P’x,j+l - 4p1,J) ; (1.2)

when this change was made, we were able to apply the

multigrid method successfully. In this paper, we examine

again the application of multigrid to the pressure

equation in SALE with the goal of succeeding this time

without cheating.

2. MULTIGRID REVIEW.

To explain the difficulty with (1.1), it is helpful

to review the multigrid method. Suppose that the

equation LU = F is

~MUM =F”.

In the simplest

approximated on a grid GM by

(2.1)

ftxm of the multigrid method, one

ccmtructs a sequence of grids G1 GM
# .*,, with

corresponding mesh sizes hl~ ...1 ~~ where hi-l = 2hi.

One doe6 a fixed number, IM, of relaxation sweeps

(Gauss-Seidei, for exampls) on (2.1) and then drops dcwn

to grid GM-l and the equation

~M-lJ+l . ~-1 , #-1(# - L%”) , (2.2)
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where @-l i. to be the coarse grid approximation to

@ s @ - urn,where VM = urnis the last iterate on grid

Gl and where IS-l Mis an interpolation operator from G
b-a

to GM-? To solve equation

resorts to recursion, taking ID

Gk before dropping down to grid

equation

(2. 2 ) approximate y, one

relaxation sweeps cm grid
=k-1

b M-1 ~ k ~ 2 and the

~k-lvk-l = fk-l ~ ~k-l k - ~kvk)
~ (f . (2.3)

When grid G1 is reached, the equation LIV1 = fl can
either be solved directly or to some precision byn a.
iteration and v’ + V4 + Ifv* can be perfo~edc Then one.-
does IU relaxation sweeps on

Vk + Vk + I;J?k-l, 3 ~ k < M.-.
The motivation behind the

on a given grid Gk, relaxation

generally do a fine job of

components of the error but a

frequency components. More
e = (el, e2) Fourier component of the error functions v

and ~ before and after a relaxation sweep on Gk be

written as

grid Gk-l before

multigrid method

forming

is that,

methods like Gauss-Seidel

reducing high frequmcy

poor job of reducing low

specifically, let the

ii
= ~ ei(e1u+02~)

a,$ e and v ~ ~i(ela+ezp)
a,p = e ● Suppose

IIiethat P(0) = ~ is appreciably lesb than

ponents 8 with e ~ ~ Iel

components can be efficiently reduced by relaxation
k

sweeps on G , Component e with O ~ Iel ~ ~ are the ones

one for com-

~; $hen such

which can be approximated on C!k-1; components d with

on Gk are mapped to components (1 with

f~ Iel~~ on ~k-~ and cm be eff~cjently reduced by

relaxation sweeps on Gk-l, while components e with

11-0$8 <?fonck”l are mapped to components e with

OSIOIL} on Gk-2,
k-2●pproximated on G .

●ssumed coarse enough

iterate ●ffici~ntly.

which are the ones which can be

Recursion leads to G1, which is

either to solve directly or to



For the operator (1.2), ~ = max{p(e):~~lel~n} = .5,

and the multigrid method performs admirably [3].

However, for the operator (1.1), E = O since P(n,n) = O

for A~k. Thus multigrid fox A~k performs no better for
sk
‘h than simple relaxation. A numerical example of this

bad performance is given in Section 4.

3. RAY MULTIGRID METHOD.

The failure of multigrid fcr A~k was a source of

annoyance to Brandt, which motivate-d him to derive a

cure, the description of which from [8] we now summarize.

First, however, we need to be more specific about the

choice of Lk, k < M, in (2.2) and (2.3). Assuming LM to

be positive definite, rewrite (2.1) as (L”)%~ =

(L”)-k#.

p-l so as

E(#-l) =

Then given

to minimize

I(L”)%(uM +

minimization problem

~M-1 = ~M-l M MM L IM-l and

holds by induction for

an approximation uM to ~, find

&@-l) +“)-~5FM
I

This
G“,L2”

is equivalent to (2.2) if

~M-1
M = (1~-1)*. A similar result

Lk, k < M-1.

Let S = I,”l, e ~ n, wh~~e L“(e) is

the symbol of LM (i.e., the function L(e) which satisfies

~Meie”x/h = L“(e)e‘e*x/h), ILMI =l~~;lLM(f3)l,and h = ~.
,,

The Fourier modes e‘e”x/h, ecs are the slowly convergent

nodes in any reasonable local relaxation process. Hence,
~M-1 shouid approximate these modes well. Attempt to

‘=#-L”uM and@ =#-uMaswrite R

R“(x) = JS,.

VM(x) = s~~,

where S’ ~ S is a

exists BCS’ such

RM(x)eis*x/h , R: smcoth ,
s

~(x)eisOx/h , ~ smooth ,

finite set such that if ecS, then there

that ei(o-s)”xfi is smooth, i.e., such



that 18-sI << 1’. The role of GM-l is to approximate q,

SCS1, well, which should be possible since the ~ should

be smooth after relaxation. For each s&S~ we want an ‘

eguation like

#&l#-1 . ~M-lRM ;
Ss m,s (3.1)

to do this, consider

II,(L”)%(uM + ~
eis”x/hlM ~-I.)-(LIVI)-~FMll~M,L

s s’ M-l,s S
2

Minimization of each term in the last sum leads to (1.6)

LM-1
= (l~-l,J ~M-1with s *L”I~el s, M s = (1~-1,s)*,

t t and
~M = els*x/hlM
M-1,6 M-1”

After solution of (3,1), the correction uM + UM

+ S?s’ %l,sw ‘s ‘ade” Of course, by recursion (3,1)

can be solved approximately for each sc S’ by relaxation

and by construction of a set S& consistng of the slowly

converging modes for relaxation on (3.1).

4. APPLICATION OF THE RAY MULTIGRID METHOD TO b~ko

In this section we consider application of the ray

method to the equation

-Au +

ml=o
av

The reamon

10-4U = F ir~O = (O, .96) x (O, .96)
(4.1)

on 8C) .

wc consider (4.1) is that it is a model

equation for the problem in SALE considered in [4], which

had zero Neumann boundary conditions and a lower order

term with a small multiple. The discrete ●pproximationwe
consider is cell-cwitwed as in SALE. At the i,j% call



center, the discrete equation we consider is

-A~~ j + 10-4~ j = cos{25n(i-2)h)cofi(25n(j-2)h) ,
# t

2<i<25, 2~j~25 . (4.2a)-.

Here h = % = .04, and the right hand side is chosen to

be rich in the (n,n) frequency.

There are at least two possible approximations to

the boundary conditions, which we will refer to as the

“finite element” and “finite difference” approximation.

The “finite element” approximation (so called because it

results from using piecewise bilinear elements on

quadrilaterals with midpoint quadrature) we illustrate by

giving two typical cases: at (2,2), -b:%i j =
* t

u. ),~(-ul+l,j+l + 1,] and at !21j), 2 < j < 25,

-A;%i j = ~(-Ui+l,j+l - Ui+l,j-l + 2U. .). The “fin-e 1,]

ite difference” boundary approximation to the bouridary

condition can be derived by using fictitious cells,
auwriting down a difference approximation :0 -- = Oav

U1 +2 ,
(e.g., ‘h

t = O, 2 $ j ~ 25) and then eliminating the

fictitious cells in terms of the intezior cells. Two

typical cases are:

at (2,2),

-A~%i j ~ -u * +3Ui,j) (4.2bj
t ~(-ui,j+~ l+l,j-ui+l,j+l

2h

and at (2,j), 2 < j < 25,

-Asku
h i,j = 2h+(-ui,j-~ -u. -u,],,j+l l+l,j+l

(4.2c)

For a uniform grid and -A, the differencing in SALE

reduces to the above “finite difference” approximation on

the boundary; hence, it is of more interest to us, Also,

the ‘Ifiniteelement” boundary approximation annihilates

the (n,n) frequency, but the ~~finitedifference” boundary

approximation does not. Not annihilating the (n,n)
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frequency is a desirable

cure for the “hourglass”

in Lagrangian codes like

feature since it is a partial

instability that is troublesome

SALE. (In [7], it is claimed

that the “finite difference” boundary approach is a total

cure for the ‘hourglass” instability. In fact, for some

problems, it is still necessary to smooth the ‘lhourglass~’

frequency a little; this is referred to as an “alternate

node coupler” and is discussed further in Sec. 6.)

Before we can describe the numerical results for
~k(4.1) we must describe the operators ~-l. We assume

~k-1 is every other grid point of

Fig. 1. Two cell-centered grids in
unknowns are every other fine

Gk. (s= ~i90 1.)

which coarse grid
grid unknown.

Suppose that (IF,JF) c Gk is the same point

(IC,JC) c Gk-l. Then at (IF,JF), If-l is just given

replacement: k-1
(1~# ‘IF,JF = v&2c. Suppose that

(IF+l,JF), Lk is given by the point’wisetemplate

[1

-NW -N -NE“7

-w c -E

“SW -s -SE .

Then

as

by

at

(4*3)

( X:-lv ‘-l)lF+l, JF =

(NW+W+SW)v:& + (NE+E+SE)V;& Jc
-.

“tmmr
—-- ,



(We have just summed (4.3) vertically to average out its

y-dependence.) A similar formula is used for points like

(IF,J~~). In each case, one performs Vk+vk+
~k
k-iv - “ Enough information is now present to use the

difference equation at points like (IF+l,JF+l) to solve
k

‘0= ‘IF+l,J~+l in terms of its eight neighbors. Further
details axe contained in [5]. Since 10-4 << 1, It-l is
very nearly bilinear interpolation except near the
boundary, wher,? the above formulation gives a go~d

extrapolation for points of Gk\Gk-l which do not lie

between two points of Gk-l or in +thecenter of four Gk-1

points.

Wetake M=4,1M=2 ,XU=l, Ir =1, and we use
~k-1

= (I;-l)* and ~k-1 :
(If-l)*L%:..l.k Then the

asymptotic convergence factor per multigrid cycle for the

multigrid algorithm described in Sec. 2 is .92. By
asymptotic convergence factor we mean the ratio of the

discrete L2 norms of the residual on G4 before and after

a multigrid cycle (G4+G3+ G2+G1+G2+G3+ G4+)

Now let us consider the ray multigrid method for

(4.2). The set S is {(0,0),(n,n)}. Take U? = 1 and

Uh1 = ~-l)(X+Wh . Define h = hM, Ifl-l,i= U~I~ ~,.. and
~M-1

*L”I~-l i, i == (X~-i,i) ,
i -1,1. Derive interpolation

operators ~M-1M-2 i as described above from the L~-l and#

define 1~~~ i j = U~Ifl~~,ilh = ~ ~, j = -1,1. Continue

recursively: ‘ (Thus, there are ~our L~-~’s and eigl,t
LM-3
l,j,k‘S*) The asymptotic convergence factor pei-

multigrid cycle for this algorithm is .21. Note that
there is 3/2 as much storage and work per cycle for tl~is

algorithm versus the regular multigrid algcrithm (since

1+1/4+1/16+...=4/3 and 1 + 2(1/4) + 4(1/16) +

● *. = 2).

Another algorithm uses the corrections as soon as

they are available instead of saving them up. This is
done by using W-cycles and the diagram in Fig, 2 for

M= 3, should make the algorithm clear. The asymptotic

convergence factor for (4.2) per multigrid cycle (now a

W-cycle) is .170



2

Fig. 2. W-cycle for ray multigzid with three grids.
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5. THE WY MULTIGRID METIKX2FOR-A~k WITH ONLY ONE AR&.

As pointed out in [4], a matrix is never explicitly

formed in the pressure iteration in SALE. Implementation

of,either method in the last section requires a matrix to

be explicitly formed. What we want to investigate is

whether these methods can be modified so as to be

applicable without explicitly forming a matrix. As a

first step, then, kwe consider whether Ls, k < M, s & S,

can be formed explicitly instead of from the variational

(the ITLI) approach.

First we recall the grid structure that was used in

[4]. Instead of forming G‘-1 by takinq every other cell
Kcenter of G , we let Gk-l be as in Fig. 3. We take It-l

~k-lto be bilinear interpolation and ~ = (l~-l)*; for

points near the boundary of Gk, we use fictj.tiouscells
k

and ~eflection (to approximate ~ = O) to determine Ik-l;

this gives rise to an extrapolaticm formuia near the

boundary.

-,
I

X1X’

@

c D
x x x xi

x x x xo

A
x x ~ X’e x I

Fig. 3. TWO cell-centered grids, in which coarse grids
unknowns are r!~ta subset of fine grid unknowns.

Consider first (4.2a) with the “finite element”

boundary condition. Following [8], we seek an
M-1

alternative definition of L~ , s c S so that

eis*x/h +“J~L~-l(e i2e*x/2h, : ~M(ei(6+s)’x/h) (5.1)

for small 6. For “finite element” boundary conditions ~e

claim LM-l
M-1

can just be taken to be L = -A~k ●+10-4*,
1A

h = -1.%
S1milarlY we take L = L: = -A;kO+lO*, h = hk.

k hk
‘e ‘ake ‘k-l,i = ‘ilk-l’

h = hk, and 1~-~ = (1:-1,k)*,I

i= -1,1, and we use W-cycles. Analagous to Fig. 2, ws

now hav~ Fig. 4. Also, following [C] we use the
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1

Fig. 4. W-cycle for ray multigrid with operator approximation and “finite element”
boundary conditions.

I
*- -
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smoothing operator Sk-1 to smooth the solution on Gk-1

before interpolating it to Gk, where

010

1. 4 1

LOIO

(5.2)

;

it is not necessary to do such smoothing in the

variational approach, but we show by example below that

it is necessary in the approaches of this section. We

take M = 3, IU = 1, ID = 1, and IM = 1, so that there are

two sweeps on G3 for each W-cycle. The asymptotic

convergence factor per W-cycle is 0.20. What should it
be? The smoothing factor is

1which is ~, assumed at ($,n). Since there are effective-
J5

ly two sweeps for each ~, per W-cycle, the convergence
7-

factor per W-cycle should be (~)’ = 0.2. This crude
45

analysis just happens to work in this case.

What happens when this method is applied with

‘Ifinitedifference” boundary conditions? The asymptotic

convergence factor per W-cycle is at least 104. What is

the cause of this divergence? With the “finite

difference” boundary conditions, (5.1) is no longer true.

IS there an approximation to L~~l = (U!lx;-l)*LM-lU~lI~-l,

h = ~, that can be made in the finite difference case

that will cure divergence? An answer is provided by

examining numerically the operators ~M-1
-1 ‘ etc. in the

~M-1variational approach. -1 looks as if it were derived

from imposing Dirichlet boundary conditions; the same is
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true for ar,~ L if l.l~l,h = hj, has been used in

constructing constructing it or if one of its

predecessors was constructed using U~l, h = ‘k’
k?j.

This suggests that Dirichlet boundary conditions should

be imposed in the appropriate places in Fig. 4.

Dirichlet “finite ciifference~’boundary conditions can be

derived by using fictitious cells, writing down a

difference approximation to U = O (e.g., %(”~,j+u~,j) =

O, 2 ~ j ~ 25) and then eliminating the fictitious cells

in terms of the interior cells. Two typical cases are:—

at (2,2), ~~~ki,j = *(”.i {
‘J~+ui+~’J3+l’J+l+ 3ui’J)

and at (2,j), 2 < j < 25, -Ah i,j 2~(”i, j-l+kui,j+l

‘Ui+l,j+l -Ui+l,j-l+4ui,j‘“ We use the notation L1

skand L~l to denote -Ah + 10-4 with zero Neumann and zero
‘k

Dirichlet “finite difference” boundary conditions,

respectively, and we have Fig. 5.

One remaining problem is that the computation of I*

is quite expensive; for each coarse grid cell center, I*

involves the weighted sum of sixteen residuals. In [4]

what was used instead was

%,2‘*(rl,j + rl+~,j + rl,j+~ + r~+~,j+l) t (5.3)

where the (k,~)~ cell center on the coarse grid is in

the center of the (i,j), (i+l,l), (i,l+l), (i+ltl+l) fine

cell centers. We use (5.3) here for J? q and J: +, the

replacements for

the replhccments

(l;,l) * and (1~,1)*~ J:,-1 and J~,-l,

2 3
‘or ‘1,-1 and ‘2,1 are given by

%! = ~(-ri,j + ‘i+l,j + ‘i,j+l - ‘i+l,j+l) “

The asymptotic convergence factox per W-cycle with tht?se

changes instituted is 0.18.

Cm we dispense with the smoothing operator S
k-1 in

this method? The result of doing so is an asymptotic

convergence factor greater than 106. Since (5.2) thus

appears to be so important, can we just use it coupled

with the usual multigrid method (with no “crazy”



14

interpolations and operators)? The result of doing so is

an asymptotic convergence factor (per V-cycle) of 0.93,

6. THE MY MULTIGRID METHOD APPLIED TO THE PRESSURE

ITERATION IN SALE.

A good question is why one should be interested in

trying to accelerate the pressure iteration in SALE. If

it has the bad feature of annihilating the (n,n)

frequency, why not abandon it for something better? (An

attempt was made to do exactly that in [4], but the

resulting method was not better.) From a finite element

point of view the method in SALE results from using

piecewise bilinear elements and midpoint quadrature. lf

the method were implemented as a finite element method

and four Gauss point quadrature were used, then the (n,n)

frequency would not be annihilated; however, the

calculation would be fou~ times as expensive. In fact,

one advocate of finite elements in fluid calculations

confessed to me that he aid not believe that his code

could compete with the Lagrangian codes unless it used

midpoint. quadrature. On a given grid, the (n,n)

frequency is badly approximated anyway, and while four

Gauss point quadrature will give asymptotically more

accurate answers, the goal of many fluid calculations is

a qualitative representation of the fiow; for $Uc]l

calculations, using midpoint quadrature may give accurate

enough answers at less than one fourth the cost (“less

than~~ since with midpoint quadrature the arithmetic

simplifies considerably, a fact that SALE exploits to

save storage by never explicitly forming a mat~ix). The

“hourglass“ instability can be controlled with smoothing

of the (n,n) frequency - referred to as an “alternate

node coupler” in SALE. One must exercise care not to

introduce too much smoothing, and aside from philosophi-

cal qualms concerneu with ad hoc smoothing, there is no——
reason to fault this procedure.

The paper [4] began with the application of

multigrid to SOLA, an incompressible Eulerian code. For
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the problem under consideration, we used the residual

weighting (5.3), which gave rise to a convergence factor

per work unit of 0.64 as opposed to the supposed possible

one of 0.595. Brandt devised another weighting scheme

which used (5.3; in the interior and another weighting

near the boundary. “Brandt’s” weighting led to a

convergence factor of 0.595 per work unit and was thus

retained in the work for SOLA-ICE and SALE. However, in

computational studies for this paper, we discovered that

~lBrandt’s~’weighting gave much worse results than (5.3)

for problems which discontinuous right-hand side~. On

the average, (5.3) appears to be better and is the

weighting which we now recommend. We accept the blame

for insufficient testing.

One problem for which (5.3) is much better than

“Brandt’s” weighting is the Rayleigh-Taylor problem

worked with SALE in [4]. As commented in Sec. 1, we

changed the differencing in the pressure iteration in

SALE in [4]. Here we report orImultigrid applied to SALE

using the original differencing in SALE and the residual

weighting (5,3). We take M = 3, G3 = 12 cells x 12 celis

grid, IM = 2, IU = 2, and ID = 2; this is in contrast to

[4] where the accommodativemode of multigrid was used.

The other parameters are the same except for the sound

speed squared which is 2,000 in this paper and 20,000 i’1

[4]. Cn the coarsest grid we use the iteration of the

code coupled with the “constant addition” iteration; the

same is true for the single grid calculation; see 14] for

details. As in [4] we facilitate comparison between

single grid and multigrid by using the following time

steps:

[

.5, t<ls

.25, 15 ~ t < 19
~t =

.125, 19 ~ t < 23

f.0625, 23 ~ t <25 .
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No rezoning is used, and the grid distorts until a
l~bowtietlforms after t = 25. and the computation can no

longer proceed; Fig. 6 shows a mesh near the end of the

calculation.

Fig. 6. Mesh used in Rayleigh-Taylor
t=24.o.

calculation at

coupler” is used in(We remark that no “alternative node

this calculation. We tried using it, and it made little

difference, as least for this problem. Also, we used an

overrelaxation factor u = 1.5 for the single grid

calculation as in [4].) Table 1 summarizes the

comparison.

This is not exactly a smashing success for the

multigrid method. Can the ray multigrid method be

applied? One stumbling block is boundary conditions.

The boundary conditions in SALE are applied by s~ecifying

u and v, the horizontal and vertical velocities. For the

above problem u is specified on the top and bottom

boundaries; this is equivalent to specifying ~ on all

boundaries. As remarked before, with ~ specified on the

boundary is A~kp with the “finite difference“ approxima-

tion to the boundary conditions. It can be checked that

specifying v = O on the left and right boundaries and

u = O on the

specifying p

approximation

the boundary

approximation

●lgorithm displayed in Fig. 5 is implemented by

specifying U[V] on the left and right boundaries and V[W]
k if i = 1[-1].on the bottom and top boundaries for Li

bottom and top boundaries is equivalent to
= o on all boundaries and that the

to the Laplacian with p = O specified on

is A~kP with the l~finit.edifference”

top= O on the boundary. Thus the



.

total tk 8pmt
iter8x (lE/s6)

.%

.76

.m

.76

.83

.88

Table 1. ~risor. of siagle grid ●nd regolar-ltigrid in SAIZ.

Total calrd*tio9al
tin?(Iw/56)

.76

.77

.73

.79

.64

.69

Fr*ctiom of
cskmlatiom speat

iter.tio~ (S)

.63

.69

.76

.n

.19

.68

Fractiom of
Calrahtia Spe,t

iteratia~ {IIG)

.63

.66

.74

.76

.79

.69

Coovergeue factor
per W* uoit 00
last relmatioo
sueep, Chis timr

●tep (w)

.82

.82

.85

.69

.84

.82

Cowerge9re fmctor
per WLk -t* Oa

last cycle, this
tin?step(nc)

.77

.67

.80

.80

.86

.89



.

2

1

Fig. 5. W-=cle for ray multigrid with operator approximation and “finite difference”
boundary conditions.
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The constant addition algorithm is used on grid 1 only

for L;. We take IM = 2, IU = 2, ID = 2. The results, in

Table 2, are p~omising for such a small problem. The

convergence factor for the single grid calculation can be

expected to increase with the number of unknowns, whereas

the multigrid convergence factor should remain bounded.

We avoided rezoning in this calculation to exhxbit that

multigrid can still function well on

grids.

The Experience here is the same

successful applications of multigrid

highly distorted

as in all other

to hard problems

with which we are familiar, and that is that the way to

success is torturous and full of pitfalls for the unwary.

One can only hope that as experience is gained and

knowledge accumulated, the way will become easier.



.

Table 2. Ccmparism of single grid and ray multgrid in SALE.

TotalCi= spent
Time iterating(nG/sG)

t = 3.3 .64

t = 15.0 .61

t = 19.0 -50

t = 23.0 .66

t = 24.0 .68

t = 25.0 .M

Total calculational

time (MG/SG)——

.60

.67

.66

.71

.72

.72

Fract<on of

calculation spent

_iteratin~HG> .—

.55

.58

.71

.73

.74

Convergence factor
per W-cycle and work
unit* on last cycle,
thistimestep(HG)

.05,.64

.06,.67

.17,.77

.19,.79

.10,.~~

.1/},.75

* Only relaxation work is counted.
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