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MULTIGRID SEMI-IMPLICIT HYDRODYNAMICS REVISITED

Joel E. Dendy, Jr.

1. INTRODUCTION.

The multigrid method has for several years been very
successful for simple equations like Laplace's equation
on a rectangle. For more complicated situations,
however, success has been more elusive. Indeed, there
are only a few applications in which the multigrid method
is now being successfully used in complicated production
codes. The one with which we are most familiar is the
applization by Alcouffe [1] to TTDAMG, stemming from [2].
We are more familiar with this second application in
which, for a set of test problems, TTDAMG ran seven to
twenty timee less expensively (on a CRAY-1 computer) than
its best competitor. This impressive performance, in a
field where a factor of two improvement is considered
significant, encourages one to attempt the application of
the multigrid method in other complicated situations.

The application discussed in this paper was actually
attempted several years ago in {4). In that paper the
multigrid method was applied to the pressure iteration in
three Eulerian and Lagrangian codes. The application to
the Eulerian codes, both incompressible and compressible,
was successful, but the application to the Lagrangian
code was less 30. The reason given for this lack of
success in [4) was that the differencing for the pressure




equation in the Lagrangian code, SALE, was bad. For
example, on a uniform grid with mesh size h, the
approximaticn to the Laplacian A in SALE is the skewed
Laplacian:

sk
h Pi,j

1
= ;gi(pi-l,j-l * Pic1,5+41 Y Pi+1, -1
+ pi*l,j+1 - 4pi,j) ; (1.1)

why this is a bad differencing is discussed below. 1In
{4] the differencing for the pressure eguation was
changed so that on a uniform grid, the Laplacian was
approximated by the discrete five point Laplacian:

o
bh Pi,5 T h2<pj-1,j * Pi+1,5 T Pi,j-2

+ pi,j+1 - 4pi,j) ; (1.2)

when this change was made, we were able to apply the
multigrid method successfully. 1In this paper, we examine
again the application of multigrid to the pressure
equation in SALE with the goal of succeeding this time
without cheating.

2. MULTIGRID REVIEW.

To explein the difficulty with (1.1), it 35 nelpful
to review the multigrid method. sSuppose that the
equation LU = F is approximated on a grid M by

MM _

MM = g™

(2.1)

In the simplest form of <the multigrid method, one
constructs a sequence of grids Gl, vee GM with
corresponding mesh sizes h,, ..., hy,, where h; , = 2h,.
One does a fixed number, IM, of relaxation sweeps
(Gauss-Seidel, for examples) on (2.1) and then drops dcwn

to grid GM"1 and the equation

pM-loM=1 M-, xn‘l(r” - MYy (2.2)



where VM°1 is to be the coarse grid approximation to
v oM. uM, where VM = uM is *he last iterate on grid
GM, and where I:'l is an interpolation operator from c™
to GM'I. To solve eguation (2.2) approximately, one
resorts to recursion, taking ID relaxation sveeps on grid
Gk before dropping down to grid Gk°1. M-1 > k > Z and the
equation

Lholvkel o kel o gkeligk oopkeky (2.3)

When grid G~ is reached, the equation Livl - £l can

either be solved directly or to some precision by

iteration and v2 * v2 + I‘l?v1 can be performed. Then one

1

does IU relaxation sweeps on grid Gk'1 before forming
vE o« VK4 It_lvk'l, 3 <k <M
The motivation behind the multigrid method is that,

on a given grid Gk, relaxation methods like Gauss-Seidel

generally do a fine iob of reducing high frequency
components of the error but a poor job of reducing low
frequency components. More specifically, let the
6 = (91,62) Fourier component of the error functions v
and v before and after a relaxation sweep on Gk be
written as

1(01a+0,8)

v = B el (010%02B8) g = Age Suppose

o,B 6 o,

A
that p(6) = Kg is appreciably less than one for com-
6
N nt - .
ponents 6 with 3 < |e| = max(lell, ,62|) < n; then such

components can be efficiently reduced by relaxation
gweeps on Gk. Components 6 with 0 < |e| < % are the ones
which can be approximated on Gk'l; components 4 with
< 8] < % on G* are mapped to components € with

k=1l and can be efficiently reduced by

6] <n on G

axation sweeps on Gk'l, while components 6 with
6] <nm on Gk'l are mapped to components 6 with
0 < IOI 5% on G*"2, which are the ones which can be
approximated on G*~2., Recursion leads to G}, which is
assumed coarse enough either to solve directly or to

iterate efficiently.

O R N D
A A




For the operator (1.2), p = max{u(e):gglelgn} = .5,
and the multigrid method performs admirably [3].
However, for the operator (1.1), ﬁ = 0 since p(n,n) = 0
for Ay - Thus multigrid fox Agk performs no better for
Agk than simple relaxation. A numerical example of this

bad performance is given in Section 4.

3. RAY MULTIGRID METHOD.

The failure of multigrid fecr A:k was a source of
annoyance to Brandt, which motivated him to derive a
cure, the description of which from [8] we now summarize.
First, however, we need to be more specific about the
choice of Lk, k <M, in (2.2) and (2.3). Assuming LM to

be positive definite, vrewrite (2.1) as (LM);’UM =

(LM)"‘FM. Then given an approximation uM to UM, find
w1 50 as to minimize
eVl = | aMBM + oo v ST || u

M=-1 G .L2

minimization problem is equivalent to (2.2) if

This

M=-1 _ ,M-1 MM M-1 _ M * C .
L = IM L IM_1 and IM = (Im-l) . A similar result
k

holds by induction for L™, k < M-1.
Let § = {e:lLM(e)l <<|LM|, 6 < n, whure LM(e) is
the symbol of LM (i.e., the function L(6) which satisfies

=|§\3,’fILM(e)|' and h = hy.

The Fourier modes e , 8¢S are the slowly convergent
nodes in any reasonable local relaxation process. Hence,
GM'1 should approximate these modes well. Attempt to

write RM = fM - LMuM and VM = UM - uM as

i6+x/h

rRM(x) = eFg R:(x)ej‘rx/h , R: smcoth
wWix) = oig vf(x)eis'x/h , Vf smooth ,

where S' €S is a finite set such that if 8¢S, then there
exists seS' such that el(6-8):x/h ;o smooth, i.e., such



M-1

£
that Ie-sl << 1. The role of G is to approximate Vz,
1

seS”, well, which should be possible since the Vz should
be smooth after relaxation. For each stc$S' we want an

equation like

(M-l M-1 _ [M-1_M

m gk ; (3.1)
to do this, consider
E({Va 1)) =
H(LM)k(uM + sES' 1s X/h :-1 sVM- )= (L ) %FMII M L
2
! G L2

3 is- x/h VM M,~% is-x/h_M

< (L ) -(L") e R
- scs'” M-l s s,l 'Lz

Minimization of each term in the last sum leads to (1.6)

. M-1 _ *M M M-1 _ M x
™ - els x/h; M
M-1,s In-1-

After solution of (3.1), the correction uM « uM

+ sES' M-] svﬂ -1 is made. Of course, by recursion (3.1)
can be solved approximately for each se¢ S' by relaxation
and by construction of a set £'!' consisting of the slowly

5
converging modes for relaxation on (3.1).

4. APFLICATION OF THE RAY MULTIGRID METHOD TO A;k

In this section we consider application of the ray
method to the enuation

-au +10°% = Finn = (0, .96) x (0, .96)

(4.1)
= 0 on 3Q .

wj®
<=

The reason we consider (4.1) is that it is a model
equation for the problem in SALE considered in [4], which
had zero Neumann boundary conditions and a lower order
term with a small multiple. The discrete approimation wve
consider is cell-centered as in SALE. At the 1,j§§ cell



center, the discrete eguation we consider is

-Aﬁku§ it 10‘40? 5 = cos(25n(i-2)h)cor(25n(3i=2)h) |,

2<i<25, 2<j<25 . (4.2a)

Here h = hy .04, and the right hand side is chosen to
be rich in the (n,n) frequency.

There are at least two possible approximations to
the boundary conditions, which we will refer to as the
"finite element" and "finite difference" approximation.
The "finite element" approximation (so called because it
results from wusing piecewise bilinear elements on
quadrilaterals with midpoint gquadrature) we illustrate by
giving two typical (<cases: at (2,2), -AﬁkUi'j =

1 . 1}
337(-Ui+1,j+1 + Ui,j)' and at (2,j), 2 < 3 < 25,

s = 1 /_ - e
“8pVi 5 = ZT(Visq, je1 = Vieg,je1 * 2Uy,5)-  The “fin
ite difference" boundary approximation %to the boundary

condition can be derived by using fictitious cells,

writing down a difference approximation %o g% = 0
U | .
(e.qg., ——415——L1 =0, 2 < j < 25) and then eliminating the

fictitious cells in terms of the interior cells. Two
typical cases are:

at (2,2),
'Aﬁkui,j - ;ii('ui,j+l'ui+1,j'ui+1,j+l+3ui.j) (4.2b)
and at (2,j), 2 < j < 25,
'Agkui,j = ;ii('ui,j-l'Ui,j+1'Ui+1,j+1
Uiy, 5.1t905 5) (4.2¢)

For a uniform grid and -A, the differencing in SALE
raduces to the above "finite difference" approximation on
the boundary; hence, it is of more interest to us. Also,
the "finite element" bnundary approximation annihilates
the (n,n) freguency, but the "finite difference" boundary
approximation does not. Not annihilating the (n,n)



frequency is a desirable feature since it is a partial
cure for the 'hourglass" instability that is troublesome
in Lagrangian codes like SALE. (In [7], it is claimed
that the "finite difference" boundary approach is a total
cure for the "hourglass" instability. 1In fact, for some
problems, it is still necessary to smooth the "hourglass"
frequency a little; this is referred to as an "alternate
node coupler" and is discussed further in Sec. 6.)

Before we can describe the numerical results for
(4.1) we must describe the operators It-l' We assume

k

ck-1 is every other grid point of G'. (See Fig. 1.)
QI X|® XS
X| X| X{X|[X
@ X(® X|®
XX X| XX
DI X|® X|®

Fig. 1. Two celil-centered grids in which coarse grid
unknowns are every other fine grid unknown.

Suppose that (IF,JF) ¢ Gk

(1c,J¢c) ¢ K1, Then at (IF,JF), I,., is Jjust given by
replacement.: (I;:_lvk'l)IF JF ° V?EIJC‘ Suppose that at

(IF+1,JF), Lk is given by the pointwise template

is the same point as
k

-Nw =N =NE
- C o (4.3)
L-SW -S -SE

Then

K k-1 .
(IeoaV™ iper,or

Kk~1 k-1
1¢,3¢c ¥ (NE+E+SE)Vyeyy 50

(C-N=§) '

(NW+W+SW)v




(We have just summed (4.3) vertically to average out its
y-dependence.) A similar formula is used for points like
(IF,JF+1). In each case, one performs vk « vk +
Iﬁ_lvk'l. Enough information is now present to use the
difference equation at points like (IF+1,JF+1) to solve
for V¥F+1‘JF+1 in terms of its eight ne%gfbors, FErther
details are contained in [5]. Since 10 ~ << 1, I,.q is
very nearly bilinear interpolation except near the
boundary, wher~ the above formulation gives a gocd

extrapclation for points of Gk\Gk'l which do not 1lie

between two points of Gk"1 or in the center of four Gk'1
noints.
We take M =4, IM =2, IU=1, Ir =1, and we use
k=1 _ k * . k=1 _ k * k.k
Ip 7= (Ip.q) an¢ L = (Ip_q) LTI - Then the

asymptotic convergence factor per multigrid cycle for the
multigrid algorithm described in Sec. 2 is .92. By
asymptotic convergence factor we mean the ratio of the
discrete L, norms of the residual on G? before and after
a multigrid cycle (G4 > G » G2 s G1 > 02 > G3 > G4.)
Now let us consider the ray multigrid method for

(4.2). The set S is {(0,0),(n,n)}. Take U? = 1 and
h _ (x+y)/h ; _ M . _ .M
U, = (1) . Define h = Dy Iyoqrd = U;Iq.yr and
M-1 _ ,.M * M. M o . . .
Li = (IM-l,i) L IM-l,i' 1 = =-1,1. Derive interpolation
operators Ig:% ; @as described above from the L?'l and
. M-1 _ . M=1 . Coo o :
cdefine IM-Z,i,j = UjIM-Z,i' h = hy ;.3 ]M-g,l. Continue
recursively. (Thus, there are four Li j's and eight
LT‘? k's.) The asymptotic convergence factor per

multigrid cycle for this algorithm is .21. NMNote that
there is 3/2 as much storage and work per cycle for tlis
algorithm versus the regular multigrid algccithm (since
l1 +1/4 + 1/16 + ... = 4/3 and 1+ 2(1/4) + 4(1/16) +
vl = 2).

Another algorithm uses the corrections as soon as
they are availablz instead of saving them up. This is
done by using W-cycles and the diagram in Fig. 2 for
M = 3, should make the algorithm clear. The asymptotic
convergence factor for (4.2) per multigrid cycle (now a
w-iycle) is .17.



in

Fig. 2.

W-cycle for ray multig:ri:d with three Agrids.



5. THE RAY MULTIGRID METHOD FOR_A:k WITH ONLY ONE ARM.

As pointed out in [4], a matrix is never explicitly
formed in the pressure iteration in SALE. Implemen*ation
of either method in the last section requires a matrix to
be explicitly formed. What we want to investigate is
whether these methods can be modified so as to be
applicable without explicitly forming a matrix. As a
first step, then, we consider whether Lz, k<M s ¢S,

can be formed explicitly instead of from the variational
(the ITLI) approach.

First we recall the grid structure that was used in
[4]. 1Instead of forming ck-1 by taking every other cell
center of GX, we let G*"! be as in Fig. 3. We take Iﬁ_l
to be bilinear interpolation and It’l = (It_l) ;

points near the boundary of Gk, we use fictitious cells

for

and reflection (to approximate g% = 0) to determine Iﬁ_l;

this gives rise to an extrapolation formulia near the
boundary.

T
x x 1 x
[s)

x | x| x| ox
] l

%

X
o
X
. X
e 1]
x

A el el e

L

Fig. 3. Two cell-centered grids, in which coarse grids
unknowns are not a subset of fine grid unknowns.

Consider first (4.2a) with the "finite element"

boundary condition. Following [8], we seek an
alternative definition of Lg-l, s € S so that

e1s-x/h Ig_ng-l(elze-x/zh) ~ LM(e1(6+s)-x/h) (5.1)

for small 8. For "finite element" boundary conditions we

claim M1 can just be taken to be M- - -Aﬁk .+107%.,

1

h = hM-l‘ Similarly we take L = Lt = -A§k°+10-, h = hk‘

k _ h- Kk - k=1 _ k *

we take Ik-l,i - UiIk_ll h - hk' and Ik,i - (Ik-l'k) ]

i = «1,1, and we use W-cycles. Analagous to Fig. 2, we
now havz Fig. 4. Also, following [5] we wuse the

10



Lt

Fig. 4.

W-cycle for ray multigrid with operator approximation and "finite element"
boundary conditions.

11



k-1 k-1

smoothing operator S to smooth the solution on G

kK

before interpolating it to G, where
0 1 0]
skl =111 a4 2 (5.2)
. O 1 0 ;

it is not necessary to do such smoothing in the
variational approach, but we show by example below that
it is necessary in the approaches of this section. We
take M = 3, IU =1, ID =1, and IM = 1, so that there are
two sweeps on G3 for each W=-cycle. The asymptotic
convergence factor per W=-cycle is 0.20. What should it

be? The smoothing factor is

o 16. %elelelez
H (8, ~16, 16, -16, '
2-%e e - - ke e

< n

ile-(n,n)

[ )
A
N A

l

which is —%, assumed at (%,n). Since there are effective-

V5
ly two sweeps for each #, per W-cycle, the convergence

factor per W-cycle should be (—%—)2 = 0.2. This crude
J5

analysis just happens to work in this case.

What happens when this method is applied with
"finite difference" boundary conditions? The asymptotic
convergence factor per W-cycle is at least 104. what is
the <cause of this divergence? with the "finite
difference" boundary conditions, (5.1) is no longer true.

. ; M-1 _ h .M * M-1.h .M
Is there an approximation to L_,™ = (U 1y 4) L7 "U_ Iy 4,

h = hM' that can be made in the finite difference case

that will cure divergence? An answer is provided by

examining numerically the operators LTII, etc. in the

variational approach. LTil looks as if it were derived

from imposing Dirichlet boundary conditions; the same is



true for any L if UEI, h = hj, has been used in

constructing constructing it or if one of its
predecessors was constructed using Ufl, h = hk' k> 3.
This suggests that Dirichlet boundary conditions should
be imposed in the appropriate places inr Fig. 4.
Dirichlet "finite difference" boundary conditions can be
derived by wusing fictitious «cells, writing down a
differenc~» approximation to U = 0 (e.g., g(Ul’j+U2’j) =
0, 2 < j < 25) and then eliminating the fictitious cells
in terms of the interior cells. Two typical cases are:
at  (2,2), _Aﬁkui'j = g%r(ui,;+1+ui+1,jIUi+1,j+l+ 3Y; 5)
and at (5 4), 2 < 3 < 25, -Ahkui,j = zh7{Y,5-1% Vi,
“Uis1, 441 -Ui+1,j-l+4ui,j)' We use the notation L,

and LEI to denote -A?k + 10”% with zero Neumann and zero
'k
Dirichlet “finite difference" Dboundary conditions,

respectively, and we have Fig. 5.

One remaining problem is that the computation of I*
is quite expensive; for each coarse grid cell center, I*
involves the weighted sum of sixteen residuals. 1In (4]
what was used instead was

c =
Rk'z = %(ri'j + ri+1,j + ri’j+1 + ri+1'j+l) ' (503)

where the (k,z)EQ cell center on the coarse grid is in
the center of the (i,3j), (i+l,3), (i,3j+1), (i+l1l,j+l1) fine

cell centers. We use (5.3) here for Jg 1 &nd Jé 1+ the
replacements for (Ig p)* and (xi L )* J% ., and Jg 1

2
11-1

and Ig,l are given by

the replucements for 1

R, g = W(=Xy § * Tigy 5% €5 4a1 = Tiag,ge1)

The asymptotic convergence factor per W-cycle with these
changes instituted is 0.18.

Can we dispense with the smoothing operator sk'1 in
this method? The result of doing so is an asymptotic
convergence factor greater than 10°. since (5.2) thus
appears to be so important, can we just use it coupled
with the usual multigrid method (with no ‘“crazy"

13



interpolations and operators)? The result of doing so is
an asymptotic convergence factor (per V=-cycle) of 0.93.

6. THE RAY MULTIGRID METHOD APPI.IED TO THE PRESSURE

ITERATION IN SALE.

A good question is why one should be interested in
trying to accelerate the pressure iteration in SALE. If
it has the bad feature of annihilating the (n,n)
frequency, why not abandon it for something better? (An
attempt was made to do exactly that in [4], but the
resulting method was not better.) From a finite element
point of view the method in SALE resvlts from using
piecewise bilinear elements and midpoint gquadrature. 1f
the method were implemented as a finite element method
and four Gauss point quadrature were used, then the (n,n)
frequency would not be annihilated; however, the
calculation would be four times as expensive. In fact,
one advccate of finite elements in fluid calculations
confessed to me that he did not believe that his code
couid compete with the Lagrangian codes unless it used
midpoint quadrature. On a given grid, the (n,n)
frequency is badly approximated anyway, and while four
Gauss point quadrature will give asymptotically more
accurate ancwers, the goal of many fluid calculations is
a qualitative representation of the fiow; for such
calculations, using midpoint quadrature may give accurate
enough answeres at less than one fourth the cost ('"less
than" since with midpoint gquadrature the arithmetic
simplifies considerably, a fact that SALE exploits to
save storage by never explicitly forming a matiix). The
"hourglass" instability can be controlled with smoothing
of the (n,n) fregquency - referred to as an '"alternate
node coupler" in SALE. One must exercise care not to
introduce too much smoothing, and aside from philosophi-
cal qualms concerneu with ad hoc smoothing, there is no
reason to fault this procedure.

The paper (4] began with the application of
multigrid to SOLA, an incompressible Eulerian code. For

14



the problem under consideration, we used the residual
weightinag (5.3), which gave rise to a convergence factor
per work unit of 0.64 as opposed to the supposed possible
one of 0.,595. Brandt devised another weighting scheme
which used (5.3 in the interior and another weighting
near the boundary. "Brandt's" weighting 1led to a
convergence factor of 0.595 per work unit and was thus
retained in the work for SOLA-ICE and SALE. However, in
computational studies for this paper, we discovered that
"Brandt's" weighting gave much worse results than (5.3)
for problems which discontinuous right.-hand side~. On
the average, (5.3) appears to be better and is the
weighting which we now recommend. We accept the blame
for insufficient testing.

One problem for which (5.3) is much better than
"Brandt's" weighting is the Rayleigh-Taylor problem
worked with SALE in ([4]. As conommented in Sec. 1, we
changed the differencing in the pressure iteration in
SALE in [4]. Here we report on multigrid applied to SALE
using the original differencing in SALE and the residual
weighting (5.3). We take M = 3, 03 = 12 cells x 12 celis
grid, IM =2, IU =2, and ID = 2; this is in contrast to
(4] where the accomodative mode of multigrid was used.
The other parameters are the same except for the sound
speed sguared which is 2,000 in thies paper and 20,000 in
[4]. ©n the coarsest grid we use the iteration of the
code coupled with the "constant addition" iteration; the
same is true for the single grid calculation; see (4] for
details. As in (4] we facilitate comparison bLetween
single grid and multigrid by using the following time
steps:

.5, t <15

.25, 15 < t < 19
125, 16 < t < 23
0625, 23 < t < 25 .

At =

15

Y



No rezoning is used, and the grid distorts until a
"bowtie" forms after t = 25. and the computation can no
longer proceed; Fig. 6 shows a mesh near the end of the
calculation.

A=A M AN

r—

Fig. 6. Mesh used in Rayleigh-Taylor calculation at
t=24.0.

(We remark that no "alternative node coupler" is used in
this calculation. We tried using it, and it made little
difference, as least for this problem. Also, we used an
overrelaxation factor w = 1.5 for the single grid
calculation as 1in [4].) Table 1 summarizes the
comparison.

This is not exactly a smashing success for the
multigrid method. Can the ray multigrid method be
applied? One stumbling block is boundary conditions.
The boundary conditions in SALE are applied by srecifying
u and v, the horizontal and vertical velocities. For the
above problem u is specified on the top and bottom
boundaries; this ic equivalent to specifying g& on all
boundaries. As remarked before, with g& specified on the
boundary is Aﬁkp with the "finite difference" approxima-
tion to the boundary conditions. It can be checked that
specifying v = 0 on the left and right boundaries and
u =0 on the bottom and top boundaries is equivalent to
specifying p =0 on all Dboundaries and that the
approximation to the Laplacian with p = 0 specified on
the boundary is A:kp with the "finite difference"
approximation to p =0 on the boundary. Thus the
algorithm displayed in Fig. 5 is implemented by
specifying u[{v) on the left and right boundaries and v(w)

on the bottom and top boundaries for L? if i = 1([-1).



Tetal time spemt Total calculstiossl

Table 1.

Fractios of
czlculation speat
iterating (SG)

Time iterating (MG/SG) time (MG/SG)
t= 3.0 .96 .76 .63
t = I5.0 .76 .1 .69
t=190 .69 .13 .76
t =230 .76 .79 .77
t=24.0 .83 .84 .19
t=25.¢ ..8 .89 .68

% Oaly relaxstioms work is cousted.

Fractioa of
calculatioa speat

iterating {(MG)
.63

.66
.74
.76
-1
.69

Comparisot. of single grid snd regular multigrid im SALE.

Coavergence factor
per work unit on Coavergeace factor
last relsxatiom per wo &k sait® on

sweep, this time last cycle, this
step (SG) time step (MG)

.82 77

.82 .67

.85 .80

.69 .80

.84 .56

.82 .89

(t



Fig. 5. W-<ycle for ray multigrid with operator approximation and "finite difference"
btoundary conditions.
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The constant addition algorithm is used on grid 1 only
for Li. We take IM = 2, 1U = 2, ID = 2. The results, in
Table 2, are p-omising for such a small problem. The
convergence factor for the single grid calculation can be
expected to increase with the number of unknowns, whereas
the multigrid convergence factor should remain bounded.
We avoided rezoning in this calculation to exhibit that
multigrid can still function well on highly distorted
grids.

The experience here 1is the same as in all other
succescful applications of multigrid to hard problems
with which we are familiar, and that is that the way to
success is torturous and full of pitfalls for the unwary.
One can only hope that as experience is gained and
knowledge accumulated, the way will become easier.
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Tab'e 2. Comparisun of single grid and ray multgrid in SALE.

Fractioa of

Convergence factor
per W-cycle and work

Total time spent Total calculational calculation spent unit* on last cycle,

Time iterating (MG/SG) time (MG/SG) iterating (MG) this time step (MG)
t= 3.2 .64 .60 .55 .05, .64
t=15.0 .61 .67 .58 .06, .€7
t =19.0 .50 .66 .62 A7, .77
t =23.0 .66 .71 .71 .19, .79
t =24.0 .68 .72 .73 .10, .72
t =25.0 .68 .72 .74 .14, .75

"

Only relaxation work is counted.
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