(10) 850100 22

Los Alamos Mationa: Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

TITLE. AN ARRAY OF GERMANIUM DETECTORS FOR NUCLEAR SAFEGUARDS

Lin-UR--83-1932

DE83 015255

AUTHOR(S)

C. E. Moss, W

d, E. J. Dowdy.

C. Garcia, M.

and J. C. Pratt

SUBMITTED TO

INMM 24th Annual Meeting Vail, Colorade July 10-13, 1983

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completencis, or unefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsoment, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

by acceptance of the agricle the publisher recognizes that the U.S. Government relains a nonexclusive toyalt, free highest to publish or reproduce the published form of this contribution or to allow others to do so for U.S. Government purposes.

The Los Agency National Laborators requests that the publisher identify this larticle as work performed under the aircres of the U.S. Department of Linergy

MASTER

LOS Alamos National Laboratory Los Alamos, New Mexico 87545

AN ARRAY OF GERMANIUM DETECTORS FOR NUCLEAR SAFEGUARDS'

C. E. Moss, W. Bernard, E. J. Dowdy, C. Garcia, M. C. Lucas, and J. C. Pratt Los Alamos National Laboratory, Los Alamos, New Mexico 87545

ABSTRACT

Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data-acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through modems and the telephone system. System performance with a mixed source of 125Sb, 154Eu, and 155Eu confirms the expected efficiency of 120% with an overall resolution that is between the resolution of the best detector and that of the worst.

INTRODUCTION

High-resolution gamma-ray spectra usually provide the best characterization of radioactive material. However, the time required to acquire these spectra is often unacceptably long in many safeguards applications because the efficiency of a single, large, high-purity germanium detector with good resolution is typically only 40% of that of a NaICT&) detector 7.6 cm in diameter by 7.6 cm long. To improve the efficiency, we built a gamma-ray spectrometer system that consists of an array of three 40% high-purity germanium detectors and a computer to sum the three spectra without significant loss of resolution. The resulting high efficiency promotes the use of high-resolution gamma-ray systems for safeguards applications.

EQUIPMENT

The three detectors in the array (Fig. 1) have relative efficiencies of 43.0, 44.5, and 40.0% and resolutions of 1.77, 1.78, and 1.71 keV (FWHM) at 1332 keV, respectively. Each detector, supplied by Princeton Gamma-Tech, has its own all-attitude dewar so that it can be used separately. In the array, the three detectors are held in position by a styrofonum and aluminum frame of low mass to minimize scattering

*This work was performed under the auspices of the US Department of Energy, Office of Safeguards and Security.

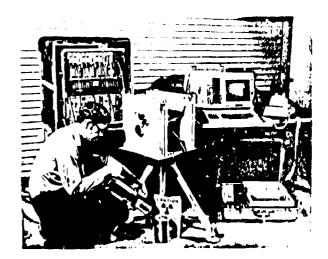


Fig. 1.
Three-detector array and associated electronics. As shown, the detectors can be used individually. The LeCroy 3500 is the unit on the right with the video display. The large hox on the left contains a CAMAC crate and a NIM bin. A modern is unair the telephone, The case on the slear contains a terminal and a PEGASUS computer with a floppy disk for communicating with other commuters.

and absorption. Figure 2 shows a setup with the array for studying a radioactive sample.

Although all-attitude dewars are portable because of their light weight, the short, 16-hour holding time Electronient for long-term usage. We solved this problem by connecting the dewars to an automatic filling system (Fig. 3), which refills each dewar every 8 hours. An overslow sensor terminates the fill cycle.

A Lactroy 3500 data acquisition system acquires the three individual spectra and calculates a composite spectrum. The LeCrov 3500 is equipped with a video display and light pen, bubble memory, printer/plotter, and a CAMAC crate. A separate box, which can be remote from the Letrov 3500 mainframe, contains another CAMAC crate and a NIM bin for the analog electronics. In remote operation, this has communicates with the LeCrov 3500 mainframe via a serial highway using 600 m of twisted pair cable or 1000 m of fiber optic cable. By tying into the telephone network

Fig. 2.
Setup for wooking at a radioactive sample with the array. For a better view of the detectors, one has been removed from the array.

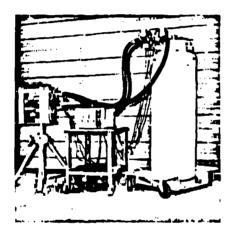


Fig. 1,
The automatic liquid attrogen filling system for the three delegan serms.

with modens, operating distances can be extended worldwide. All system equipment is designed for measurements in the field and is packaged for easy shipment.

ANALYSIS

The computer program (Fig. 4) that combines the distributions entendetes a highly accurate enlibration of each distribution. The gains for the distributions can be outer different. First the program locates several

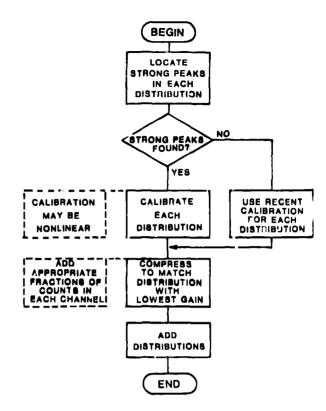
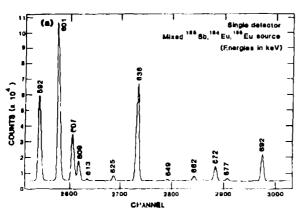


Fig. 4. Flowchart of the computer program that adds the pulse-height distributions.


strong peaks with accurately known energies using an automatic peak-search routine; then it fits the peaks Manual interaction is possible. The program calculates a least squares fit to determine the calibration. The calibration curve can be any function; however, tests showed that a straight line was adequate with our analog-to-digital converters. If the spectra do not contain enough strong peaks, the program uses recent calibrations with another source.

The program then conpresses the two distributions with the highest gains to match the distribution with the lowest gain. The compression of each distribution requires summing fractions of the number of counts in each channel to generate a new distribution. The calibrations are required to calculate these fractions,

To calculate the final composite distribution, the program performs a channel by channel sum of the two compressed distributions and the distribution with the lowest gain. The composite distribution is then further analyzed with standard gamma-ray analysis programs such as FITEK, I which originated at the University of Munich.

RESULTS

To test the system, we used a mixed source containing 125sh, 154Eu, and 155Eu from the US National Bureau of Standards. Figure 5 compares a

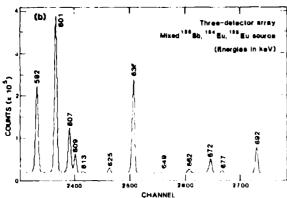


Fig. 5.
(a) A section of a pulse-height distribution taken with a single 40% efficient germanium detector. (b) The corresponding composite distribution obtained by combining the distributions from the three detectors.

section of the distribution from one detector with the corresponding section in the composite distribution. There is no significant difference over all 8000 channels of the distributions execution that the composite distribution contains more counts

For this mixed source, we determined the resolutions for representative peaks in the distributions from the individual detectors and in the composite distribution. As shown in Fig. 6, the resolution in the composite distribution lies between the resolution for the best detector and that for the worst detector. We also performed a separate experiment with \$600, which is the standard source for measuring resolution. The resolution in the sum distribution as the 1332-keV had was 1.78 keV (FWHM) when the resolutions of the individual distributions were 1.78, 1.79, and 1.73 keV.

To demonstrate the expabilities of our system for nuclear safeguards, we used a 2.93-g sample of plutonium metal containing 8% $^{740}\mathrm{Pu}$. The distance was 30 cm from detector face and the acquisition time was 25 minutes. Figure 7 shows the 640-keV complex. This complex is often used to determine the isotopic percentage of $^{240}\mathrm{Pu}$ in shielded material. For the weak peak at 642 keV from $^{240}\mathrm{Pu}$ the number of counts is inadequate in the distribution from an individual

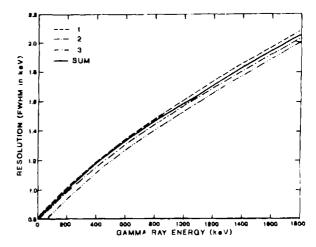
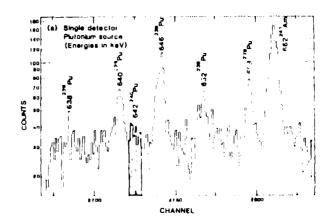



Fig. 8.

Resolutions as a function of energy for the mixed source containing 1255b, 154Eu, and 155Eu. Curves 1, 2, and 3 are calculated from individual detector distributions the sum curve is calculated from the composite distribution.

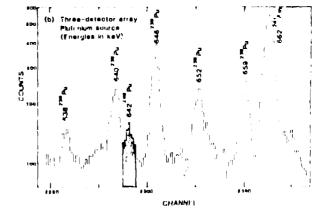


Fig. 7.

(a) A section of a pulse height distribution taken with a single 30% efficient germanium detector. The weak peak at 642 keV from 240 pu (highlighted) is used to calculate the isotopic percentage of 240 pu. (b) The corresponding composite distribution in which the 642 keV peak is much more prominent.

CONCLUSIONS

It is possible to achieve high efficiency and high resolution by combining pulse-height distributions from germanium detectors. Our three-detector array has an efficiency of 120%, but higher efficiency can be obtained with more detectors. The detailed information provided in a reasonably short time can be used in many safeguards applications. The portability of our system facilitates deployment in any location to investigate suspicious activities involving nuclear

material. Because the spectrometer system can be operated by remote control, home base can receive timely information and reduce travel costs.

REFERENCES

- 1. Wolfgang Stoeffl, private communication.
- 2. R. Gunnink, J. E. Evans, and A. L. Prindle, "A Reevaluation of the Gamma-Ray Energies and Absolute Branching Intensities of ²³⁷U, ²³⁸, ²³⁹, ²⁴⁰, ²⁴¹Pu, and ²⁴¹Am," Lawrence Livermore Laboratory report UCRL-52139 (October 1976).