
‘:LA=UR-81-31.44

TITLE: ‘E~ BUMPY TORUS FUSION-REACTOR DESIGN STUDY
>-- -~ --

.’

AUTHOR(Sj: Robert A. Krakowski and Dale l)eFreece

SU13MlTTEDTO:9th Symposium on Engineering Problems of Fusion Research
(October 26-29, 1981) Chicago, Illinois

‘o
h

,S1-,4I nAIM#,0

Bvw. mwlmcrnfthm ●rIIclw, lhrpuldmtw IVLCMJIIIW* IIW lln’

US GIWWWTWWI WImIIt ● nonrxclu~w IOVd IV fwr IIIWW

W IIul)lmh 01 rqlrn(hlco NIP Imhlllt-(1 fort?, 01 Itll$ 11)111111)11

II On, of III ●IIOW ofhrm II-I do \II. 1111LJS (; I) VIII IVIII,III 11111

Imi

Lsi!liikLOS ALAMOS SCIENTIFIC LABORATORY
Post OfficeBox1663 Los Alamos, New Mexico 87545
An Affkmattve Action \Equal OpporturMy Em@oyer

Form No. W RJ

m, No. 29s

!#m

‘1’

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.

For additional information or comments, contact: 

Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



ELfiO BUMPY 13RUS PUS ION%EACTOR DESIGN STUDY*

● *
Robert A. Krakowskl ●nd Dale DeFreece ————————— DI?LLAIMFR——————

Loo Alamos National Labor-tory
Loa A2amoa. NM 87545

,,

Summa r~

A complete power plant dea!gn of a 12W+fUe ELf4fJ
BumPy Torus Beactor (EBTR) le described. Thoce

featurea that are unjque to the EBT confinement concept
are emphasized, with ●ubnyatems and balance-of-plant

items that are generic to magnetic fuaiort being ●dopted
from paat, More extensive tokamek rw?ctor deaigna.
This overview paper ● treaaes the design phfioaophy ●nd
assumption that led to ● n ●conomic, 35- mejor-radiua
desfan that at 1.4 MWlm2 wall loading generstea 4000

MUt with ● 152 recirculating power fraction.

Introduction and Background——. .-—---

The ELMO Bumpy Torus (EBT) concept) la ● toroirfal

army of simple magnetic ●irrors. An rf-generated,
low-density, ●nergetic ●lec :-on ring ● t each position

between mirror coi la (i.e., ❑idplane locatlorl)

atabllizes the bulk, toroidal plaama ●gainat well-known
instabilities assocf.sted with simple mirror confine-
ment. The EBT reactor waa first examined over four

years agD. 2 Revigiona of this firat deaiftn have been

made during the intervening years. 3-6 The utilization

of sdvanced fusion fuels in ● bum?y-torus r-actor haa

also been conafdered.7 InteriM reIIUlta fro% ‘~~datudy

reported here have been reported elsewhere, the
detailed account of this study is giver, in Ref. 9.

The presence of ● hfgh-beta electron ring ● t each

❑ldplane posfcion fs cructal to the HHD ●cabllity of
the bumpy torus. A local region of ● lnlmum mverage
field la crea,ed bv the rings. giving an t42{D-favorable
decreaae in the quantity ~ dtlll with increasing radlua.
Although this region of minimum-averag* fjeld does not

cxtelld to the c~nterllne of the toroidai nlaams, it can
he ar~ued that a regjon of @tabl@ bulk plaams ●xtends

to the megllet!c ● xis. “]G’): T?re ●tabillty of the
hfgh-beta coroldal plasma hau been lnferrad]o to be
l!mlted by ● value nf the bulk-plamms beta that
spPrOxf~~@ly ●quals the electron-ring beta. Although
theme ●tabllity-relat*d beta ltmlt~ ● re baaed upon the
assumption of riRld riljgn ●nd ● re ●enaltlve to the
ansumrd preacure profflem, theoe raaults ●crve ● a the
prjmary

*a~~~~l~~~@n~O~~~j~~~~ ,,: plied72
to this CBTR

study. howevor, haa rnlaed
●ome quentionn with reap~ct to chls aimpl~ ●tabillty
criterion, ●lthough th? quantitative implfrationm of
thl? recant theorv on the raactor performance could not

be made wlthfn the tlae ●chcdulc of th* present ●tudv.

l%- dfffualve lo-a of particleo ●nd ●nergy from
the nonsa!oymm~trlr tnmpv-toruo conflgbration fm

detemlned by n~nclactlral proceaaes in uhtch th~
fundamrrtal d! ffualve ●tQp ● ite ia ir.fluenrmd
slgnlflcantly by the -gnicud- ●nd dire-tion of
gufdfnR-cente. particl~ orblta tn ● tnroidal geometry

i n the prcaenre of both local wgnotlc field Kradlenta

and radial (amhlpolar) ●lectric field-. Th@
n~orlaam.cal ●xpramsiorl for th- confinement tiwe
reflccta a favorah]c ●caltng for the Lawson parautcr,
nl ,

/’
that lncreanes with tagperaturc, T, co the 3/2

po~er ●nd w!th th- ●quarc of the meRnetlc ●epect retlo,
~l!lc. ThF nooclansfcal tranaport ●ralinK la ●xa-fned
in more detafl in R@f. 9,1WIH, ●nd ltaa ● t th~ hamrt
of this RBTR ●tudv,

,,,
,,

,.
—.

A. for all conceptual fusion ~eactor desigra, the
deterelnation of an operating point requirea the unique
combination of applied plaama physics (particle/energy
trarrmport, ctability, equilibrium) ●nd plssmn

●ngineering (burn ●imulatlon ●nd control, fusion yield
●nd first-all energy fluxes, fuellnfi, Iapurity

control). In order to meet theaa requlrementa

elmultaneoualy, the determination of an EBTR deuign

point haa coupled burn, trancport, uegnetica, electron-
ring, ●nd blsnket/ahielff models that repreaerrt a

simplification of ● non-axiaymmetric three-ditaenaional

geometry. The Iterctton and optimization between

phyaica ●nd engineering occurred ‘with tha concurrent
numerical evaluation of models describing the

mechanical/atreaa reaponae of the magneta, the

perforeence of the impurity control scheme, ●nd the

the-l~ecbanical reaponae of the blanket.

Simultaneously, key phyaica and engineering conntra!mts
were monitored in conduction with thorn= aspecta of
plant layout that might interfare with th~ goals of
●yatem ● ccesa and meintslncbility. Leatly, a fully

parametric ●yatemb code waa developed ●nd used in

parallel to thla iieratlve mcheme in order to estimate
●nd optimize tot,l ●y-tes :oat ●nd cost-of-electricity

(COE). ThIa proeeoa continued until * relatively ●elf-
conaiatcnt deaisn point ●merged, Wj th major

uncertainties being quantified and document-d wherever
poaaible.9 ‘me IMjor phyaico ●ssumptlona ●dopted by

thla

a

●

●

●

●

●

●

Tho

study ● re summarized below.

Neoclaaojcal tranoport modeled in zero-dimcnaione

(Kovrizhnykh electr~na, plateau foti, ●nd assumed

denelty ●nd temperature Sradient scale lengths).
Vacuum msanctlc field modal in toroldsl geometry

to describe the toroidal ?!~ld ●nd ARE coils;

sveraglng used to reduce tn zero-dlmenaional

tranaport parameter.
Claaalcal theory daacrtbeu ralat9vfstfr

●lactron-ring loac~s.
Firct-harrsonic ●lectron-ring heating.

Stabjllty limit Siven by ●v*rag* plaam~ hcta of
~ 0.2’1 (mtdplane beta $ 0.45), ● m predicted by

●tablltty theorlee baaed on non-deformable rtnktq.
Steady-state plaame operatfon (alpha pa:tlrlsa ● rw
th~rmelizad claaaically ●nd

neoclaaaically) ●fter ● aimulatlrrn

@tarCup$
Ua* of circular ●nd of f -avt

confiSurationa.

f(,llowin~ engineerirrg-deaiBn ground

tranapOit-4

of plaama

ARE-co!

rulen we r

●

●

●

●

●

●

☛

●

10th c~rciol Dlant. 12(N MU@,
Staadv-state oparatton (??1 plant fartcr).

?reaaurl ced-uatcr-coolad, ●olld-breod*r blanket,

?ump*d lfmiter for impurity contrul.
Ljfe-of-plant ●uperconduct~ng CO1lS.
AM coils used to •tnimi~e phyalcal ●IZP of powr r

plant .
RF bulk haating for otartup ●nd ●lactrnn rlng~.

Fully remoto ea!ntananr~.

●Nnrk perfotiod un’de-r’ aumplco- of th@ U.S. Department
,ff Fhrgv.

PfcUonnell I)ouktlaa Aotrwtautica Coopa,ly, St . L4uim,
l%).



~actor Deafgn

The recent completion of a similar but more

extenafve conceptual design of ● commercial tokmxek

power plant 20 by ● majority of the EBTR design

participant waa of great benefit to this study. Thie

overlap allowed the utilization of applicable

experience and analyais for similar syatema while

maximizing the design ●ffort on aystemo that are unique
to EBTR. This combination of design reaourcen ●lso
allwed quantitatively meaningful compariaona to be

made between the EBTR design and the more extensive

STARFIRE design.20 Ffoet of the buildings envisaged for

both concepte ● re identical in function ●nd form,
except for the reactor ●nd ●lectrical ●quipment

buildings. The oite requirements ●nd boundaries for
all commercial magnetic fusion power ●pplication are

conaldered to be identical. The turbine plant,
electrical plant, and miacellaneoua plant equipment for
EBTR ● re identical to that selected for the STARFIRE

fusion power plant. The tritium fuel handling and
storage eyatem developed for the STARFIRE design is
also ●pplied t.o the EBTR concept.

Dea~n Overview—

One of the major ●dv.xntageo of the EBT reactor la

the high ●apect ratio, which allowa ●asier reactor
maintenance achehea. The effective utilization of the
acceas area around the torue la a major design goal.

The torus elements ● re wedge-thaped, requiring the

bl~nket snd/or ●hleld to be removed radially outward.
In order to provide outboard acceuoibility for

maintenance ●nd aaaembly, the ● tructure needed to

restrain induced magnetic loado la incorporated largely
on the inboard ●ide of the reactor.

Another key design premloe is the minimization of

the vacuum volume. A realimtfc design that allown a

vacuum boundary ● t the flrct wall could not be
ldentlfied, becauhe ot radiation damaRe to ● welded
joint or vacuum S*J1 locattd kt or near the flrat wall

and the fnac:eaalbility of the vacuum teal for

maintenance. ThQ ume of the reactor cor,tcfnment room
● n .4 vacuum vesoel has the dlaadvantag~ of large vacuum

●nvironment ●nd pumping r~qutrcmentm, exterroive surface
● ream for trlt~um ●ntrapmarrt, ●nd che difflcul~iec of
opertting support tquipment under vacuum conditions
Elimfnatlon of th~ne optlona places the vacuum boundary

with~n the blanket and shield r~glon.

To maximfze the oyotem credibility ●nd to utllice

●ffacttvely the relatftely small da-inn effort
ullocatod to this ●tu,iy, ● conventional PWR heat

tranofer and tranopo!c ●yatam la utlllzad. Spac~fic

d~afgn detafla wer~ r,odifiad rolar!ve to the e!milcr
STARFIRE tokamek deolgnz~) :, order to accommodate the

UO1 qu? aopectn of thc E ttTR ●pproach (ea.,
i~)corporation ,uf th? puxp*d-limiter/faad-water heating
ochem~).

Reactor Dtclln Point.-. . .—. -. .

The modnlc ●nd phyo!co/technology co~otrairrta
devtioped In the courme of this study,” w~ra uaad to

orr4alrrQ 9 ranRc of reartor operating point- that
~romlaq economic power near 1200 HW~( IO;). Tabl? 1
mummerizan tho ●pcrfflc dcatgn that hae ●merSod f r urn
tht, etudv. A Cost comparison with the !3TARFIRE
demign~o 10 Sfven in Ref. 9. Although conmtdorably
mnre effort w-a dcvot~d to ttl? latter ●tudy, th~ fact
thlir tho cootlnx dnts ban. ●nd crrmtinR/deainn
proc.dur~a ● re atmllar mekos such a comparimcrn
moan fngful. ~lth{juah th!m f!BTR denfgn op@rat@c with
!obrar platmn, ftrllt-wnll, ●nd hlankmt powor danattien
than STARrlttt, (4,13MWt/m’, 1.4 XWt/m;’, ●!bd

3.33 nnths, respectively fcr EBTR weraua 4.50 MWt/m3,
3.6MWt/m2, and 6.46 MWt/m3 ior STARFIRS), the ●yzitem
pwar denaftiea are comparable (0.50/0.24 MWt/m3
without/with ARE-coil v >lume for EBTR veraua
0.3!I MJt/m3 for STARYIRE), be:auae the total thermal

pwer and the volume e,~closed by the Coile are

comparable for EBTR and STARFIRE (4028 UWt and
7978/16441 m3 without/wit’,> ARE coils for EBTR and 4033

nut ●nd 13443 as for STARFIR.E, respectively).
Consequently, the total lirect coots, the unit capital

coata, ●nd the coot-rf-electricity are similar (2108
M$, 2366 $/kWe, ●nd 38.9 mills/kWeh for EBTR versw
1726 M$, 2000 $/kWeh Jind 35.1 mille/kWeh for STARFIRE,

respectively).

Reactor and Balance. f-Plant Layout

The EBTR pwer plant containe all the nec.?aaary
●lements of a cwrtral generating facility: reactor,

turbine plant, electric plant, cone rol and

●dministration areaa, maintenance services,

heat-rejeccion ●yatema, ●nd supporting utilities. A

nominal 1000-a~re tract was selected for the plant that
provides ●dequate apace for additional generating

units. The tiactor Building is centrally located

within the plant site. The turbine, Hot Cell,

cryoganica, ●nd fuel handling equipment are located

close to the Reactor kluilding in order to m!nimize

piping Iengthrn. Wet, natural-draft cooling towers are

uced. The site 10 located near ● river tc provide both
●dequate -keup water and the rvaane to -111P the large,

heavy component to the ●ice during construction.

Early EBTR conceptn2 were considered to be large-

●apect-rctio devicee, with ● major radiuo of 60 m or

more. For a device of that radiua, the Reactor

Building domlnataa the aice plan and the plant

●conornlca, In this study, a concerted ●ffort 1s made

to reduce the oize of the raactor in order to ●nhance
the ●conomics whl le preserving the attractive

maintenance featur8a of a high-aapect-ratio machine.

Thfs damign expllr.itly incurporatec ARE coils to reduce

the major radlu’ by ● factor of -- 2 whfle maintaining

the ●ame magnetic ●fiFect ratio ●nd ●cceptable plaom.s

tranaport.

Each of 36 raact~r sector- 1- comprised of two

dlffer?nt ●oduleo: ● mldplane blanket/ohield module,

located batwmen the toroldal-fi~ld (TF) colla, ●nd a

coil-plane blanket/@hfeld module. All 72 ●oduies tre
phyolcally ●nd thermohydraulfcally isolated fcom each
othor ●xcept for ● welded, lntersector vacuum seal

located outalde the ●hleld. By dlcconnectinE coolant

linaa, vacuum lirreo, ●nd rf-h~ating wavnguldea, th~
midplane module can be wl:hdrawn radially outward.

After the mldpIana module i- removed, the coil-plane
●odule can be withdrawn toroidally from the TF/ARF-coil
●aaembly follrrweu by a radial tranalatton outward.

Thir deoi,gn ●ppro~cl ●now ●ach 726-tonne TF/ARE-coil

●eoambly, which require. precioe ●lignraent, to r.mxtn

tixed Whll? blank@t/xhield replacement io ●ccomplished.

A factur of two aapect-ratio ●nhancewenr dlctatcn
a high AM-cofl current ●nd, hence, lar~e coil crons

section ●nd stored ●nersy (131 G.I). To minimlz? thr

●upport otructurq connertin~ the ARE ●nd TF CO1lS ●nd
to ●liuinate khe trancltintl between cold ●nd warm

structure, th~ ●et of one TF’ ●nd two ARE COIIn in
●nclrraod in x ●frrule cryogenic veo~ol with

lnterconn-ctirr~ cryoctlfc support otructurao Although

thla ●pproach rroateu ● lnrgm ●nd h~~vy cnil cat, jr

rodwcoa tho interconnmctlng ●nd uounting ctrurt~lre,
●l{anmcnt ●nd lnotallatton problems, cryoacrt!r

requfrementn, ●nd 9anufacturin~
nwde.

●nd quality-control
‘TM* Cni 1 taxing dlxu ●upoor-r,g ●nd ●lfnna thr

coil-platw blanket/chJmld ●odu]e. The two APE and one



TABLE I

EBTR HA.JOR DESIGN PA’WI’MERS

Net ●lectrical power (HW)
Gross electrical p~er (?iU)
Total thermal power (NW)

Cross power-conversion ●fficiency (%)
overall plant availmbilit> (%)

Ptmjo? radiua {m)
Plaama radiu& (average) (m)
Plaama volume (m3)

Number of ●ectora

Maximum field at magnet (T)
Field on 4XIII (coil.plane/midp18ne, T)

Average toroidal beta

!ildplane beta
Mirror ratio
Average DT ion density (1020/mJ)

Average DT ion temperature (keV)
Plasma burn mode

Plasma heating method (startup)

Ring heating method
Ring heating power ●baorbed (MU)

Plaam.z impurity control method
Firmt-wall/bl.snket structural materiala
Neutron wall loading (NU/m2)

Trltlum breeding med um
Primary coolant

Thermal conversion method

TF coils within each coil set ● re connt:ted

electrically in aeriea to reduce the out-of-plane loads
that would occur if one of thr coils should fail.

Tire blanket/nhjeld declgn approach reaultu from
conetralnta impomed by mainteinab!lity ● a well ● s those

impo.ed by phyaica conotrainta. In order to &chieve

acceptable trartaport in e relatib~ly ●mall toruo wltn
ARE-coil currcnte that are nut ●x4 ,caive ralative to
the TF-coil current (i.e., lIARE/i Ft j 0.25)s ‘t ‘s

Tdeojrable to locats the TF coile ● s c oec to the plasma
● e la possible. Hence, the thinner inboard coil-plan~

blanket/shield deniqn emphaeizec the ●hielding

function, with thst portion cf the blanket having a

trltium breeding rdtfo be 1ow unity. net
tritium-breedfng rateo greater than ~,lityA (i.e.,
T ,’ 1.06) la ●ch!ovad by ●nhancing tritium production

in ‘!le outboard coil-plan? ●nd midpisne blanket/ahfeld
regfona. Tnie k-oultti in a blanket/shield dealgrr that

conolata of Offma. .,iindera ●nd wedge-shaped aectione

in the coil plane and concentric cyll.~dera in the
mtdplane.

A pumped-llmiter lapurity-control cyatem instead

of n ~gnatfc diverter #am selactrtd to ●void possibly
d?trf~ntal perturbat!onn of the mkgn~t!c topo108y.
S@vcral confiauratlonc ●nd Iocatlorm of pum~zd limitero
wer~ ●ameaaed. ?lre ● e cctmd configuration utilizoa two

polofdal lfmf:erm for etch oector in conjunction with
vacuum alote located ● t the Junctton botueQn the
coil-plane <m,lLi midplsne modules. Irxpuritlea ●nd
nawtralfzmd DT ● tomo ● re pumped throuRh theme poloidal

limftar slots irto tn ●noular pl~num fo~d L@tween the
blanket ●nd ●hi~ld arnocmblfoti. Tlte vac-u~m cryopumpa
aro ●ttach@d d!rectly to the shield, therahy providing
● n ●cccptahlo pumping path Utth h! gh vacuum
conductance.

1214
1430
4028

35.5
-

3’
J

-u

9.7
5.03/2.25

0.17

0.46
2.24
0.95

27.9
Ccntinuoua/ignited

Lower hy.rid (rf, 0.5-1.4 CHZ)
ECRH, (rf, 50 CHZ)

42
Vacuum-pumped limiter

Advanced ●ustenl;lc ●tainlpaa steel

1.4

natural m-Lit.102
Preaaurized water
Steam

breedxng ratio of 1.06 ●nd an energy ❑ultiplication oi

1.5. The ●hieldirtg confi~ration under the TF coit,a .n

tt,e inbo~rd region la moot critical becauae of the need

to minimize tranaport loaaee by locating the Collrl as

close aa poanible to the plaame ourface; ● compact but

●ffective ●bield la used in thio region. This defilgn

goal la ●ccomplished by uainy ● small ●mount of

tungsten/lead mixture ●e a local ~hieldinq mterial in

the inboard coil region. The ●h{eld ●lsewhere la

atainleaa ●leel, TiHJ, TiB~, and water. Local
shielding regi ons are provided to ● ssure minlmel
neutron penetration through joints ●nd ducts.

The E8TR plaoma i- proposed to be driven to

ignition by lower-hybrid heating (LHH) with ● variable

(tunable) frequency of 0.55-1.40 CHZ; the Ltft{ in
●pplied aymmetric~lly in four ●ectore around the torus.

After ignition the planms 10 ernsumed not c (1 requi re

bulk heating. ThrI electron ringn r~qu!r* cuntinunua

●nergy input euatenanc* ●gntnrrt radiaticn &nd

colliaional-dt loaaes. Thla power 10 ●uppited by

ECRH at ● frequency of 50 CHZ (first harmonic) in ●ach
of th? 36 sectors. Gyrotrnn@ And crt.riaud-field

●mpl~fimrm a:e located directly inboard of the renccor

to ● aatrrc, minimal power loaaee in the r~np~ctf V?

wavesuid?n.

A three-dimensional cutaway drawing of Ch@ reactor

buildfnK ●id til~ k?y reactor and support aubayste.w in
shown in ?1s. 1. Sacttont of the reactor ● re shown

both during construrtlon ●nd In ● c~upletad state.
This cutaway view illuatraras the close fitting of t h?

r*actor tn th@ reactor buildinn inner wall in n?d?r tn
reduce butldtna coots ●nd reactor structural supporrm.

Th@ reactor support ●tructuro, irrcl,udtn8 the padcstal

that aupporta th? ●idplane module, coil support arma,

●nd r(,il Eimbal rnupporta, are shown both prior to and

fullowing lnatallalion of th- COji ●otc and moduleu .

Th@ more mesil~’c armo ●~pport the cull ●cts, wh~l~

tena!on ● truta support th* •~dplan~ ●(xiules. one cull

● et ●nd rnfl-plsne bl*nk?t/ahfeld ●odule ● re shown in

Section In order to .llustrat~ the l,lanket/mhi@ld

Clmrnly curruund?d by the TF COil. l%- cryvgenlc

trrtarrnll atructurc rontlnt~ of l-beams ●nd truaseo ●nd

can he #m*l\ in the aoctionod V1OU of th~ coil act ,
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Fig. 1. EBT Reactor Bufldlng showing the interrelation of key reactor components.

●lthough the ARC coil 1s largely hidden from view.
Poajtioned between the ●levated (1.~~) concrete

suppurt bates for the coil ●et- ● re the TF/ARE-coll

dump realctorg. AMPIQ maintenance ● ccese 10 provided

outboard of the reactor for malncenance machines ●nd
raod~le transporters that ● re mounted on ●onormiln.

(hmrhead in the reactor hall are two brldg? cranes (a
portion of one 1s ahovn); thene cranea ●esict in
construction ●nd maintenance of the reactor. ‘lh t.

illustrated arran~ement of the retictor ●nd ●omociaterJ

Bvacemn 1s denlgned to provide ● ●ynergiotlc ●nd
conr-effectjve ut~lfzatirm of tipace wlthtn the reactor

hall ah well ● n wfthjn the conttol room of chc react~~r
bul ldlng.

@ncluslons. -—-—

The compnnit? reeult of th!~ study forum the base

for an attractlw fuslnn pnwer cyotem. Further
cnncrptual denfgl( and ●yscmti effortn chould PYOVQ
fruitful in fmpruviog the procpects of EL9T ● s ● pnwer

svntPfn, A cynopa!n of the ttudy concluolonc is
presented below.

●

●

Th@ ●ronnmtc +valumtion indicates that th? capital
coot and COE for ● n EoT coawrcial pouer plant cre
comparable to tha better developed and understood

tokamak concept .20 Additionally, the COE 1s
conoid~red tn be competltlv~ with ●ncrgv produced

bv new flnniori or foocil pouer plantn. Aa future

refinemcntm ● re incorporated, the competltiv*
position for tlttT is ●xp~cted to be further

●nhanc@d.
The hjgh-aapoct-ratfu feat,lre o! the r!BT ● aeurea a
h!ghly ●ccoernlblt, and matntalnable reactor with
tntally rmrnote maintenance operatfwta, uhll~

prumlsjng a plant ●vai lability ●qual to or greater
than present fJmmlon plantm.

●

●

●

●

●

A compact, integrated reactor bujldlng das

developed based upon the un~que reactor features
of the F.BT concept. The uae of conventional

pouer-converelon ●nd balance-of-plant systems is

poeslble, llluRtrating ● compatibility WJth

conventional power Oyetms.

Blanket material selection ●nd configurational

tailoring ●ccomplished adequate trltium breeding,

wh!l? maintaining ● magnetlce geometry nee4ed to

obtain the raqu~red pin-ma confinement. This

blanket chield conf!guratfon was ●chieved using a

natu:al LiA102 oolid breeder Mcauae of coot ●nd

oafcty ronalderationa.
An integrated TF/ARE-cojl Jeafgtl io proposed hat
meete ●I1 -jor magnetlra/transport requlremfnta.

rnla TF/ARE-coll set ●dequately reactn thr inclu:ea

mmgnetic-forc~ loading ●nd rctalnb n fully remote

mefnterunce capability, ●lthough the coilt are

d~aigned to function ● n life-of-plant components.
Magnetic ●epec: ratloo, KT/Rc, of 15 to 20,
required for ●dequate plasma confinement, can be
achieved for ● reactor with ● 35-m major radlun,

whl le meeting necnosary engjneerlnfi :onatralntB.

mt~ ccnfigt~r~tion la ●ccompllehed using a

significant ●mount of ARF current ‘lAh@:t’~
-0.22) for th~ deoign point. Alternatively,
configuration may be achieved by designing for

Iarg-r mirror raLioe. AI1 import4n. phvnIcn ’

errglneerlng/tort tr%deoff ●xitra, wh!ctl requires

further study.

Y?re pumpud Ilmitrr ●ppearc to bo ●n ●ttractiv~’
fmpurity-control concept for CUTS. AlthoURh UIIY

of the c(. upl@d plaama/ocrape-off/l~mf terlnl(it
proceaaea rema ~n [1) b? demunatrated experi-
mentally, the t’esulto of the ph~nomenolofifcal

deacrtption provide ,,rC,mf sing lndlc~tlon~ u f

feamibillty.



●

●

1.

2.

3.

4.

5.

6.

Trende derived from the systems code analyalo are
●violent that prxnise an improved competitiveness
of future deoigna. ‘fhece trends include the
follwing:

- Cost optimizes on the maximum ●Jerage beta, 6,
conaintent with the mirror ratioa used (i.e.,

Mximum allowed midplane beta, 6 ■ 4~P/(1 +
M)Z).

- A strong dependence of cost on the maximum
●llowable mirror ratio is indicated.

- Coot-optimized designs for ccnstant beta ●re
found when the number of sectors ●nd ARE-coil
current are reduced and simultaneously, the
toroidal magnetic field and plaama radius ● re

increased.
- EBT exhibits n stronger economy of scale than

a tokamak at thr 1200-MWe(net) design po%-t.
- Ttre optimum value for ARE-coil curreot ●ppears

to be in the range IIARE/ITFl _ 0.08 - 0.16,
where a b:o.zd minimum occurs. Lower values

tend to increase cost because of increase4
torus radius ●nd hfgher values tend to

increase cost because of nigher magnet costs.

Several physics issue~/queetions/uncertainties can
signlfjcantly affect the EBT reactor viability:

magnetics/transpOrt in big;,-beta plasma, tilpha-

psrtlcle dynamica, electron-ring ●nergy losses ●nd
genera; stability, profile effects, edge-plasma

physics, plama heat!ng/fuellng during startup and

●PProach to ignition, ●nd steady-state plasma burn

control. The coupling between core-plasma beta at

. he ring locntion, ring

●verage core beta ●iid radial
particularly crucial physics
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