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A FAST ALGORITHM FOR TWO-DIMENSIONAL DATA TABLE USE

IN HYDRODYNAMIC AND RADIATIVE TRANSFER CODES

by

W.L. Slattery

and

W.H. Spangenberg

ABSTRACT

We describe a fast algorithm for finding inter-
polated atomic data in irregular two-dimensional tables
with differing materials. The algorithm is tested in a
hydrodynamic/radlat ive transfer code and shown to be of
comparable speed to interpolation in regularly spaced
tables, which require no table search. The concepts
presented are expected to have application in any sltua-
tfon with irregular vector lengths. tie also describe the
procedures that were rejected either because they were too

slow or because they lnvolv?d coo much assembly coding.

I. INTROL)UCTI(JN

Large hydrodynamic and radiation transport codes require

data to represent reality. The results of detailed, b~:c

tedious, atomic phyel(-s calculations are converted into

extensive two-dlmeneional data tables. An example is a pr.~ssure

table as a function of the two independent variables, density (,2)

a nd temperature (T). Group T-4 has organized such data into

their 3ESA?4E Library. In order to preserve acctjracy, the dat:s is

given in tabular form with uneven intarvals between c~ble

entries. !fanv polntfi are calculated in regions of J-T space in

which complicated atomic processes such as phase changes 0 r

ionlza~ion phenomenon occur. other qmoothly varying regimes are

sparsely tabulated.
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Slnce the table intervals are irregular, there exists no

simple algorlthm to find a location within the table. This

constraint prevents the straightforward implementation of the

SESAME data in a vector machine environment. The new SESAME

data base is intended to replace the older MAPLE data base. The

MAPLE data required no table search. Data for all materials in

the library were tabulated on a fixed density-temperature

(logarithmic) grid. Hence, the logarithm of the independent

variable provided both the table index (via the characteristic)

and the interpolation fraction (the mantissa).

The advantage of a data table which requires no table

search is manifest in our base-line calculation. We chose a

highly vectortzed two-dimensional Lagranglan hydrodynamics

code. The radiation transport uses the one-group diffusion

approximation. The logical mesh emploves 61 x 74 computational

cells. Eleven different materials are defined within the mesh.

A vectorized bilinear (logarithmic) interpolation scheme returns

quantities (pressure, energy, and opacity) and their derivatives

frc4m the data tables as functions of cell density and

temperature. 1300 computational cycles require 143 seconds on

the CRAY-l. Figure ~ indicates how che calculation time is

distributed. (This talley is generated by the C“CSS utility

SAMPLE. ) Thfrty percen~ of the calculation time is spent doing

EOS and opacity interpolations; this includes 7% of the time

spent in the vector ALOG end EXP routines.

The base-line problem was rerun using ‘he SESA?IE data

tables. A binary search routine found the table indexes for

ellcll cell. ‘ihe same vectorized bilinear I.ntcrpolation scheme

ref~rred to eak lier provided quantities from the data tables.

1300 cycles now require 358 seconds on the CRAY! Sixty percent

of the calculation time 1s upent in cha one search algorithm,

whilo all other code algorithms ~ccount for tha remafni 18 4(]% of..—

the tima. The udvantage of the flexiole data representation are

Juxtaposed to the disadvantage of an lntolcrabiy slow table

search. Tho purpose of our work was to devise a uethod in
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FORTRAN whereby a table search could be done quickly, to be

c ‘‘owed by an interpolation in the table, on a vector machine

(th CRAY-l in particul.sr).

.n Section 11 we describe che problem in more detail, and

we give our solution to it in Section 111. In Section 1P we

report a,~preaches to the problem that did not work and discuss

the reason that they did not work in our application. The

Appendix sketches the look-ahead algorithm and indicates where a

general code (FORTRAN) lb available.

11. DATA USE WITHIX A LARGE HYDROOYNAFIIC OR RADIATZVE ‘TRANSFER

CODE

We shall illustrate catrular data use in a cypfcal hydro

code by considering equations-of-state (pressure as a func: ion

of temperature and density such as the SESAS!E 301. type

tables). Within such a code the equation-of-state (EOS) for

several materials needt3 to be stored. In Fig. 2 tie show

hypothetical EOS for two materials. Typically, the hydrodynamic

aectiona of a code feed the EOS search and I,nterpol.ltion

ruutines large vectors (linear arrays) of (i) cell temperatures,

(2) cell densities and (3) cell material identifiers. (A cell

is a discrete two-dimensional spatial section of the problem. )

The temperature, density, and material identifier then

constitutes an ordered triple for each cell. [n turn, the cells

are organized in a logical mesh and are assigned indexes (K,L)

for computational purposes. As an example, suppose an ordered

t:iple for cell (Kl, Ll) has temperature, T(K1, L1 )-8.5, density,

RHO(K1,L1)=lU.4 and a material index MATYI)X(K1,L1)=l. Using the

Material 1 table in Fig. 2 an i50S routine finds the pressure

corresponding to these values as $O11OWS: First a search 1s made

in the T table for Material 1 co find the T(lndex) ~uchl that

T(index) $T;K1, L1) hut T(fndex+l) >T(K1,L1). In this case,
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Figure 2. Hypothetical EOS tables for two materials. The

abbreviations are the following: T-temperature, RHO=denslty, and

P-pressure.

Material 1

INDEX T pl (RHO:T)

6 13 50 50 54 60

5 12 46 48 52 54

4 9 40 41 43 5J

3 8 35 37 40 47

>. 6 30 32 38 45

1 3 28 30 4(3 45

I:JDEX

INDEX T

4 15

3 10

.) b

1 c1

INDEX

0.3 16 17 20 RHO

1 2 3 4

1 ). 4 t! 25 Rll~)

1 2 3 & 5
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T(index)=3. Likewise a search lb made In the RHO table; since

RHO=1O.4, the RHO index is 1. Second, now that. the indexes are

known, the tabular values are gathered based on the value of the

indexes. The number of values gathered depends upon the type of

interpolation used to find the pressure. For example, if the

interpolation is bilinear, then the temperature values 8 and 9,

the density values 0.3 and 16, and the pressure 1nvalues 35, ,,

37, and 41 are gathered. Third, the interpolation is performed

using the gathered values to give us an approximate pressure ac

T-8.5 and RHO-10.4. This process is repeated for the next

temperature, density, and material index triple as tie proceed

through the logical mesh.

We are now in a position to st~te the problem more

precisely. For a given material, Lhe algorithm has three

distinct components:

(1) the search through the independent variable tables

to obtain indexes

(2) the gathers of the dependent variables (i.e., the

tabulated data) based upon the appropria~e indexes

from 1), and

(3) the interpolation of a ceil-related quantity using

the values from 2).

We have T(Kl,Ll, MATNDX) and RHO(K1,L1, MATNDX) for e.~ch cell.

We need P(K1,L1, MATNDX). But the tibulated pressures are not

functions of the cell lfidexes. Rather they are functions of the

cell temperature and density, which are, in turn, functions of

the cell indexes. Our task was to devise a method to vectorize

this indirecc procedure as much as possible.

111. LOOK-AHEAD AND VECTOR SEARCH

Large hydro and radiative Lruntifer codes aLmo!3t always

exhibit some regularity in the arrangement of materials witt.in

adjacent cells, i.e., it is extremely rare to have materials



alternate from cell to cell. Consequer~cly, if we could know the

number of adjacent cells that have the same material index, we

could use that number as our vector length and vectorize some

operations. This idea led to the concept of look-ahead.

Consider the first element of the material index array. If this

element is subtracted from the remaining elements, the first IVL

elements of the difference array will he zero, thus indicating

chat IVL cells have the same material index. Hence we could

perform the necessary operations over a vector of length of IVL.

Which Of our operations can be vectorized on the CRAY?

First, there is a CALMATH library routine written by Tom Jordon

(C-3) called sRCH64, which performs a vector search In a table.

Given an ordered table, SRCH64 locates a vector of real values

in the table and returns a vector of index iocations. SRCH64 1s

described in the Los .41amos Program Library write-up y!27.

Second, the interpolations can be vectorized if there is no

concern about boundaries of the table, e.g., bilinear i~ter-

polation requires no special action for extrapolation. We will

discuss extrapolations in more detail later. Unfortunately>

gathers are not vectorired on the CRAY-1.

In summary, our solution to the problem of data taole “Look

up” over an irregular definitio~ of materials, each represented

by irregularly spaced tables, is the following:

1. Look-ahead on materials to find vect~r lengths, lVL.

i. Search on independent \ariable’s tables (e.g., temperature

and density) us.ng $RGH64.

3. Gather Japendent and independent tabl~ \al,ues on indt:xes

returned from SRCH64.
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4. Interpolate using gathered values

5. And finally, repeat steps 1-4 as necessary ZO sweep through

the logical mesh.

We schematically illustrate the FORTRAN coding for these steps

tn the Appendix.

Initially we wrote a stand-alone code to develop the

look-ahead concept. Figure 3 displays the results of our

study. Each example pezformed calculations equivalent to the

search- gather- interpolatlon sequence ior 64 x 10**5 cells.

The random length vector case, with an average vector length

(XVL) = 9, takes 31 seconds. This approaches the optimum length

case (IVL = 64) at 21 seconds. The short case with IVL=l is the

scalar case. The “overhead” associated with the look-ahead

concept (categories “setup” and “look-ahead”) is trivial. The

three major functic~ns are well-defined: search, base address

calculation-gather , and interpolation.

The look-ahead algorithm was implemented in the

two-dimensional Lagrangian hydro/radiation transport code. The

base-line problem now runs 1300 cycles using SESAME dara in 160

seconds. This is a major Improvement over the initial SESAHE

aigorlthm chat took 358 seconds. Figure 4 indicates the

distribution of computational clme. The 35% of the time spent

doing EOS and opacity “’look-up” includes 12% of the time spent

within the CALMATH routine SRCHt)F (X128 written by Torn Jordan)

doing che tdble oearch. SRCHDF returns table spacings and

interpolation fractions that eliminate later gathers. It

replaces SRCH64. The advantage of the flexible data table

represention cotapeneates for the slightly longer computational

~imes required by the SESAME-related algorithms as compared to

the old MAPLE scnemes.

The hydro code test-bed has a TTS option (temporary

triangular subzonjng). Lagrangian quadrilaterals Ire subdivided

into four triangles. This deters mesh tangling. But the number
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~f cells effectively increases by four also. On the other hand,

the a~verage vector lengths, IVL, in the lr,ok-ahead scheme

are increased. The TTS calculation on the base-line problem

using NAPLJ data requires 397 seconds to run 1300 cycles. The

look-ahead algorithm with SESAME data runs 1300 cycles in 373

seconds. Fi3ure S displays the timing distribution.

The look-ahead concept <s extremely general with apparent

applicability to a wide range of computational-logica 1

organfzathns. Lagr3.ngian formulations fix the material

identifica~ton of each cell. Rezoni,tg, either periodic or

continuous, may change the logical mesh-material index

correspond~!nce from one computational cycle to the next. But it

‘iemalns str~i~htforword to look-ahead in a logical mesh that may

change with each cycle. By its very nature, the Eulerian

form’~lation exhibits a Jynamic association of materials and

logical mesh. But we may expect a relatively small number of

mixed Euierian cells within any mesh. Let us reiterate chat we

❑ay expect some regularity of material arrangement wit!lin both a

Lagrangian and an EulerIan logical mesh. Any given material

region 1s usually defined by several cells. The necessities of

computational accuracy and resolu,tiou demand It. Furthermore,

the look-ahead concept may be applied to algorithm sweeps

through the logical mesh in any direction and in any oEder.

Subcycling of algorithms within a given computational procedure

causes no concerns. Iterative procedures are handled straight-

forwardly. ‘The look-ahead procedure may be applied to t.hree-

dimensional and higher order data tables as well.

Iv. PROCEDURES TH.4T DID NOT WORK

In the process of arriving at the scheme described in the

last section, we tried a number of other schemes, which efther

were too cumbersome or l~ere slower. We shall delineate these

now.
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At first we included the interpolation inside the look-ahead

loop, but it was discovered that if we pulled lC outside, the

routine would run ❑ ore quickly. The time decrease was sub-

stantial for short vectors and higher order interpolation schemes

1 ke the rational function. In pursu?ng this line of thought one

must be careful noc to go too far. If the gathers are also

pulled outside of che look-ahead lcop, the routine runs more

slowly (but not by much). Of course the table searches cannot be

pulled out because of the irregular nature of the tables.

A more general procedure fcr doing ail of the table lookup

was suggested by Tom Jordor. .i>rdon proposed to sort all

incoming data by ●aterials, thus producing very long vectors for

each material. Once sorted, SRCHRV (a variation of SRCH64) could

be used for the table searches. Next gathers would be done,

followed by lnterpolationa. It would then be necessary to unsort

the data to put it with the correct cells. .Jordon estimated chat

he would be able to decrease the :iae required for the EOS

routines by a factor of 1.S if he wrote the whole thing in CAL.

‘de decided that the disadvantage of CAL Coding, coupled with the

increased storagn required, was too great a price co pay.

To replace SRCH64, Ha tried th~ CALllA1’H routine LINSRCH (by

Tom Jordon). LINSRCH cakes as tnput. a table and a sin~le number

for which one wants the index. This routine is fast when one

wants only one index (the iVL_l case), but it is ~lower than

SRCti64 when one needs the table lndex~a for iuany associated

numbers.

In ● n attempt to speed up the gathers for higher order

interpolations (explicitly we usad G. Ka~ley’s (X-7) rattonal

function interpolation), we tried the CALHATI{ routine GATHRlb.

This routlno worked well for long vectors (length 64), made no

chanse in #hat we conaid~red av?ra~e vectors (length S), but it

*eve rely mlowed the short vectors (ltngth 1). CATHR16 vP#

dropped bacauae of thi~ uevere slowdown and because af the added

complication of yet Another library r~utine.
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Another attempt to save gather time was made by Kerley.

Quite frequently, during a given cycle, adjacent cells in a hydro

problem have roughly the same temperature and density. This

means that many of the tabular values gathered are duplicates.

By avoiding the rega~ .ering of tabular values, substantial time

was saved in higher order interpolation schemes (factor of 2).

tievertheless, the extra storage required was prohibitive (of the

order of 100,000 words decimal) and the coding was substantially

more complicated. In addition such a str.stegy can bz defeated by

finely divided tables or finely zoned problems. The sorting

becomes staggering during rezoning phases or with EulerIan

formulations.

Extrapolations that use explicit IF statements are very

expensive. Originally, the rational function interpolation had

fnur explicit IF statements to determine if indexes were on edges

of tables. If there was an extrapolation, a subroutine was

called to handle an interpolation algorithm modification.

Timing studies determined that up to 1/3 of the EOS routine’s

time was spent doing only the explicit IF statements! (This time

excluded the actual extrapolation subroutines, which IUJUli only

have increased the time.) Consequently, it is imperative that

the tables t?- padded at problem definition (or setup) time to

totaliy ●void checking for extrapolations. Alternatively,

interpolation al~orithms must be constructed ~i~ provide smooth

end con:listent extrapolatlona without introducing c~ecial cases.
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V. CONCLUSION

Given the problem of calculating Interpolated atomic data

for differing mater ~als defined by irregularly spaced

two-dimensional tables, we have described a fast numerical

solution to the problem. For those who would like to pursue

this problem further, we have also discussed solutions that did

rkot work. The look-ahead aspect of our algorithm, which

determines vector lengths, should have application anywhere that

Irregular vector lengths are encountered.
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APPENDIX. LOOK-AHEAD AND SEARCH IN FORTRAN (SC1iEMATIC)

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

.

.
Ic

NUMBER = Number of cells to calculate EOS this cycle
MATNDX = Material Index array
T = Temperature array
RHO = Density array
LD = Difference array
IVL = Vector length in current material

MINO and LEADZ are CFTLIB routines
MASKVN (F147) and SRCH64 (M127) ars CALMATH routines

MASKVN provides a one-word mask (bit-vector) of
conditional (X(I),NE.0) on a vector of integers or
reals, N.LE.64.
LEADZ counts the number of zeros before a non-zero
bit 1s encountered

-1
20 IVL = MINO( NUMBER-IC,63 )

DO 4(I I=l,IVL
LD(I) = MATNDX(IC) - MATNDX(IC+l)

40 CONTINUE

IVL - MINO( LEADZ( MASKVN(LD,IVL, l) ),IVL ) + 1

CALL SkCH64( IVL,T, . . ..IT ,... )
CALL SRCH64( IVL, RtlO, . . .. IROo). o)

DO 50 I=l,KVL
Gather T, RHO and EOS table values on lndexns [T and IRHO

50 CONTINUE

KC _ IC + lVL

IF( IC .LE. NUMBER ) GO TO i!~

Do 60 I-l,NUMBER
Interpolate EOS and/or derivatives for cells

00 CONTINUE
.
.

A general FORTNAN code (CTSS) to f~t.~11 the SESAME tabl@S

and to compute EOS and gray opacity valuas using the l{)ok-nhe~d

concept with several options tor fnt~’tpolatlon hi!q been written

by C. Cr;lnfill (M-7), [t LY uvatlabiu! for ~oner.11 use upon

request.


