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UNCONDITIONALLY STABLE DIFFUSION-ACCELERATION
OF THE TRANSPORT EQUATION

Edward W. Larsen
University of California

Los Almos National Laboratory
P. O. BOX 1663

Los Alamos, New Uexico 87545

The standard iterative procedure for nolving fixed-gource discrete-ordinates
problems converges very olowly for problems in optically large regions with
mattering ratios c near unity. The diffusion-synthetic●cceleration method
has been proposed to make use of thr fact that for this class of problems,
the diffueion ●quation is often ●n ●ccurate ●pproximation to the transport
equation. However, stability difficulties have historically hampered the
implementation of this method for general transport differencinffschemes.
in this article we discuns ● recently developed procedure for obtaining
unconditionally Btable diffusion-mynthetic●cceleratioclmethods for varioun
transport differencing schemes. We motivate the analyais by first dis-
cussing the ●xrncttransport equation; then we illustrate the procedure by
deriving ● new stable ●cceleration method for the linear diacontinuouB
transport diffcrencing scheme, We ●luo provide some numerical reuults.



UNCONDITIONALLY STABLE DIFFUSION-ACCELERATION
OF THE TRANSPORT EQUATION

I. INTRODUCTION

The standard power method for iteratively tsolvingthe neutral particle
transport equation has the following well-known physical interpretation.
With a starting guess of zero, the n-th itexitteis the flux consictiug
of all particlea which have undetgone up to n collisions. For transport
problems in optically large regions with scattering ratios near unity,
most of the psrticles undergo a large number of collisions ●nd the power
method converges very slowly. However, for this same class of problems,
the transport solution is often well approximated by the solution of the
standard diffusion equation. The “diffugion-synthetic”●cceleration
methodl-7 has betn proposed to exploit this fact by ●lt.ernatingtransport
and diffusion calculations, but it is only fairly recently that numericsl
stability ploblems2 have been overcome and that ● comon procedure for
developing stable methods for fuirly general tranaport differencing schemes
hstibeen formulated.s-7

In this ●rticle we discuss the diffusion-synthetic●cceleration method, first
from the point of view of the exact transport equation (Sec. II), next from
the point of view of the discretized transport equation, with emphasia placed
on ● new and simpler ●cceleration method for the linear discontinuou- spatial
differencing schemes’o (Sec. III), and then from the point of view of numerical
results (Sec. IV). For simplicity we restrict our ●ttention to fixed source
problems for the one-~roup trtnaport equation with isotropic scattering. We
briefly discusm extensionrnto ❑ultigroup ●nisottopic transport in other
geometries in Sec. V.

11 EXACT TRANSPORT EQUATION

We wish to solve the equati(>n

w++=;~8X
fl $dp’ +S(x) ,
-1

(2.1)



At this point we shall not specify the spatial domain or the boundary con-
ditions. The standard power iteration method for solving Eq. (2.1) is

i.ncdby

n$~+* + *~+*
P = C$g + s(x) ,kc

Jl+l 1
+0

; *,+*
‘z *1

dp’ ,

where $~, ~he initial guess, is often chosen to be zero.
convergence properties of this method we define

@+#
=!JR++ - *1-+ ,

0’ =@f- F ,

(2.2)

[2.3)

T~ determine the

(2.4)

(2.5)

as the difference between successive iterates of Eqs. (2.2) ●nd (2.3). The

rate at which &+* ●nd # tend to zero ia the rate of convergence of the
power method (2.2), (2.3).

By subtracting two of the equation (2.2) and (2.3) for successive values of
t, we obtain

(2.6a)

(2,6b)

To determine the convergence rate, we ueek eigenvalucs w and eigenfunctJons
of this method of the form

(2.7)

~fl+$
= (UJ)tf(v,A) C

ihx
* (2,8)



for which Eqs. (2.6) become

f(p,A)(iAp + 1) = C ,

11~ {If dP’ .uJ=–

Hence,

f(p,A) = ~

and

ld
u=~ ~s dp .

-1 1 + A2p2

(2.9)

(2.10)

(2.11)

(2.12)

The spectral radius of the method is then

Spr=,upw=c, (2.13)
A

which ia ●ttained for A = 0. Thus, for A * O and c + 1 (which corresponds
physically to m optically large system with b ticatteringratio near unity),
the opectral radius I, close to one, and the p~wer iteration method con-
verges very slowly.

To ●ccelerate this iteration method, we shall keep Sq. (2.2) but r?place
Eq. (2.3) by a formula which treats the A ‘NO modes atom ●ccurately. To
reformulate this idea, we rewrite Eqs. [2.8) ●nd (2.11) as

@++ = (uJ)g’C[l -iAp+(j.A+.J)2..o ]eik .

Thus if Pm(Ii)in tbe m-th Legendre polynomial, we have

(2.14)

(7415)
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In particular, @+*isnearly alinearfucti~nofp. Thus, to better treat
the A * O modes, we shall replace Eq. (2.3) by an equation which computes

$
Q+l 2++

exactly if $ is a linear function of p.

To do this, we take the zero-th and first spatial moments of Eq. (2.2) to
obtain

where

on=; ~1Pn(P)*(X,P)W .
-1

Upon convergence, Eqs. (2.16) become

2d.—
3dx@2+%i

$lO+$l=o ,

(2.16a)

(2.16b)

(2.17)

(2.18a)

(2,18b)

where the converged quantities are indicated vithout iteration 8uper8cripts.
f!+1

Now let us define two equations for $0
t+ 1

and $1 as

d t+1 b!+1
& %

+(1- C) 00 = s ,

-–. ~’+2d +~d Q+1 2+1
3 dx *2 3@. +Ql =0 . (2,19b)

We note that Eq. (2.19a) in the standard balance ●quation. For the ci8erl-
functiona of thi~ iteration ficheme,the first (unaccelexated)term in Eq.
(2.19b) ia - by~q. (2.15) - O(AS), while the second and third (accelerated)

5



terms are O(A). Thus, Eqs. (2.19) can be expected to treat the A% O modes
A+*

very accurately. Additionally, we see that if + is a linear
2+$

function of p, than 02 = O andEqs. (2.19) can be solved for $~~ and
J2+l
01 exactly.

To proceed, we write

(2.20)#+1
n =4&-$~+ * n=o$l

and we subtract Eqs. (2.16) from (2.19) to get

& fl
g+1

2+1 + (1 - c) f. ~+$ - $?) ,= C(*O (2.21a)

__ f~+l+fyl=o ,ld
3dxo

(2.21b)

2+1
Eliminating fl , we get an ●quztion only for & The full iteration

scheme, using this eq~ation, is defined by

1 d2 ~J?+l+ {l g+1
-_— 2+1 + C($O- c) f. - $:) ,
3 dx2 0

(2.23a)

(2.23b)

(2.23c)

The ei8envalueo ●nd eigenfunctions of thin method can be computed just as
before, with the result

(2.24)



where equality holds

opr : c (0.23)

for c = 1. A numerical search gives

* (2.25)

and thus the spectral radius is less than 1/4 for all values of c < 1. For
c= 1, the plots w(A) for the u.naccelerated[Eq. (2.12)] and accel~rated
[Eq. (2.24)] methods are displayed in Figure 1. We see that the accelerated
method treats not only the A = O mode exactly, as it was designed to do,
but in fact it treats-all the modes,
unaccelerated method. —

The diffu~ion-syntheticacceleration
its Bpectral radius (2.25)] has been
derived in a substantially different

for O ~“~ ~ 00,more accu~ately than the

method of Eqs. (2.23) [together with
known for some time, and was originally
way.= The derivation of unconditionally

stable discretized diffusion synthetic methods however was an unsolved prob-
lem for several years= and has only been accomplished recently.s The advan-
tage of the analysis presented above is that, starting from the exact trans-
port equation, we systematically derived the exact diffusion-synthetic
acceleration method; in a similar maniier,if we start with the discretized
transport equation and follow the above procedure, baaically line-for-line,
we can derive ● discretized diffusion-synthetic ●cceleration method which
is, for all of the trmnsport differencing schemes we have considered,
unconditionally stable.”” In the next section we carry out this procedure
for the linear discontinuous differencing scheme.

III. LINEAR DISCONTINUOUS SCHEtfE

The linear discontinuous scheme for spatially discretizind the discrete-
ordinates ●quationg is based on a linear representation for th~ angular
flux within each cell,

(3.1)

This equation holds in the k-th spatial ~ell xk-4 ~ x < xk+~, with midpoint

‘k = (Xk-$+ xk+* )/2 ●ndwidth hk =xk+$ - Xk-$.- The subscript m refers to

the discret~-ordinatea direction pm; the corresponding weight in UJm,normalized

n
no that X W,n= 1. Equation (3.1) holds not onll’within the k-th cell, but

1

●lao on the right edge for pm > 0 ●nd on the left edge for pm < 0. Thus if

om,kf$ = ‘m(x ~+), then



1*% a),k+$ -talc pm>o ,
=

k
** - ym,k-$ pm<o .

For a constant source S = Sk, the linear discontinuous method is explicitly
defined for the k-th cell by

Pm

q “J
$++

- *:;.+
11’#

) + ‘~k~mk = ‘Sk+~k + ‘k *m,k+# (3.2a)

+*::+- 2+$% (*:::+* ‘ - 2 $mk ) + ‘Tk&K$= ‘Skc:k $
‘k

f,+*= (1 + ‘m~ 1
*

‘Sk 2
- ‘ink)*S:?..$- ‘mk ~ Cok “mk 2 ) *::+* + ( *

These ●re three equations for three unknowns, $:$, ~~+, and either

*
2+* ,fl+#
m,k+# ‘r ~m,k.$- Equations (3.2a) and (3.2b) are the zero-th and first

order spatial balance ●quations, into which we have introduced Eg. (3.1).

Equation (3.2c) follows from

into Eq. (3.2b), rearranging,

introducing

) p>o,

} p<o,

and defining

uhlp
a=—–

Tkm —.
mk

3 + l“~kl~ml

(3.2b)

(3.2C)

(3.3)

(3.4)

Equations (3.2) constitute the discretized version of the transport
equation (2.2), with the total ●nd scattering cross sections u
written explicitly. The unsccelerated method is based on the To:::w%fj
discrete fom of Eq. (2.3):

8



(3.!3a)

The spectral radius for this

to. (3.5b)
n

iteration method is found by determ.~ing eigeu-..

systems in which CTTk,OSk, and hk are constants i&dependent of k. The eigen-

valu~ w has a complicated form which (just as in Sec. II) equals c = US/OT

for A = O and monotonically tends to zer~ as A*. Thus, as beiore, convergence
will be very slow for c ~ 1 and A ~ O.

To derive the acceleration equations, which will replace Eqs. (3.5), we
first define pk, y-k, and ~mk as

~mamk
‘Pk+$mk -

Because amk is antisynsnetric,i.e.,

Pm = ‘pn+ad=-a~k $

then ymk ●nd #m have the properties

9 n= O, 1 .

9

(3.6a)

(3.6b)

(3.6c)

(3.7)

(3.8a)

(3.8b)



The procedure which we use is patterned directly on the method presented
in Sec. II for deriving the acceleration equations (2.23) from the single
equation (2.2). Our starting point here however is not Eq. (Z.zj, but

rather Eqs. (3.2). We begin by taking the zero-th and first angular moments
N N

ofEqs. (3.2), i.e., by operating by Z (*) wmand 1 ~ Pm(o) Ulm. Th~.
m=l In=

results in the following six equations:

‘Sk E
—t- ‘k uTk Ok “

(3.9f)



Here we have defined

e’tc. Now we define acceleration equations in the following way:

(3.10a)

(3.10b)

(3” 10C)

(3.lla)

(3.llC)

(3.lld)

(3.l:e)

11



‘Sk 2+1
‘pk~LOk “ (3.llf)

Tuese ●re six equa~ions for the six quantities:
i+1 a+1 A+1
‘Ilk‘ ‘n,k++’ Lnk t for

n = O ●nd 1. They were defined by ●lterin8 the superscripts in Eqs. (3.9) in

a manner that is consistent with Eqm. (2.15) ●nd (3.8). Specifically, for the
eigenfunctions of this iteration ~ch~ ●nd for small A the ●ccelerated terms
inEqs. (3.llb, d, ●, and f) ●re respectively O(A), 0(A2), at worst O(l),
●nd O(A), while the unaccelerated term ●re respectively O(AS), O(AS), 0(A2),
●nd 0(A2). Thus in these four ●quations the unaccelerated term ●re, for
●all A, negljgable compared to the ●ccelerated terms. InEqs. (3.lla and c),
all of the te~~s ● re ●ccelerated. In these two equations one camot compare
the magnitude of the various terms with respect to A because u
Sk ctin,in principle, have valuen which vary from zero to infi

~’t;.aSk ●nd

Equations (3.11) satisfy the property, enuciated in Sec. II, that if $ is
linear function of p then ●ll of the term with f++ superscripts vani?b
and the eix uoknownsmcan be determined exactly. The acceleration method
based on I!qa.(3.11) hua been coded, tested, ●nd reported elsewkeree”t; we
shall refer to it ●s method A. In the following we discuss in detail a
clocely related method (referred to ●s ~thod B) which (i) does not satisfy
the ●bove property, (ii) ia computationally ●i~ler than method A, ●nd (iii)
performs for sost problem ●bout as wel? ●s method A. In Sec. IV we present
numerical results to compare the two methods.

Hethod B is based on the observation that if the ●isenfunctions of any
iteration scheme satisfy Eq. (2.15) for s-11 A, then the ●ccelerated term
00 the left side of Eq. (3.he’) ●nd the first ●ccelerated term on the ri ht

fside sre O(l), while the second ●ccelerated term on the right side is O(A ).
Thu. this latter term should be neglitable when c~ared to the others for
small A, ●nd one ought to be ●ble to treat it ●s unaccelerated. Io other
words, one ought to be ●ble to replace Eq. (3.lle) by

TbiE netbod has been coded; w have found that for OUI1
spectral radius ia (experimentally] identical to Lhat of
the ●patisl cells increaoe in width, the spectral radiu~

(3,11e’)

spatial cells Lhe
method A, but ●s
tends to c. Thus,

12



the new method is stable, but it does not ●ccelerate effectively for large
●patial cells. Thim unfortunate behavior of the spectral radiua as ●

function of the cell width could not have been predicted from the analysia
of the exact ●cceleration ●quations in Sec. 11. However, it can be over-
C- by adopting the following strategy.

The purpose of ●ny

Q:1 ●nd ~~kl. m

●re given in term

●cceleration method is to obtain ●ccelerated values of

Eqs. (3.lle) [or (3.lle’)] ●nd (3.llf), these quantities

of ●ccelerated cell-edge scalar fluxes and currents.
An acceleration method which ●ccelerate effectively for ●ll spatial cell
widthm la defined ●n follown. We take Eqo. (3.lla,b,c,d,e’,●nd f) mnd
solve these for the ●ccelerated cell-edge ●cala< fluxes ●nd currents; then
we use these results in Eqs. (3.lle and f) to obtain the ●ccelerated cell-

sverage quantities $Ok‘+1 ●nd ~~kl. In other words, we usc Eq. (3.he’)

in the first half of the calculation and Eq. (3.11) in the second half.
If we follow thir ?rocedure, which we define as method B (or, if we u-e
Bq. (3.11) in both halves, Which iH method A] we obtain ●n ●cceleration
method which ●ccelerate effectively for ●ll cell widths. If we use Eq.
(3.he’) in both halves, we obtain ●n acceleration method which only ●ccele-
ratet effectively for smell cell widths. There im ● computational simplifi-
cation which occurs however in usin~ Eq. (3.lle’) rather than Eq. (3.lle) in
the firet half of the calculation, and this simplification may be crucial in
multidimensional proh!ema. In the followin8, we carry out the ●lgebraic mani-
pulations described ●bove for method B so that it is recast in ● computationally

B+1
uoeful fem. We point out, ●s ● detail, that for method B, the symbol 40k in

Eqs. (3.lla, d, ●nd e’) should be replaced by some other symbol, such as

+‘+3’4; however, for brevity, we shall not do this here,
Ok

The first step is to continue following the procedure in Sec. 11 and sub-
tract Kq$. (3.9) from Eqs. (3.lla,b,c,d,e’.●nd f). Defining

(3.12a)

(3.12b)

(3.13a)

13



~E+1 J(#+l
lk = 2 I,I!+4+ fg+l

l,k-#)
+ + ~ft+l pl ~

2 k O,k+# - O,k-#

(3.13e)

(3.13f)

We note that for method A, Eq. (3.13e) would contain ●n extrs term on the
right nide; this t-- would, in the ●nsuing manipulations, produce extra
●18ebraic comp~cations. Thus ●ethod B, the subject of this ●rticle, ia
●lgebraically ●impler than method A.

To proceed, we solve Eqs. (3. 13c) ●nd (3.13f) for fA+l ●nd gt+l in
lljell-aver e qterms of the unknown cell-edge quantities ●nd k..own ii uantities

to obtain

(3.14)

[
–-’X$*; “s’(’;$-‘:’)]~(uTk -

+ ~k(uT#~) ‘“--

6pkoSk

(3.15)

14



Next, we use Eqs. (3.13e) ●nd (3.14) to eliminate f&l ●nd ~kl from (3.I3a
●nd b). To simplify the notation, we define

1 P~

-[

hk(oTkhk)(uTk - USk)

‘k = 3uTk+ T 6PkaSk 1+ (UTkhk)(uTk - ‘Sk) ‘
(3.16a)

‘Rk = ‘Tk - ‘Sk ‘
(3.16b)

#+# =
k

‘k”Sk( Tk k 2+$ - ~~k)o h )(COk

6pkoSk + (uTkhk)(uTk - ask) ‘

Then we obtain

(3.16c)

(3.16d)

(3.17a)

(3.18a)

Adding ●nd subtracting these equations, we get

fjz+1 ‘k 2+1 ~+1 )+ Rktpk .#+] ) ~ +Rkh#f~+$“ ‘O ,k-#
l,kt* = - ~(fo,k+b - O,k-$ )

(3.19)

Now we take the equation for f
a+1
1,k-%

●nd replace k by k+l to obtain a second
1+1

equations for f
l,k+~;

equating these expressions snd rearranging, we obtain,

finally,

15



‘k+1
-—(f

2+1 ‘k
0,k+3/2

- ffi;+%) + ~ (f:;++ - ff:-+)
‘k+l $ k’ $

= (PL,I+ Pk) - (Rk+l - Rk) ,

which is a discretized diffusion equation, analogous to Eq. (2.23c).

(3.20)

a+1To complete the iteration scheme, we must obtain expressions for $Ok

and ~~kl. Subtracting Eq. (3.9e) from Eq. (3.lle), and usin~ Eqs. (3.12a)

and (3.17a), we get

(3.21a)

and from Eqs. (3.12b) and (3.15), we obtain

(A1 ~+$+k )/+1 ) +u@#k- 6f+#~ok3~#’Tk(),k+~- O,k-#
t
B+1 E++
Ok = $)k +

6PkuSk + uTkhk(uTk–=uSk) .

(3.21b)

The derivation of the ●cceleration method is now basically complete. First,
we perform the transport sweep of Eqe. (3.2). [This is ●nalogous
to ●olvin8 I?q,(2,23a).] Next we introduce these reaulta into Eas. (3.5)

to obtain $Ok‘+$ ●nd t:%. [This is ●nalogous to Eq, (2.23b).] Then we

soIvc Eqr4 (3.16) ●nd (3.20). [This is ●nalogoua to solving Eq. (2.23c).]

Finally, wc obtain $Ok
#+1 ●nd ~::1

from Eqs. (3,21), [Theme equations ●re

●nalogouh to Eq. (2.23d),)

16



We have not analytically computed the spectral radius of
infinite medium problems. However, we have dane this for
obtained the upper bound

spr : c (0.300) .

this method for
method A and have

(3.22)

Iioreover,numerical results show that methods A ●nd B generally require almott
the same number of iterations to obtain any prescribed accuracy, and so we
believe that the bound (3.22) gives a good approximation to the spectral radius
for method B. Thus, the method is unconditionally stable and accelerate
●ffectively for all size of spatial meshes.

Two subjects remain to be discussed before the acceleration method derived
above can be implemented. First, we must derive boundary conditions f8r Eq.
(~.20), ●nd uecondwe must describe how to select the initial values $Ok and
*

The subject of boundary conditions for Eq. (3.20) is important. In
calculations, we have observed that with any improper choice the acceleration
m~thod becomes unstable for large spatial ❑eshes, but with a correct choice
the method remains unconditionally stable.’ Let us suppose that at the left
bounda~y, xi, we have a prescribed incident flux, Xm,i for pm > 0. If, for

the fi-thiteration, the full ●ngular flux is a linear function of pm at
this point, then we can write

Taking the incoming partial current, we get

We require accelerated flux and current to ●lao ●atiafy this equation.
Subtracting the two equatiom and using Eq. (3.12a), we obtain

(3.23)

(3.24)

(3.25)

Finally, we use itqa(3.19) to ●liminate fE+* from Eq. (3.29) ●nd obtain
lti~+,

● (boundary) condition explicitly relatin8 f ●nd {+~,2.
0,+

The boundary

condition ●t the right edge of the mystam, ●m well SS t~~ treatment of
roflectin8 snd periodic boundary conditions, ●re all handled analogously.

17



The determination of initial values for $~k ●nd ~~k is less crucial
because the acceleration method is linear and its convergence rate is in-
dependent of the initial choice. Nevertheless, an accurate initial choice
cm obviously reduce the number of iterations for ●ny given problem and
thereby reduce the computational ●ffort. Our ●xperience has shown that
the following procedure works very effectively. ?n Eqa. (3.11), delete

all terms w..h “M#” superscripts, and in the remaining terms set 2 = -1.

This gives six equations which can be collapsed, as above, into ● single

(diffusion) equation for +~,k+~ and auxiliary equations to determine ~~k
.

and ~“k.
t

Boundary conditions for the diffusion equatiou are determined,
for e ample, by setting J!+\= O in Eq. (3.24). The details are straight-
forward ●nd ●nalogous to the manipulations described above.

IV. NUHERICALRESULTS

Here we shall consider a model shielding problem to illustrate the statements,
made in the previous ●ection, regarding the estimated epectral radiua and
stability of ❑ethods A and B. The physical syutem consists of four regions.
From left to right, the first re~ion is 12 cm thick ~ith UT = 3.333,

as
= 3.3136, and S = 1.0; the second region is 3 cm thick with UT = 3.333,

‘s : 3“3136’ and s
= 0.0; the third region is 6 cm thick with o = 1.333,

:s
1.1077, and S = 0.0; the fourth region is 9 cm thick with ~T = 3.333,

= 3.3136, ●nd S = 0.0. (Dimensions of all cross sections are cm-i.).
de lef. boundary is reflecting, the right boundary is vacuum, ●nd we use
the otandard S4 ●nd S8 quadrature sets. The lines discont nuous method,

i
●ccelerated by coarse-mesh rebaiance ●n encoded in ONETRAN, requires in
excess of 440 Iteration to converge to ● 10* pointwise error for this
problem, for ●ny spatial mesh. The number of iteration required by methods
A ●nd B to converge to 10-4 and 10-8 pointwiae errorn for fine ●nd coarse
meshes are displayed in Table 1. The fine mesh consists of 40, 10, 8, ●nd
30 equally-spaced cells in the four regions, while the coarse mesh consists
of 1, 1 , 2, ●nd 1 cells in the four re~ions. We observe that for both
methods, both spatial ●eshes, ●nd both quadrature ●cts, the number of
iteration, required to decxeaae the pointwiae error from 10-4 to 10-0
doea not exceed six; this translates into ● spectral radius of 0.215, which
is well within the bound given by Eq. (3.22).

v. DISCUSSION

The full implementation of the ●cceleration method discussed ●bove will
require generalizations in ~weral directions. First, the extension
to animotropic ●attering nuct be made. T!Jis in #trai8htfoxward, ●nd one
can usc the fact that the ●cceleration method produces ●ccelerated scalar
fluxes ●nd currents to ●ccelerate the zero-th and fir-t ●ngular moments
in ●n ●nisotropic scattering problem. (This pr=dure gives significant
computational savin8s in problem- for which the ●nisctropic scattering
kernel is sharply peaked in the forward direction.6-7) Second, the inclusion
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of ● linearly-varyin8 rather than constant source in each cell must be made;
this also is straightforward.e Third, the extension to the multigroup
●rena must be made, together witn a proper formulation for the ensuing inner
●nd outer iteration strategies. This has been ●ccomplished with the diamond
difference sch~e8’10 , ●nd we see no conceptual difficulty with the linear
discontinuous scheme.

The extetisioaof this ●cceleration method to other geometries is another
matter. One can certainly formulate equations such aa (3.2) ●nd then compute
●ngular mcments and derive a system of acceleration ●quations, such as (3.11),
but jt is not yet clear whether it ic always possible, as it is in slab
geometry, to reduce this system to a ccnptationally manageable form. We
plan to consider this difficulty in detail in our future research efforts.

ACKNOWLEDGEMENTS

I would like to thank Donald R. ?fcCoyfor perfoming the rmmerical calcula-
tions. This research was performed under the auspices of the U.S. Department
of Ener~.

1

2.

3.

4.

5.

6.

7.

8.

REFERENCES

E. M. Gelbard ●nd L. A. liapeman,?fucl.Si. En8., 37, 288 (1969).

W. H. Reed, Nuci. Sci. En#., 45, 24S (1971).

R. E. Alcouffe, Nucl. Sci. Eng., ~, 344 (19’77).

W. F. Miller, Jr,, Nucl. Sci. Eng., 65, 226 (1978).

J. E. !forel, “A Synthetic Acceleracisn Hethod for Discrete-Ordinates
Calculations with Highly Animotropic Scattering,” Nucl. Sci. Eng.,
to appear.

E. W. Larsen, “Unconditionally Stable Diffusion-Synthetic Acceleration
Hethods for the Slab Geometry Discret@-Ordinates Equations. Part 1:
Theory,” Nucl. Sci. Eng., to ●ppear.

D, S. McCoy and E. W. Larsen, “UnconditionallyStable Diffusion-Synthetic
Acceleration Methods for the Slab Geometry Discrete-Ordinates Equations.
Part II: Numerical Recults,” NtJcl, Sci. Eng., to ●ppear.

T. R. H~ll, “ONETRAN, A Discrete ~rdinatea Finite Element Code for the
Solution of the One-Dimensional Hultigroup Transport Equation,” LA-5990-HS~
Loo Alamon Scientific Laboratory (1973).

19



9. R. E. Alcouffe, E. W, Larsen, W. 1?.Miller, Jr., and !3.R. Wienke,
Nu.cl.Sci. Engt, 71, 111 (1979).

10. R. D. O’Dell, F. W. Brinkley, Jr., ma D. Marr, “User’s Manual for
ONEIMNT: A Code Package ‘or One-Dimensional,Diffusion-Accelerated,
Neutral Psrticle Tratl~por “ LA-9184-tl,Los Alamos National Laboratory
(1982).

20



Hethod A Method B

Quadrature Set
‘4 ‘8 ‘4 ‘8r

COw. Criterion 10
-4 10-8 10-4 10-8 ~o-4 ‘ lo-a 10-4 10-8

~

Fine ?fesh 5 10 5 11 5 10 s 11

Coarse Mesh 7 12 8 14 6 10 7 12

Table 1: Numbet of Iterations Required by
Methods A ●nd B for Convergence
of the Hodel Shieldin8 Problem

w

1.(

o!

C).224i

100

Figure 1: w (unaccelerated●nd ●ccelerated)
v~rmus A for c = 1.
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