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SOLUTION OF THE FOKKER-PLANCK EQUATION
FOR

CHARGED PARTICLE TRANSPORT IN ONE SPACEDIMENSION

Thomas A. Oliphant and Antonio Andrede
Los Alamo; National

Los A2am-i$, New

ABSTMCT

Laboratory
Mexico

In the study of charned particle transport in plaumaa, numezical
technique for ~olvlng the Fokker-?lanck ~quation have been developed
which cloeely parallel theme used in neutron traneport. Thi9 wes a
natural step since the theory ●nd methods of neutr,ontransport have been
w~+lldev~loped. Moreover ● llne of traatment has’been developed tailored
to the epecific r~quiremente of transport in mirror machines. ThIe
●pproach involvem tha assumption that the dfmtribution function remain
cfinstant●long ● guiding center orbit. Diffusion techniques have been
developed in which ●equentlal momente of the transport equation ●re taken
90 ●s to generate ● set of coupled ●quationeo Hera ● method ia developed
which treate the tranaport,oparator accord$nu to the utandcrd diamwn(i
dlffarenclna techniques of neutros transport, but treats the collieion
term by ● method deoigned to take ●dvantane of the form of the
Fakker-Planck collision operator. This latter method makes uee of matrix
factorisation technique. In th~ aboence of ●pplied external field., this
method consarves particlee rigorously. Deterministic methode run Into
difficulty in the troatnent of ma~netized plaemac In casee in which the
guiding-canter ●pproximation doe. not ●pply. Thus, there ●re some
~ituationa In which one Ie driven to Monte Carlo technique which are not
● subject of thie ~per,



,

I. INTRODUCTION

In the study of charged particle transport in plasmas, numerical
techniques for solvtrqzthe Fokker-Planck equation have been developed
which closely parallel those used tn ne~tron transport. This was a
natural step in the development of molution methods in charped particle
transport (CPT) in view of the facf,~hat the theory and methods of neutron
transport have been well developed , Moreover, since much of the
ploneeriag work In CPT was ca?rled out tn conjunction with the oa-floin~
effort to build controlled fusion devices, the early methodolo~iee
developed to solve the transport eqnation were made more ●pplicable to
those machines. In th{!w*1 known analysis of transport in mirror
machfnes by Kllleen, et al

$
for example, the calculations of spatial

changes ●long the magnettc field ●re based on an assumption that the
distribution function of q.onsremain ●pproximately constant along a
guiding center orbit; an assumption which Is sufficiently accurate ●nd
more ●ppropriate for low density mirror confinement system.

45
Other ●uthgrs have used expansion methods ‘ or diffraioo theory
techniques to solve tha transport eauation, l%e diffusion techniauee
tequire that sequential moments of the transport equation ha taken so ae
to generate ● coupled set of equatione, ●nd further require that a
prescription for closing that set be given. The tranaport problem ie then
reducad to the solutlon of that set~

In other vethoc!si’8,the differencinu and multt~rouplng technlqves of
neutronfcs are directly ●pplied to yle:i!eolutione to the SPT ●quation by
standard ●lgorithms. In ●ll of the methods ment!oned ●bave hwever, the
Fokker-Planck collision term is usually ●pproximated ii; come f~shion. The
d~ffuslon teehnlques, for ●xample, usually include only ● ttsstment of
cf)llisional,ilowingdown without velocity epace dispersion (’”straight-line
r~lowlngdown”). The Sn techniques of Ref. 7 ●re ●lso ●pplied to ●

Boltzmann-like ●quation in which only straiflht-line●lowing down iu
considered in ● deceleration term. As will be discucsed in this
pr@sentatlon the ●xclusion cf velocity spacu dirnper~lonmay lead to very
Inaccurate results.

Recently, some researchers have ●tt~mpted to solve the Pokker-$lanck (FP)
equation tithout recourse to ●pproximations, TMs was done by dther
reformulating the FP colllslon term intg a form which matches the
structure of ● standard neutronfcu code such that existing compcterlo
programa can be used directly for CPT, or by deriving cross @tctions
which ●imulate the elowing down of low to be uoed in axietinfl neutronica
codes, The drawbacks that were found to theoe ●pproauhec were that the
large computer code. were cumbersome to modify or ●. in the caso of Ref.
9, the exlstinR code .tructure forced ● aeml-tmpllcft dlfferenc~nflof the
collision term which gubeequantly led to long computer runso
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● More recently a method has been developed to eolve the Fokker-Planck
charged part~cle tranaport equation by”a%mp~~ and efficient means, and
without approximation to the collision term . In this method the kinetic
equation is integrated to yield the time dependent diatrihution fuuctlon
of test particlea fa(r.v,t) in a fully implicit manner by a nomblnation
of & methodology with a mstr$x factorization technfque. The full three
d!.menaionalveloclty apace dependence along with the radial configuration
apace dependence of the distribution function ia obtained aa a function of
tima by this method if 611 of the phase apace variablea are treated ati
discrete. This latter method ieIthe primary object ~f df~cuesion in the

E;~a~~f8.f0110Wa.
%ore details My be found in the diesertatlon of A.

Although the method discucsed below can he applied to cylfndrical,ly
‘“ essential ideas ars contained in the sphericallysymmetric problems, t,,.

●yumetric caae which lo the only one to be considered in this text.

IX. TNE FOKKER-PLA?JCK TRANSPORT Ef)UATION

The kinetic equatien which characterize the transport of charged
partfclea in a plasma cu they suffer collisions which result In their
deflection by small ●nglea haa come to he known as the Fckker-Planck
tranaport equation ●nd la Riven by

afa(y,t) afa ext af 1 8<4> afa afa
at ‘~”~

+~. $____
ma al a!? — )C= at (2-1)

● -

where

afa

i
~)c= - (Vy O (fa<A@) -@&:(fa<A~A~>)) (2-2)

ia the collioio~ ta?m of the equation. <$> is the average @Sectroatatic
pott?tial ●t ~ produced by the particles ●t other Positions while ~xt
ia tha ixca axperfeneed by the plaama particles ●t ~ dua to externally
●pplled ●lectromagnetic fields. Ea. (2-l), therefore t~ ●n equation for
the time evolution of the one particle distribution function of particles
of apeciea ‘a’, ●t thla diatrihution ia ●ffected by internal ●nd external
forces ●nd ●a it ta ●ffected by colliaiona with plaama particlaa of all
species ‘b’ wlthi~ ● g!van ●yatam, including collisions ●mong its own
●peciw ‘a’.

Rownbluth, Macl)onald,and Judd 13 first formulated
~vAv> In Eq. (2-2) in terms of tha potantial-lfke
gab(v) ●m

the sveragea ~v) ●nd
functions hah(v) ●nd



~vAv> - rabvvvvgab(~)-- --

where

and

(2-3)

(2-4)

(2-5)

(2-6]

Here rab - (Z~e’’/4mm~c~)lnAand lnA = ln(Ad/bo) where Ad 18 the Debye
12

length [~ nbZbe2/kTb~o] and b. is the impact parameter for scat-
..

tering at 900 which 10 equal to ZaZbe2/4ncovabV2. Defining the

integrals in Ike. (2-5) and (2-6) as ,

II~(~) =~d~fb(r,u,t) V-U-l--- - (2-7)

( 2-8)

the potential-like relationship between Eqs. (2-5) and (2-6) is eaaily
ohown with

V2K (V) - 2Lb(@~’b -.

and

( 2-9)

(2-10)

In this presentation, the effects of internal ●nd ●xternal forces on
the ●volution of fa will not be considered ●o that <6> ●nd ~xt in
I@. (2-1) can ●ffectlvely be eet ●qual to zero.



.

111. SPHERICAL SY,MMETRY

A symmetric, field-free,
cularly simple system 1(s
eauation can be tested.

IN CONFIGURATION SPACE

spherical plasma configuration is a parti-
which new techniques for solving the transport
Since results of benchmark calculations in

this type of system exf.stIn abundance, comparisons can easily be made.

To this end, consider the time evolution of a distribution
fa(r,v,u,t) of test p~lrticlesin a fully symmetric state in a spheri-
cal configuration space and in a spherical velocity space in which the
distribution functiorlwill only he constrained to he azimuthally sym-
metric,. In this caae the transport equation is written as

(3-1 )

where

(3-2 )

(3-3)

(3-4)

In the above equations and in the remainder of thifiwork dimensionleag
variablea ●re u8ed which ●re defined as follows

where No ●nd To ●re chosen tolm~i? th~ problem ●t hand and where
Co is defined to be (2kTo/mo) . K ia Boltzmannts con~$ant,
To ia ● standsrd kinetic temperature ●nd ~ IS the mesa
corresponding to 1 AMU. With these ●calinRs the scaled distribution
function ia related to the unscaled distribution hy



it 9s found that the Fokker-Planck transport equation
original form ff the traditional rab 1s replaced by I’a

retains.its
~NoTo/C:.

1~ equations (3-1) through (3-4) the tildes have been dropped for
brevity. Here the functions Kb and Lb of the background
distributions fb will remain isotropic for 811 time and the sums over
the species ‘b’ will not include the species ‘a’ so that the treatment
of Eq. (3-1) will kecoutefully llnear. The background Maxwellian
distri!wtlon functions in scai.edvariables have the form

fb(u) =
‘b

~3 2V3
exp (-u2/v~b)

ob

where Vob - (T@@’2.

With the definitions of Kb and Lb given by ?!qs.(2-7) and (2-8),
the derivatives in Jv and J~ can be computed as

‘ah
— = -: /: u2fb(u)cluav

a2%
= 4nj ;l~f (U)chl+ 4nJ:+ ufb(u)du.

aV2 ~v3 b

Pefining the standard Integrals in Eqs. (3-6) - (3-8) as

(3-5)

(3-6)

( 3-7)

(3-8)

(3-9)

Rb2(V) - &U2fbCht (3-10)
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.

Hb3(v) = &4fbdu,

it is seen that the Landau-Fokker-Pianck components can then he
rewritten a%

lafa

‘s

NOTO ~ Aa Hh2(v)

~=%f’ “2

Hb3(v)
(—

V3
+ !lbl(v))}

and

NOT~ ~ (l-uz)afa
J“ = -4m~1’ah—

c: ‘b{
x

b 2v3aP

(Hb2(v) -

Since the background

#

n~3(v)
+ : Hbl(v))l

3V2

(3-11)

(3-12)

(3-13;

distributions are Maxwellian, the intef?ralsHbl.
Hb2, and Hb3 are easily evaluated ●s

‘b
Hbl(v) = —

2F3’2
exp(-l?%:b )

‘ob

‘b ml 2 v— —.. ‘- ~xp(-V2&l
Hh2(v) - ~ z i 4 ‘rf~vtvob) - 2vob

u

(3-14)

(3-15)



‘bv:b ~3#’2 erf(v,v ~ -
l?b3(v)- —

*312 4 ob

(3-16)

Equation (3-1) can be solved by a direct finite difference method which
is similar in mmy respects to the ~ technlqtieused in neutron
transport. In this method the angular dependence of the distrtbutlon
function is not expanded via a complete set of functions but rather is
treated as discrete. The wav in which the methodology presented in
thio chapter varies from the standard Sn method is in the treatment
of the collision physics. Here the collision effects will be solved
for separately from the streaming effects.

An operator K which will descretize all of the armments of
fa(r,v,u,t) through the transport equation is

(3-17)

where B = Ats(Ar~/3)(Av~/3)Aun and At~ = ts+l - ta, Ar~/3 = (r~+,2 -
3
ri-1,2)/3, Av~/3- (v&1,2 -v~-1,2) /3, AU -Un+1,2-Un-1 ,2.n

In this nnalysis t},eintervals on a mesh will be centered at inteRer
values of the drvllcee●,S,R and n and the distribution function fa
will alwmym b defined at t _ t~+l i.e., implicitly, unless specified
hy a subocript to be otherwise.

Applyinx th operator K to ~. (3-1) yields the difference
approximation s



- ffl llnAv;/4f(ri,vK,Vn9ts+l) -+_.

At8 [Ai+l/2f1+1/2 -
ViAV~/3

Av~/4

‘i-l/2fi-l/2] ‘~~~~3[an+l/2fn+l/2 “an-1/2fn-l/21
ing

=- {~
Av:/3

[v2K+l/2J:l/2 - ‘2fW2J;-l/21 +
(3-18)

&-[JU
n+l/2 - n-1/2]}

Ju

n

where the angular streamir$!

methodology of neutronicsl“ in

where Vi
2u Ar~13# ‘1+1/2 - ri+l/2$ and

term has been difference as In the Sn
order to preserve conservation of particles for f~nlte sized intervals
Aun. The subscript ‘*$ of the te8t distribution has been dropped
since it Is understood that this ia an equation for fa.

By using the definitions *

~oTo~;

F!g - A ~rab — Hb2(vE)
ah C3 A.

(3-19)

(3-20)

Dg - ~rab - (Hb2(vg) -A Hb3(vg) +&Pbl(v*)) (3-21)
b co v 3V;

R

in Eqs. (3-12) and (3-13), the components of ~ in the collision term of
the difference approximation become

4U
J>l/2 - - “2

(fr+l - ‘g ))
‘{ B@l/2fg+!/2 + cg+l/2 Av@l/2

(3-22)

g+l/2



Jv
411

- —{B (fj;
fg-ll]

g-l/2 - 2 g-l/2fg-l/2 + Cg-l/2
‘g-1/2 g-l/2

lJ f
= 4TDJ(1-IJ2 n+l/2- f n

‘n+l /2 n+l/2) AIJn+i/2

J:-1,2
fn - fn-l

_ -2~ng((l-&2) Au

n-1/2

The velocity grid ifiterval edge values f
f&l/2 in the Jv’’l/2

components can be related to the centered vf~ues fg IIY the

interpolating relatlons of Chang and Cooper as

fg+l/2 - (1 - j3+l/2)f~l +’3g+l/2 fg

fg-1/2 - (1 - jl-1/2)fg+ ‘5g-l/2 fg-1 ‘

(3-23)

(3-24)

(3-25)

(3-26)

(3-27)

where

6f&/2 ““ +2 -
-.

and

A’&+l/2
‘&l/? -

‘~l /2

(3-2S)
1

T=P(~&@ - 11

(3-29)

By using these relations in Eqs. (3-22) and (3-23), t?e collision term
of Eq. (3-18) can be rewritten as the sum of two term as

~ . IV+ ~’J
(3-30)

ufhere



-v
q- ~ {f~-1[+

A;/3 g-1 /2
- ‘g-l/26fpl/21

clz-1/2+fg[B@l,26&1,2 -BFI,2(1 - 6g-1,2) -— - W]

‘vR-l/2 ‘vE+l/2

c

+ f@&@ - 4@l/2) + *21} (3-31)

and

&2il (1 - U:..Ii*)
~D{f

~ K n-1—Aun-1,2

e

(1 - u~l/2) + (1 - D:-1;2 “
- fn[—.-— —— 1

‘%+1/2 ‘Dn””l/2

+ fn+l
‘1 - ~:+1/2),

‘%+1/2

Note that ~ is s ●UM of two 3-point differnce terms.
By further deflnlnp the quantities

(3-32)

(3-33)

( 3-34)
+ [f’*1/2f*l/2 - an-1/2fn-l/2]



. and the:~combining Eqs. (3-30) and (3-18), lt Is seen that the
transport equation can be wrftten tn the ●lmple form

(3-35)

In this equatfon, it is seen that the collision terms are now on the
L.H.S. while the otreaming terms have been eeparated off into the
R.H.S. This formulation suggests that a splitting procedure may be
used to solve far the effects of colllmione and streaming on the
di~tribution separately and then combined in ●ome self-consistent
fashion to yield an updated distribution.

!lq..(3-*5) can be split into two, separate, fully implicit eauations of
the fo.

gAcit
[f - qAt]* - [f - +]

s nt-t
s

and

(3-36)

(3-37)

Here Eq. (3-36) la seen to be an equation which modifies the
distribution function f for collieion effecte while usinR the streaming
terms as a conotnnt known source term evaluated with quantities defin~d
at the r)revioustime step while I?q.(3-37) is ●n eauation which
correct. f for streaminR and uoee t:~eresult f~ of R.q. (3-36) s. q* =
q(f*) ●a ● constant. When Eqs. (3-36) ●nd (3-37) ●re solved together
within ● piven time step, the distribution i?unction
f(ri,vR,~n,t,@+l ie then determined for all i,R, and nc

Consider firmt Zq. (1-36) ●nd recall that a wa~ defined ●s the gum of
two 3-point terms in Eqs. (3-30)-(3-32). As such, Eq. (3-36) reoembles
the dit’ferenced2-dimensional Poiaeon equation which haa the fern

(3-38)

1 = n-l,n,n+l

k - IF1,R,R+l
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where the matrices ~ and ~ contain the coefficients of the two 3-point
terms qv ●nd q~ respectively and where Sng corresponds to the

source term on the R.11.S. of Eq. (3-36). Elk and G1k
nK ng

are actually

supermatrices with the properties

(3-39)

(3-40)

where the first pair of upper and lower indecee indicate the position
of an elemental matrix in the supermatrix and where the second pair
indicate an element in the elemental matrices. ?ie.lceE and Q have the—
forma

xx

Rx

x

(

((
x

x

(
K

x

)
1

x
x NGxNG

/
%s

()xxx

xx

()
xx

xxx

xx

/

(3-41)

NNXNN

)( )x NGxNG ):)(x)()
x

x x

x x

)( )
x

x x

x x NNXNN

(3-42)



where FIGis the number of intervals on the g grid and NN is the number
of intervals on the n grid. The Supervectors Vlk and Snflhave the
f orros

sng (2-43)

The notation of Ea. (3-38) can be aicnplffleduomewhat if the index g to
taken to be vector index so that it c& !* rewritten ●s

ii +G;tl-3*
n

4 (3-44)

This ●quation mzely indisatee that each multiplication ‘.:● superrow

of Eqe. (3-41) and (3-42), by ● supercolumn of $, till be tr~atad
separately. The following trea:pent of Eq. (3-44) is baaed upon ●

Lo

method given by Buzbee, et. ●l,. .

In general the matrix E till not be ●ymmetric
D can he found that wl~~ symmetrize 1? through
transformation 1!= DED ● If D i- ●llowed to
from the left, it,then taket the form

EDJn+ G:D$l- rig.

It ia faaily ●hottn that D has ● diauonal form

with % ●m indicated.

tridiaflonalbut ● matrix
● similarity
operate on Eq. (3-44)

(3-45)

ouch that it commutes

The cymmetric matrix ~ hae ● complete ●et of ●igenvgctora given

by~:a-A: ~ ~ go that the vectors D? ●nd D~ can be ●xpanded ●.

D$l = ~ ●laia
a

(3-46)



.

(3-47)

Using these expansion in Eq. (3-45), lt is found that it can be
rewritten ae

(3-48)

Eq. (3-48) is recognized to be a tridiagonal eystem in the coefficients
●la fcr each tndex a, This equation can be ●olved readily by a
factorisation of the tridiagonal syetem into upper and lower
off-dlapunal matrices. Tbie Ie a ●tandard technique in matrix
●nalysis, the detail- of which will not be given here. For an
excellent presentation of thie technique, the reader ie referred to
Ref. 17.

Once tha ccefficienta ●la are determined, the ●olution of Ea. (3-45)
can be constructed using Eq. (3-46) as

(3-49)

ThiB ia the ‘intermediate~diatribu~ion function f* which has heen
modified for collision effectm. It la noted that for the caee in which
the background plama remains Maxwallian, the coefficients in Eq.
(3-45) remain unchanued such that the a$genvalues e A corremponcling
efpenvectora need be computed Pnly once. But tha construction
indicated in Eq. (3-49) mot be performed ●t every tine step eince the
ala till differ as the source tetm (and therafore the (hna) of Eq.
[3-45) changes in time. This procedura is carried out for every zone
rl in a Riven time ●lep.

Ea. (3-37) remains to be colved. Thig ●quatlon fa ●ctually equivalent
to Eq. (3-18) i.e., the difference ●pproximation axcept that the
Collieion terms on the R.H.S. ●re now known ●e ah such that

+pnAv~/4,A

At,
ViAv:/3

i+l/2fl+l/2 - Ai-1/2fi-l/21

(3-50)

+
‘an+l/2fn+11263

viAun vfl/3
- an-1/2fn-l/2] “ ah”



Eq. (3-50) has the form of the neutron trangport equatton which haa
been difference for Sn treatment and aa such, it can be solved as in
neutronlcs. To outline this method, note that Ea. (3-50) is an
equation in five unknowns fs fi+l/2, and fn-~iz, can be determined
from boundary conditions or from a previous time step. The other three
quantities can be related by some scheme so that a system of three
equations in three unknowns can be formed,

The diamond differen e relations

2f= fn+l/2 + ‘n-l/2

2i “ fi+l/2 + %1/2

(3-51)

(3-52)

●re chosen for this purposa. It Is seen in Fig. 1 that these relations
linearly interpolate between quantities defined on a topologfcally
rectangular mesh. Using these relations in Ilq. (3-50) ●nd solving for
f in terms of the known quantities f,l-1/2●nd fi+l/2 yie;ds

f’ . {q*At + fs - [Ai+l/2 + Ai-l/;~fi+l/2
V1AV;13

+
%+1/2

]f
v@nhv;/3

+ an-I/2 n-1/2 (3-53)

{1 + [&(a*l/2 + aV-1/2) - ‘n(Ai+l/2 + ‘1-1/2)11.
ViAV~/3 n

This ~quatfm can be uml to solve for the updated distributions for
●ll zones 1, mtartfng at the boundary of the a?here by calculating the
cell centered distribution~ f and then extrapolatlnu inward for the
cell edued distributions f~-l/f. Since the calculation proceeds
in~ard toward the center of tne sphere, it should only h performed for



‘1
I

P

Fi80 1.-The diamcnd etructura of the interpolating
procedur8 shown on ● partial r-u mesh

*

●nglgo directed inward to ●void the ●ccumulation of numerical errorl
i..., for the directions P ouch that -1 < u < 0. A ●lmilar equation
can be derived for eutxsrd directions by contiderfng fi+lta to be
unknown ●nd ●gain uming the dtamond difference oquatione in conjunction
with Eq. (3-50) to yield

.

f.{q*At+f@+ ~
lAi+l/2

]f
‘%12 i-1/2

“iA”#”

+ ‘~”*l/2 ‘afpl/2)fn-l/2)
viAunAv:/3

(3-54)

Atfd /4
{1 + d_[*a ) + @~+J/2 + A~-@)”

ViAV~/3 n
n+l/2 + an-1/2 .

The outward lntegrationc cm be otartetlby uclnz ●n icotropy condition
●t the center of tho ophere which is just



fr*O,n
=f r=O,n

outward inward

(3-55)

= NN+l-n
‘outward inward .

This Integration Is done after all of the inward calculations have been
performed. In this way, f(r,v,u,t) is calculated at the updated time
t = ts+l for all wnes, speeds, and angles.

In the next section, some results obtained by this method are
presented.

111. RESULTS

The calculation of the ●nerflydeposited by fust tefitions as they slow
down on a background plasma during tbe collisional transport process is
typical of the benchmark problems which have evolved within the
literature on charged particle transport. In a pellet plasma, for
example, it is of interest to determine how this enerpy is distribt~ted
mpatially while being partitioned to the background ●lectrons ●nd
ions. It 10 ●lao of interest to be ●ble to determine the time history
of the deposition, Some of the more important ●pplication of these
type of calculations include the treatment of fusion product transport
●nd the ●nalyeim of injected charged particle ,beame. In order to
demonstrate the matrix factorization (PIP)method of the laot sections,
the transport of fusion alpha particles and beam deuterons and protons
will ha considered.

Before proceeding further, it ia to be noted that in the transport
equation, t!,efactor r,~ has COnMi@tWttly been b apt within the
cummation ovar the species ‘b’. This la because of the dependence of 1’
on the background apeciea through the Coulomb logarithm ●c

hA - ln(~d/bo) - ln[~d/(ZaZbe2/4fi~oUabV2)]. (3-56)

In this work tha araumentc Ai ●nd Ae @ll be ●pproximated as

:h
i

- ‘d4w’o( ‘i— —) 2E
ZaZie2 1’ + i

(3-57)



.
and

A@.
A= . —. 30 ~

Zae2
(3-58)

which are valid approximations for caaes where the electron thermal
Veloclty v= la greater than the test ion velocities v, but where

th
V)Vi. The teat ion ●nergy E in Zq. (3-57) IS aet to the thermal

th
Ion energy to be definite, a~~dthe i4arshakcorrection factor 18 is
applied In Eq. (3-58) when applicable.

The case of 3.5 tleVfualon product alpha partl les transporting In a
spherical plasma is considered flrat, In this example, th~ back~round
electron and hybrid D-T ion deneitles will be 0.2125 x 10 kg/m while
their temperature are taken to be equal at 50 keV. Although here the
temperatures are set equal, the code does allow for different electron
and ion temperatures.

It is chosen to compare the results of the MY calculations with those
given by Mehlhom and Duderstadt in Ref. 9 ulnce their method also
●llows for v~locity epace dispersion. In orde~ to match the zoninR
used in their modified neutronics code TIMl?X-FP,13 radlnl zones are
used while the ve20city space variables are diucretlzed by 4 v
direction ~n~lan 18 point apaed #rid. The zone w~dth is taken to he
.7742 x 10 m whfch is equivalent to .035A0 where As is the range
@f alpha particles on electrcma ●t the density and temperature given
abow, Further, in this prublem, the arguments of the Coulomb
lo~arithm are not calculated by Eqo. (J-57) ●nd (3-58) but the valuea
of laA sre aet”as lnAe = 8.25 ●nd lnAi M 18.56 as they were in
lt~f.9. The details of the enerfiydeposition calculation sre given in
In Figures 2 ●nd 3, the fraction Ed/E. of the initial alphaparticle
energy E. deposited per zone to the background el~ctrona and iona~
respectively, ia plotted for each zone. It can M seen that the MF
n’ethodyields resilta which are in very good agreement with those
reported in Ref. 9. In both Figures 2 and 3, the peaks of the spatial
deposition profilea occur in the same sones and are nearly identical in
magnitude. Similerly, the stopping lenxtha calculated by the MF method
enjoy close agreament to those previously reported. Althougi small
difference occur in the two methcda’ calculations of the amcnmt of
energy deposited in tha first few zonco to both electrons nnd ions, the
results of the MF method chould be reliable nlnce it does not seem to
encount.r the dlfficultiea near 1 calized sources that the Sn

?techniques uned in TIHEX-FP might .
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In order to study the effects of the dispersion in
the alpha partf.clesundergo aa they scatter on the
of anRles N??.used in the calculations wee varied.

velocity space which
plasma, the number
In Figures 4 and 5

the s~atial deposition profiles are again gtven for electrons and ions
separately. It Is seen that by increasing the number of directions in
which the alpha particle distribution function can be defined, for the
case of deposition to ●lectrons, the spatial profile’s peak is
decreased while deposition to the outer zones is increased. In the
case of the ions, the peak 1s also diminished but shifted to the right
with the deposition to the outer zones again increasing. This behavior
Is to be expected for the followi~g reasons. Since the initially
isotropic alpha particles are at higher energies than the background
electrons and Ions, their distribution will depart from the isotropic
form as they scatter in an attempt to reach a th~rmal equilibrium.
Although the alpha energy may di~fnish after the first few collisions
in zones near the center of the sphere, the energy is more directed in
the outward directions in these zone~. They will approach a thermal
equilibrium after enough collisions have occurred along their path, so
that their distribution till agatn acquire an Ieotropic character in
the outer zones of the mesh. At this time the particles till have no
preferred direction, so that the amount of backscattering will become
the same as tiie amount of forward scattering, thus resulting in higher
depo~ition to these outer zones. That this behavior is indeed the
c~ise,is established by following the distribution of the cosine (u)

t
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of the alpha particles! velncjty ve~torn with respect to the radial
vec~or as a function of t~me. In Figure 6 this spectral information is
shown for the center zone at t - 0 whfle the curves at other times are
appropriate to the third zone on the uesh~ It is seen that the
dlotribution (normalized to unity on the ahscfssa) becomes peaked
toward a positive eosins almost instantaneously, ahowlng that the alpha
ener~ is hiRhly directed toward the outer zones. As time (NT)
progresses, the particles scatter and lose their energy and the
distribution tends toward a Maxwellian at the background temperature.
From this information, It can be concluded that by using too few angles
in this type of calculation, the results may become biased in showlnR
too much deposition lm the first few zones ●nd in ignoring the
back.catterlnx effects in the outer zones.

It is interesting to note that the plots in Figure 6 contain data
polntm which a?ptiarjaggi This is due te the use of a large time
step in the algorithm, wh..n gives rise to umall fluctuations in the
distribution information, ● common occurrence in some finite difference
schemes. Although this phenomenon could be detrimental in come
●lgorithms, the NF method remained ●bsolutely conoervativc ●nd
convargento



.

.

%
~ {,

-.s %6 -.4 -.2 -.0 2 .4 .6 .0 LO

Pi8. 6.--Angular epectra of the distribution function ●t
the 3rd position on the zone grid. At the firot time
step (NT), the spectrs is shown for the first zone

In Ffgure 7 the time dependent energy deposition history is ebown for
both deposition on electrom and on ions. Aa a check on the accuracy
of this method, the curve showing the total energy fractim deposited
to both Ioma and electrons was calculated using the appropriate moment
of the L.R.S. of the transport equation, Eq. (3-18). It can be seen
that the code remained energy conserving.

Tbsm

?ig. 7* --Time history of deposition to both clectrms
●nd ~onc
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The efficiency for the l@ method is demonstrated in Figures 8 and

9. The trams computations described above for four angles, 13 zones and

18 velocity grid potnts were performed using 150 time steps (W) at a
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Fig.
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$--- Fractional deposition per zo;e to electrons
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number of iterations
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?ia. 9. --Fractional deposition per sone to ionm for
tuo time @tap .i~ao ●nd tho corraapondina

number of iterations
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time increment of .01 and then carried out again using 1500 time steps
at At = .001. Here the ti= Increment At Is scaled to the slowing-down
time of al ha particles due to ●lectrons at SO keV tiich is equal to
8.47 X 10

~
sect It can be seen that very little accuracy la lost by

using the larger the step. The calculation using 150 time steps
required 5 seconds of CPU ti= on the CRAY I computer.

It is noted that the total deposition fxwctlon in time tends towarda
unity but becomes asymptotic at a value less than unity. This is, of
course, due to the fact that the alpha particle does not lose all of
ittzkinetic energy but only slows down to an energy defined by the
temperatur~ at thermal equillhrium.

The energy deposited to a plasma by an tnjected ‘beamcan b calculated
by Sntroduclng a distribution function characterizing the beam at the
outermost zone of the system, In the examples which follow, the zoning
used in the previous examples is retained but a delta function
distribution (in speed) defined at one ingoing ●ngle is used to
simulate a beam entering at the boundary.

In the ffrst example, a beam of 1 Me% deuterons impinging on D-T plasma
(at the same temperature and density ●s before) at tk outermost zone
(zone 13) is considered. I%e delta function is defined ●t thgir
velocity correapondlng to that energy which is v = 9.823 x 10 m/aec.
In Figur+s 10 and 11, the deposition profiles are shown for the case in
which the beam consists of ●n initial burst of Sngoing deuterons.
Since the beam velocity Is wch lees than the electron thermal velocity
in this case, the deuterons should tend to deposit their ●nergy on the
background ions in greater proportion. ‘Ms is seen to b@ the case.

Zeme

rig. 10.--?raction of initial deuteron
sone to ●lectrons for ● beam

●nergy depo.itod per
entering ●t zone 13
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In Figures 12 end 13, the deposition profile. ●re shown for an initial
burst of 500 keV ingoing proteno. Since the proton velocity is the
●ame ●s ●bove (v = 9.823 x 10 m/see) the same tendency to deposit moro
mergy to the ions should be observed. In ●ddition tho~gh, since ghe
mess of the protons is less than that of deuterons, they ●re =re
●aelly deflected ●nd so should Uepocit their ●nergy much more quickly
i.e., within the first few zones. Again, thfs behavior ie verified in
the flgurea. Both of the ●bove calculations required ●bout 4.5 ●econdc
of CPU the on tha CRAT 1.
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