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mwe derive one space dimensional. reduced sys-
tcm.lofeq (1-D closure models) far viscoelastic free jets.
We begin with the three-dimensional system of conservaton
laws and a Maxwell-Jeffreys consdtutive law for an incompress-
ible viscoelastic fluid. First, we exhibit exact runcarions 1o a -
nite, closed syster1 of 1-D equadons based on classical velocity
assumptions of von K&rmdn [1]. Next, we demonstrate that the
3-D free surface boundary conditions overconstrain these un-
cated rystems, 50 that only a very limited class of solutons ex-
ist. We then proceed to derive approximase I-D closwe theorie;
through a slerjer jet uympmdcmun'.combi.nedwimnppm-
pﬁnmdeﬂnidomofve.locuy.ptummdmwunknowm.

nonaxisymmetric 1-D slender jet models incapa\m the phyz-

retardation), gravity, surface wnsion, and pmpenimofunum-

order equadons in the present theory by an a poste
riori suppression to leading order of some of these c.¥ects, and
nredwdonuol.dz:mvy.

Solutions of the lowest order of equarions in this
asyuiptotic smalysis are presented: the s cases of el
hrdwhvinﬂdwﬁu}n.m to the effects

surface waJion sad our model oscillation of
the major axis of the fres surface CTOss section berwecn

two motivatdons for one space dimen-
dM(l-D)wdm}Dthhwlnp-
plicatons such as ink jet primting, polymer ex and fiber
spinning, there is a need w reproduce and predict experimental
ﬁ‘phuxmuwithldmphmdmubummohqmdm
s has heen s dominant theme in the his of the subject.
Secondly, in light of the measured success of 1-D models in cer-
tin specific je it is natural to atk why the lower
dimensicnal gre abis 0 model 3-D phenomena. Cin
these |-D models bs derived in some approximate sense from
thc-ful]i!Dfru xh.ry uepvobkm(b.v.p.)?
purpose in d\hpapalluonmwerthhquet
ton. We 10) ID or free jets from the 3-D free
surface b.v.p.; and \.h.rlfythuen inwhkch(heleod
clupproumm consistent with the full 3-D b.vp..
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anywering this queston, we find that exising 1-D maoaels cor-
respond to particuiar specificanons of fluid and flow properues
within one comprehensive theory.

The 1-D jer models are a rrunca on of the full 3-D system
(which has infinitc modes in three space and one ome dimen-
sions) to a finire numnber of unknowns (modes) in one space (ax-
ial coordinate) and one nme dimensions.

Analogous muncations occur in all numencal sumulaoons
of 3-D fluids. For example, in spectral merhods one chooses
10 Juncate at some finite term in the Fourier mode expansion.
In specific applicanans, often one exploits cpecial propertcs
and/or symmetries of the full 3-D b.v.p. to ouncate modes
and/or spatal dimensions. Two exaruples are the exacr run-
carion 10 vortex sheet and vortex layer equadons for 3-D Euler
flows, and the von K&rm4n (1] velocity profile assumpton for
3-D Newtonian flow between rotating concentnic cylinders.

When the uncanon scheme i3 nor an exact reduction of the
full system, an art anses as o the best way 1o “close the system”
and produce the same number of equanons as unknowns (a clo-
sure model). Rarely can or does one quaiify the sense in which
a runcated, non-exact closure model approximates the full sys-
tem. The proof is usually by comparisun with experiments. A
novelty of the present application to 3-D jet flows is that we de-
duce asympiorically valid, [-D clos.ure models from the full 3-D
bvp. The asymprodics is based on a slender jet genmetry.

Throughout this paper we refer to the unknowns as modal
variables, by analogy with amplitude variables in Fourier mode
expansions. We then refer to reduced equations that govern
these unknowns as modal equarions.

The remainder of this paper is organized as follows. In Sec-

on I we discuss an exact ouncanon for non-Newtonian un-
»ounded flows w a finite closed system of 1-D modal equatons.
\This exact quncaton will arise later as the "zeroth order” basis
of our perturbadon theory for bounded, free surface flows.) We
then note that when a free surface is incoduced, the 3-D .nter-
facial boundary condidons overconsmuin the previously closed
system of exact equadons, so that valy trivial solutdons exist.

In Socdousa—w we thow that an approximate 1-D clo-
sure theory can be salvaged in an appropriate scaling limit. In
essence, we exploit the exact 1-D closure model of Section IJ in
a2 perturbatos expansion, with a sienderness noo as the pertur-

badon perameter
There is 8 locg of approximate |-D models for free
Newtonian and jets, often referred 0 as the "thin fil-

ament™ or “aendemess” approxitnadon, or “nearly
clongationa)” flows. The original formuladot, is due o Ma-
wvica & Pearson (2] in the study of Aber spinning. Many au-
thors bave since adopted their pauurbador. scheme, which is
Enﬂyfwmldmﬂwpum’bmonpmilnondendﬂed
terms of any specific dimengioniess flow or fluid parameter.
This hearistic aspect of the theory clouds aplicadons of the
chmdmolbaabmphydcdmﬂnlm. Ln[gen-
eral, the range of assumpdons and validicy vidual 1-D jet
models u.nﬁ\own Also the exisdng models are presented and
applied under a v of a priori reamicdong (e.§., 1n the ab-
senoe of one or mare of dme . shear stresses, gravity,
inerdal effects and surface wnilon), as dictated by the partcular
applicadons. All exisung models are axisymn.etric,

(Amﬂmdl-D}ﬂMnmuﬁmwmduu-
consistant 1-D is (cf. (3]). The -onnections derween the

ted |-D models and derivarions from the 3-D free surface

value lem are discussed in (4))

In Secdon woda’ivemtmpmuyvmd,lbdw
ary of slender jet closure models is comprehengive,
n that we begin with the full 3-D free surface boundary value
problem, with the following pliytical effects incorporated: tme

, shear 1esses, inertal effects, viscoelastcity (vis-
cosity, mlaxadon and retardation effects), gravity, surface ten-
tion and propertes of the unbient fluid as they a in the
free surface interfacial conditons. In this way we xvclop the
general context under which every 1-D jet closure model (with
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these physical effects, constitutive law and choice of modal vari-
ables) is deduced.

As is shown in Section V, existing 1-D jet theories corre-
spond in this general framework to the lowest order equations
in the asymptotic expansion, with @ posteriori suppression to
leading order of many of the physical effects. We thereby de-
rive previous 1-D models from the 3-D fres surface boundary
value problem and clarify the sense of the 1-D closure model
approximaton.

In addition, we have deduced new, asymptodcally valid,
1-D closure models for viscoelastic free jets. Onc parucular
new feature is the extension to elliptizal %ree surface symme-
try. Moreover, higher order corrections are available from this
analytic framework, both from within a specific model and due
to physical effects that are suppressed in the lowest order equa-
tions.

We begin with the equations of motion for an arbitrary, im-
compressible 3-D condnuum:

ﬂ(% + (v:V)V) = pg + divT,
Te-pl+TaTl, divv=0. (L1)

Here v is the velocity, T is the determinate part of the stress
mmT.phdnoomuﬁm'reumpiuhemnudemi (as-
sumed constant), and pg is the gravitational body force. Equa-
tions (1.1a) and (1.1b) cre balance laws for linear momentum
and angular momentum, and (I 1¢) is the incompressibility con-
smaint

A constirutive law must be adjoined to determine the sgess
T. In this we consider viscoelastic fluids and sdopt &
Maxwell-Je constitutive model:

tenZtan®e h-g-‘b)- 12

The operator mmust be suitably invariant; we choose a one-
parameter family with rate parameter e,

D . ]
E(.) - (E + v.VXe) + (o)W
- W(s) - a[(«)D + D(o)]. ()

For the special values @ = 1, ~1,0, the rate (1.3) is com-
monly referred to as u convected, lower convected and
corotational, respecti J.Themmbmd“'munsym-
metric and skew parts of the velocity gradient.

L EXACT CLOSURE MODELS

The assumed velocity profile that reveals a separation of
variables and the choice of velocity modal variables in this the-
oryheftu‘dmllenutlmumofunmk’dmunwlocuy
ansarz [1):

ve (’n(.v ‘) - ”('v‘)]‘l
+ (yea(n, 1) + 39(a,t))02 + w(s, )0y, daLn

This is the most general linsar polynomial in 5 and y which
huuﬂncﬁmo:{mmwy with respect to the (3,s) and (y,s)
Ehm':tht ﬂm“ﬂnmmm
6., fymmetry all planes conaining the s axis, 30 that
O . Here 3,9, 5 denote the usual ian coordinates,
¢ (J = 1,2,3) denota the corresponding base vectors and ¢y

* The muncated expansion ([1.1) (s presented for the
of exhibiting exacr reductions of the 3-D problem. For the
asymptotic scaling of Section VI, the velocity is assumned only o
be expressible as a series in tranaverse coordinates 3,y. which
agrees with ([1.1) to linear terms in the expansion.
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represents the axial direcuon. Consistent with the !
(11.1), we 1ake the gravitational body force pg to be along e3.

In addition 1o the velocity ansatz (I1.1) we assume that stress
and pressure are also given by muncated power series in z,y.
Substituting these expansions into the 3-D field equations (L. 1),
(1.2) and equating coefficients offowers of z,y yiclds the exact
closure mode' of 28 equations in 28 unknown functions of s and
t,involving five arbitrary functons of ¢ under three constraints
(see (5] for details).

We now assume that the fluid is bounded by an elliptical free
surface, given by

] 2

Yy
-], 112
perPTRy TR 2

Each cross section s = ap is an clh';sm with semi-azxis len

#1.¢2, which deform in 5 and ¢t. Sec Figure 1. The ace
unknowns ¢,(s,t), ¢(a,t) are additional modal variables. To
complete the 3-D viscoelastic free surface boundary value prob-
lem, we adjoin to (1.1), (1.2) the interfacial boundary conditions:

1) The kinematic boundary condirions: The free surface is con-
vected with the fluid. From the vclodlz“m (IL1) and free
surface ansatz (11.2), this condidon yields:

Pat+Véas = bate, a=1,2, (¢} -4 =0. @I)

The second condition is very restrictive: ¢ither there is no
swirl (¢ = 0), or the swirling flow must be axisymmetric (¢ =
¢ and ) = 2 ). For the remainder of this paper we restrict w
the case of no swirl, y m 0.

2) The kdnerc bowudarg condirions: Shear stresses aro assamed
contdnuous across the fluid/ambient inwerface, whereas the nor-
mal stress is discontnucus. The jump in normal stress across
the free surface is assumed to be balanced by the constast -
face tension ¢ times the free surface mean curvanare x . These
condidons state:

ty — te = —ern, e

where t; and t, are the stress vectors in the jet and
ambient material, respectvely,  is the unjt outward pormal
to the interface. For the free surface (I1.2) the mean curvaiure 8
is given by

k(0 5,t) = ~[($32in0 + $3co0’ CX¢h pudreee®?

+ b1 10n20) + 2¢1 2, — 11 N,

— $102,)c00 00in’0 — ¢, 61(# ,c0r® as

+ ¢d ain20 + 1)|[($1 62,6020 + g1t ssee’ 0P

+@lain’e + ﬂcuzﬂ."n

We funher agsume the ambient material exsrts a constant pres-
sure pg:

te = —pan. (IL6)
Given these free surface boundary conditons, any closure
model for free jets derived from the 3-D which is based

on the elliptic von Kirmén ansatz (IL 1) (thus far, al} are based
on the axisymmetric special case) must these boandary
condidont. For our exact closure model, 3 iinetis boundary
condizions (11.4) overdeterming the sysem of modal equ.tions,
30 that only a very limited class of solutions exist. This is be-
cause the power series definidon of stress and ure modal
variables forces the stress ana pressure varisbles the bound-
ary conditions. See (5] for details, We now return 1o the general
situation where there is no exact power series truncaton, and
reassess the choice of modal variables.



[IL_INTEGRATED MOMENTLM AND
CONSTITUTIVE EQUATIONS : SELECTION OF
STRESS AND PRESSURE MODAL VARTABLES

To derive 1-D jet models from the 3-D theory with the nec-
essary flexibility to describe interesting behavior, such as non-
axisymmetric free jets and jets with swell, we rewin the power
series assumption (II.1) on v, but choose stress and pressure un-
knowns 10 be integrals over the jet cross secton. This approach
is uken by (2, 6).

This leads us w rwo important points. First, our power se-
ries ansarz for v limits the ability of this theory to meet veiocity
boundary conditions, such as no slip. Since boundary values of
velocity are explicit combinations of the velocity modal vari-
ables (i.e., the cocfficients in the power saies expansion) and
tree surface modal variables ¢; and ¢, the impositon of a
condidon oa velocity at the boundary woukd constrain the veloc-
ity within the cross section. However, our second point is that,
historically, the reason for the use of area-averaged stess and
pressure varisbles (rather than pointwise, power series expan-
sions) is precisely to not limit the ability to meet saess bound-
ary conditions for free jets. With the power series expressions
for stress and pressure there is not encugh flexibility to meet the
stress boundary conditions, for the same reason the v ansaz
fuils w meet flow boundary condidons. The boundary values of
stress and pressure are cxplicit combinatons of the stress and
pressure modal variables (i.c., the coefficients in the power se-
rics expansions) and free surface modal variables ¢ and ¢;.
Therefore the boundsry conditions (I1L3) and (11.4) are coupled
©© the modal equarions as severe constraints on the class of solu-
tons of the modal equations, and hence limit the ability o model
interesting free je1 phenomena,

The firm swep is to compute cermain cross sectional area in-
egruions and moment integrations of the components of the
conservation of momentum equanons (L 1a), evaluased on the
velocity ansarz (I1.1). We make no a priori stress and pressure
modal ansary. -

Ve compum the foliowing inwgratdons over the ares A
boanded by the ellipse, at fixed s, given by (I 2):

[[e-awin [ [ arnaa
//‘(I-II);‘A, (L)

whaere, for instance, (1.1a), indicates the component of the vec-
wr equation (L 1) along @) . One uses the divergence theorem,
inssgracion by pars, and Leibniz' rule for differendaton of in-
wugrals, and all boundary srms involving pmdﬁ, either can-
cel, or whet remains (s precisely the linear combinatior. that ap-
pecrs (a the inserfacial kinetic boundary conditions (T.4). Thua,
oné "incorporams” the bouadary condidons ([L4) inswo the inwe-
gaed momsntum equations; in other words, one replaces the
houndary values of stress and pressure by the mean curvature,
paface tension, and ambient pressure varables. The resulting
exact equations (given ia (5]) involve the following inegreted
sress and precsure veriables:

A,;I//ATHM. An-//“f'ndA.
A.,-//;ﬁ,a. Ay -//;rl,zu. (TN.2)
Am-//‘f‘nyu. p-/L@-x:.)d.A.
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We now compute arca and moment integrations of the con-
stituave equations (1.2) to obtain equations for the resultants
A, Az, Ayy, A3, Anyp. The necessary integrations are

// 1214, //(Lzmu, /f(l.zmdA.
A A A
//43‘(1-2)1344. // y(1.2)pdA. (T1.3)
A

Once again, in a calculation involving integration by parts and
Leibniz’ rule, all of the boundary termns cancel in each of these
'mtc%:wd equations.

us, we have the gnod fortune of ioundary values of stress
not entening into the stress resultent equations and integrated
conservatiuon equations. The integration technique has decou-
pled the boundary value unknowns pls . T:jla from the princi-
pal modal variables v, 1\, 2. é1, 2. P, An. An, Ay,
A3, An2. Informarion on the boundary value unknowns pL.
T.jla can be obtained g posteriori from the free surface stress
boundary conditions (I1.4) and the solution of the modal equa-
dons. Since for the Maxwell-Jeffreys model the boundary value
unknowns are independent of the principal modal variables, the
streag boundary condidons (I1.4) do not constin’te constraints
on the modal variables, as they did in the previous approach in-

volving power scrics ¢ for stress ang pressure. This is
thccruc:aladmmgu;uwdwmgmud:mandpmm
modal variables, as opposed o the coefficients in power series

However, the exact equations for A1, An. An, A1,
A7 couple additional, higher moment stress resultants, 4111,
A1, Ann. Ann. Anzn, where, for instance

Ayn !/J[A Tt dA.

We ars thus led to the classic closure difficulty, where next we
seek equadons for these second morrent arca averages, which
coupies new streas resultant, and 30 oo As expected, there is
no exact closure.
(We note that the closure difficulty exists oniy if A, 9 0 in
the Maxwell-] sffreys constitudve If Ay =0, e, for the
ial casos of an waviscid fluid (n = Ay = A3 = 0), Newtonian
uid(.\|-A:-O)lndmdadul‘luid(a\,-O).mel-D
model is closed: however, the model is overconsrained in these
degenerass cases by the kinetic free surface boundary condition
(IL4), 50 thet only very limited classes of solutions exist We
cormnent ia pasting that the same asympotic analysis which
will bs found in the following sections w produce closure in the
cass of A; ¢ 0 also relieves the overdeterminizm of the
caset with A, = 0. A complete treatment can be
found in (7]).)

b

The next step is to restrict the exact insegrased equations to &
“slenderness” re , by introducing a scaling analysis which is
mdmvhhﬁnd:ﬂ:dnlm velocity ansaez (I1.1).
mluu.ll;:!‘h after that of Schultz & Devis (8) in their
study of axisymmstiic Newtonian jew. First we nondimensiun-
alize the coordinases (3, y, #, t) and the modal velocity van-
lblu(n‘.ns. v). Let ro = a typical iengih scale in the jet croes
sectuon, Le = atypical length scale in the axial direction.
The scaling hypothesis is:

xafrg, yogro, s=idl,, tuity (IV.1a)
and the small parameter ¢ is the rato of length scales,

¢-L3<< ' (IV.1b)
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Thus, the approximation is that a typical radial scale is much
shorter than a typical axial scale, and therefore is called the slen-
demess scaling.

The free surface and velocity riodal vanables are nondi-
mensionalized as

- 1 _
$e = $ar0, “-"5' v = ty,, (IV.1c)

where w, is a characteristc axial velocity. To preserve the in-
compressibility condinon and kinemarnc boundary condioons
upon scaling, the characteristic velocity, length, and time scales
must be related as

Lo o
R - - — Iv.ld
Ve t o ( )

Then

v = v, 2§ + ),

@ = v i + ), (IV.1le)

(2 u g+ (A),
so that the slendemness ximation in combinaiion with the
von Kérmén velociry is equivalent to a slowly varying
axial versas radial velocity ansatz.

REMARK The scaled velocity formula (TV.1e) includes higher
order corrections, 0(¢?) , to the von Karmadn ansarz (IL1). These
camtpondnhi;luadupolymdm oz, 2, ), in
a general power serics Consistency demands
that we retrn © the inueulndmommu.nnequmom.
: raint. ki \ I ndi

models, bot yield higher order carrections in the asympeotics.
The precise of these termas, along with the resolved ques-
ton of consistency to higher arder in the perturbation expansion,
appesrs in [9).

Next we scals the 3D pressure and stress cormponents as
r(:.v.-.t)-#(!.i.l.i);%.

Tij(" | 1 'u‘) - T\'f(’vﬂv ‘»i) él (er)
¢,/ =1,2,3),

mmdmmmmm'&'m:
sionalived; the scaling of the requlrants in the integrated equa-
tons follows from the 3-D scalings (TV.1), e g,

An(l.l)l/f‘fll“l‘r
-/[A ;lzfu'sﬂii-lln(l.b-

To the asympeotics. we must also expand the non-
dependent variables v, (. 2, ¢1. 2. P.
Aija+ Aijap lnpowersof ¢, e 8.,

vev@sevVe. .., pupPspls
P
4 -¢(lm+¢¢(|”+... . (v.2)

We now lis the nondimensional asymptodc integrated
equanons, retaining only the lowest power of ¢ within each

7



physical term. Thus, specifying the physical properties will alter
the relanive order of these lowest terms we keep, but these will
be the leading order conmbutons of each physical property no
macrer which physical properies dominate. (All dependent van-
ables in (TV.3) are the leading order contribudons; we omit the
superscript (0).)

1 e
BAy -P) = W&lhxﬁm - 7&?#1(0,. + v, +¢d),
B(An-P) = %ﬂ&zxi‘" ~ é#}mm +ue, +¢3),
-1 1
BlAn,-P.) = Fhé+ ﬁ,—(mmxﬁ‘" + XM
+$1é2(vg+uv,),

vyt +0 =0,
Pas +VPas ™ $ufa, a=1,2

A+ A[Ang+ oAy, - ((2a + 1) + 0)An)
= 2Z$ (o + Ar{01s + ve1s — 2a¢E)}),

An+A{Any+vAn, - ((2a+ @2 + q)An]
=2Z$1élg2 + Ar{ay + ve2s — 2a47)),

Ay + A[Arys + vAyy . — (¢ + 3 + 2a9,)An]
=22¢1 4100, + A2{v . + V9. — 2003},

A +A[Amg +vADL — Qa +a +a(n +v,))A1])

- ‘%é{h[n, +Aa{10 4 00 e

+052 - & - Qe+ 1w}, (Iv.3)
Apy + A [Any, +vAD, — 20 + 0 +al(iy +v,))An])

- T o + M + o0

+ 0,1 - o)y — (28 = 1)w,,)}],

where
o _% /2" cos’ds
Xe * Jo (¢} nnld+ ¢4 cos?#p?’
m__th /" sin0de
Xs * Jo ($Tenit+@lconityli’
and

D= / = /
xprile  wprfvi
. Viscoelasdc and constraint pressure effects
inertig] effects '

l ﬂ - m__vity effectn

F  Le incral effecs’

v i

. Provg

. surface tension (capillary) cffects
inertial effects ’
8




z-___Q""J._'l'i"_‘
tof L '’
A Az
Amt, A2
1 to 2

Equarons (TV.3) derive from, respectively, the integraons
of components of balance of lincar momentemn indicated by
(10.1), the incompressibility constraint (1. 1¢), the kinematic free
surface conditions (IL3a.b), and the integrations of the Maxwell-
Jeffreys consttutive model indicated by (I11.3).

The non-dimensional parameters F*, W, (BZ)™! and A,
are recognized as the Froode, Webcr, Reynolds, and
Weissenberg numbers respectively. Z, A;, A; are the pon-
dimensional zero strrin rate viscosity, relaxation dme and retar-
dauon ume, respectvely, of the fluid

We emphasize that equasons (TV.3) depict the balance
among all the physical effects that are incorpcrated. In the slen-
demess approximation, 0 < € << 1, these equasions yield the
ability to perform theoretical experiments in which the relanive
physical effects are adjusted through the non-dimensional pa-
rameters. Thatis, {B, i‘ . A1. Az, Z}. which mcasure
the various properties of jet, are scaled in powers of the
slendermess rano e,

Ay=Apd, Z=Zd. (Iv.4)

We assume By, .... Zo are O(1), and vary the rela‘ive
crues of the fluid by ing the inseger cxponents in (TV.4).

Wedeﬁnemem”expamh(wﬂuu
regime of free jet behavior, as this choics reflects the relative
magnitudes of competing physical cffecty.

We are now in a position to exhibit lowest arder 1-D jet clo-
sure models. We specify a particular je: regime through a choice
of ineger exponents in (TV.4) and obaia equations avi)
to arbitrary order in ¢. There is clzarly a tremendous amcunt
of latitude in exploring all the specialized closure models which
derive from our geperal coastruction.

As will be shown in the next section, existing 1-D theories
cotrespond to the axisymmesric, steady forms of the lowest or-
der equations with certain effects suppressed to higher
order. Before connecting the existing models, however,
we first illustrase with three mor: general (noaaxisymmetric and
ume dependet) regimes.

As one example of a 1-D clorare model for a particulsr jet
regime, consider the case where ull of the perameters in the set
(B#,},A.,Az,Z)mO(ﬂ.Ln..wchoonmexpomu
in (TV.4) 0 be zero. The lowest ardar equations in the asymptotic
expansion are then

BAn-P= F:,-hhxﬁ".
BlAn - P = 5 ho®,

1 1
B(An, = P.) = ~phtr + (#1000
+ 0,0 + hia(vs +vv,),
v+at+ta=0

$rutvdiamhn, Su+vd,=ha, (V.Y
A+ A[Ang +vA . - (28 + Dy + Q)An]

=2Z¢ 14l + Aa(f s + v - 2a5D)],
9



An+A[Any+vAn, - (2a+ g+ )Anl]
=221l + Aalsas + v, — 2a6H)],

A3+ A[Ay3e +vA, — (O + 62+ 2av ) A3]
=2Z¢1¢alv, + Aa(vp + 0y, — 2a02)].

In this regime, inertial effects, surface tension and gravity are all
leading order in the axial directon (see equation ([V.5¢)). Note
that this demands irertial effecis to be higher order in the rans-
verse direcrions (see equadons (IV.5a,b). Viscosity, relaxadon
and retardation effects are all leading order in the constitutive
model in this regime.

In this 1al regime, the lowest order equatons are &
closed set of nine equations for the nine modal varables
¢, 6D, v, ;‘°’,;‘°’ PO, AT, AT, AS). The shear swress
resultants A(l%), . A,B) decouple to lowest order from equagons
(TV.5), and appear in the problem for the first order corrections
$1", 48, v erc. (see [9]). The behavior predicted by (TV.5)
for one set of stcady nozzle condidons and parameters is shown
in Figure 2. Note that these solutions predict swell of the ellipu-
cal extrudate (increase Of the uct ¢¢ from the value 1 at
the nozzle) and distortion (change of the aspect ngo .h/él ).
Addinional cases and complete discussions of the behavior in
this regime can be found in [4, 10, 11).

As an example of a 1-D closure model for s different jet
regime, consider the case where A; is 0(®),and B, b, }, A2,
Z are (). Fox this regime the lowest order equations in the
Asymptotic expansion are

1

BA), -P)= —flh o _ z&?h(fu +vaa+ o),
1

B(An-p)= r:,—énézxﬁm - E¢%¢l(m +uL+ D),

0= ¢1d(vy +vy,), (IV.6)
ve+ta+a=0,
¢IJ+°‘I,‘-‘101 m+"‘1.l"hgn

An+A Ay +vAn, - (Qa+ Do +0)An] =0

An +A[Any +vAn, - (2a+ g +0)An) =0
hmbm;imei.rmﬂnleﬂecnmﬁormmfofmodm
within the jet cross section (see ['V.Ga,b), graviry is neglected
o leading order. These choices demand that momentum i3 con-
served in the axial direction (equadoun I'V.6¢c). Only relaxation

cffects are included to leading order in the constitutive model,
equations (TV.6f.g)

In this n:gime‘xhe lowest order equations are a closed set
of eigh: equations for the eiyhs modal vmisbles ¢.%, ¢ %” v®,
@67 PP, A, AD . The axial swress resultant A}, and
shar streas resulunu Am . A% decouple frum this lowest

lg behavior by the closed equations (IV.6) dif-
fers signifcandy the behavior predicted equagons
(TV.S), a reflecdon of the disparate parameter specifications. The
behavior predicted for one set cf ters and steady nozzle
conditions is shown in Figure 3. Note that these solutons
dict oscillation in s of the major axis of the free surface clhpd-
cal cross section between the ¢; and & directions. Addigonal
cases and dircussion can be found in [10]. In partcular, the spe-
cial cazes of elliptical inviscid and Newtonian free jets, subject
only to surface tension and gravity, ere considered. Our model

10



predicts oscillarion of the major axis of the free surface cross
section between perpendicular directions and draw down of the
CTOs$ sectdon, in agreement with observed behavior

As a third example, consider the particular jet regime where
B, g, are 0(c). Then, from (IV.3), we obtain the lowest
order equanons:

0= $lda(g1e + ¥ +¢D), 0= $Idhilos + ve2s +6P),
O=é1a(vy+vvy), v+ +0 =0, av.n
ITRA R - TR Y T

In this regime, only inertia! effects are leading order. Here
the lowest order equations are a set of six equations for the five
unknowns ¢(O) N v @, ¢, 339, which are easily shown to be
ovcrconsuuned. md. in flCl. mooqnuble With this regime we
have demonstrated another impormant result of this analysis: the
abiliry to determine what properites of slender viscoelastic free
jets combine to pro. -2 consistenr 1-D closure, and which do
not.

Many other specialized closurs models are clearly available.
We refer to [3, 4, 10, 11] for applications which have already
derived from this work. Additional applicatons are planned.

In (8] we exhibit and analyze the order correctons to the
lowest onder equations. These higher order equations allow us
to test the predictions of the lowest arder models, to determine if
neglected effects become imparant, and to obtain more detailed
information ahout the 3-D flowm

V. CONTACT WITH EXISTING 1 —~ D THEORIES

Toulummdncomdmmmofd\eubowmdy-
sis, we now indicas how several widely referenced i-D models
for Newtoruan and viscoelastic free jets are obtained by specifi-
cauonofpnﬂculnjamﬁms.mjbymducdonmd\eswudy.
axisymmetric forms. We list the order of inagnitude of the hr
rameters B, W, F, Z, Ay, \; in the slendermness natio w
pmdwcemplryexidn'modcu&ommn'syucm(WDu
the lowest order torm of

The axisymmesric, the lowest order equa-
tions with ty.pesameeers B, W, F, Z all ((¢*) and the
parameters Mg Ag Dotk §(¢) is the Newwonian thin filament
model, &4) ran [2). In thig regime, Newtonian vis-
cosiry, surface asien and gemvity are leading order, with the
clastic and secomd arder viscosity effects suppressed to higher
orer. (Recall the wanber R = (BE)™! )
lowest order equa-

7
|
i
~E

(7.33)) is obtained as the
est order equations from (IV.3) with the parameters B, Z, A,
specified as O(1), the perameters W, F', A; O(¢*), the rate
parumeter & wakon as 1 (upper convected rate), and the choice

of nowtion
An=P¢, Ap=T¢.
Recalling the definidons
Ap = Thda,
L
A m // rndA,
cross secdoa

An m f/ Pyda,
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we see that T'(s) is the average normal stress over the jet cross
section in the axial direction ey, and P(s) is the average nor-
mal sress in the transverse directions. In this regime the leading
order effects are viscosity and elasticiry, with inerua in the axial
direction, surface tension, gravity and retardation time effects
suppressed. The axisymmeic, steady form of this regime with
upper convected rates is also the steady form, equations {16) and
(17), of the viscoelastic model in [13] with the power law vis-
cosity parameter n in their model set equal 10 1, the model of
(6] (equatons (18), (19)), with the ratdo v of stress differences
in their consttutive model taken as zero, and the model of [14],
with a spectrum of one relaxadon time.

The 1-D model in (15] for a free jet of an Oldroyd fiuid B
is obmined as the axisymmetic, rteady form of the lowest order
equations from (V1.7) with the parameters B, Z, A, A; all
0(}).mcpnnmcm W . F both ((1), and the ratc pammeter
2 tsken a3 1 (upper convected rates).

V. CONCLUDING REMARKY

We have satisfied the goals set in the absoract and introduc-
gon. Beginning with the full 3-D viscoelastc free boundary
value problem, we have derived, by slendemness asympiotics,
a comprehensive framework of 1-D closure models for slender,
free viscoelastic jets. The physical effects of inertia, gravity, vis-
cotity, elasticity, surface tension, curvature, and the free surfuce
boundary conditicns involving surface tension, ambient pres-
sure and the curvature of the free surface, are represented in the
1-D modal equatdons, and most importandy, these effects appear
a1 they derive from the full 3-D free surface boundary value
problem. These resultant 1-D equations have the ﬂcxibililg w
vary the relative strengrhs of the physical properties of the fluid
and interface. Existing 1-D theories correspond o special cases
within our general framework.
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