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BOUNDARY-VALUE APPROACH TO WCLEAR EFFECTS
IN MUON-C,4TALYZED D-T FUS1ON

G. M. Hale, \f. C. Struensec, R. T Pack, and J. S. Cohen
Theoretical Division, Los Alamos National Ltiboratory

Los Alamos, New Mexico 87545

ABSTRACT

The use of boundary-matching techniques, as contained in k-matrix theory, to
describe multichannel nuclear reactions is discussed. After giving a brief summary of
the application of such techniques to the nuclear reactions in the sHe system, we
discuss a simple extension of the description to include muons, which was used to
calculate nuclear effects on the L=Oeigenvalues of the dtp molucule in various adiabatic
approximations. Next, the form of the outgoing nay wavefunction is discussed,
resulting in a new formulation of the amplitudes used to calculate the a-p sticking
fraction. Possible methods of solving for these amplitudes using the boundary-value
approach are suggested, and some deficiencies of the “standard” expression for the
sticking amplitudes are pointed out.

INTRODUCIION

It is, perhaps, ironic that the fundamental process underlying ~-catalyzed d-t
fusion, the nuclear reaction T(d,n)4He, has been one of the last elements added to the
descrir ‘ion of fusion out of the dt~ molecule. In a sense, this is justified by the fact
that, although nuclear effects strongly perturb the molecular wavefunction at small d-t
separations, the healing distance is short enough that their effects on all the observable
of the system considered up until now have been small. In this paper, we will describe
how nuclear effects were imposed on the nuclear eigenvalues of the dt~ molecule, and
how they ,+ouldbe imposed on a quantity of vital interest in the muon-catalyzed fusion
cycle, the a-~ sticking fraction, using an R-matrix description of the nuclear reactions
in the ~He system.

We begin with a brief resume of the R-matrix relations and definitions used m
characterize the nuclear reactions in the 5He system, followed by a summary of results
from an extensive analysis of the experimental data. Next, it is shown how to
generalize the R-matrix approach to include the muon, in the approximation that the
nuclear and mitonic degrees of flecdom are separable. We then recapitulate the results
of appiying the theory, in the reduced R-matrix form, to study nuclear effects on the
eigenvalues of the S-wttvc molecular states, the wavcfunctions of which were
calcultitcd with a series of increasingly more accurate adiabatic approximations.
Finally, wc give a ncw prescription for defining sticking amplitudes, and indicate how
they could be obtained numerical y from our formalism, Some problems with the
“standard” expressions used for the sticking amplitudes arc also pointed out.

R-MATRIX DESCRIPTION OF THE NUCLEAR SHE SYSTEM

R-matrix theoryl is based on the idea that a many-body nuclear sysren~ dis lays
/simpler “channel” degrees of freedom whenever the radial sepmittion rc o two

subgroups of the systcm is incrtmsed beyond the channel radius, ~, In this “channel”
region, the subgroups arc nssumed to bc bound in their ground states, with at most
(point) Coulomb forces acting between them. The channel rtidii (~) define a channel



surface which encloses the “nuclear” region. On this surfac’ are defined the chtinnel
surface states of total angular momentum (J) and parity,

in which 01 and ~ are the spin-dependent bound-state wave functions of the channel,
Mc is the channel reduced mass, and YiIm is the spherical harmonic describing the
orbital motion. The R marnx is then defined as the channel-surface projections of a
resolvent (Green’s function) operator,

in which the boundary operator

2,= ~lc)(cl(++c- %)
c c

(2)

(3)

has been added to the nuclear hamiltonian HN for total energy EN in order to make it
hermitian in the nuclear region. This allows the spectral expansion made in the last step
of Eq. (2) to be defined in terms of the solutions of

with Yck= (Clk). We use the reduced-width amplitudes yc~and cigenenergies EAfor
boundary conditions Bc at channel radii z as a pararnernc expansion of the R matrix,
and determine their values by fitting experimental data.

The formal solution of Schrddinger’s quation inside the nuclear region,

implies the fundamental R-matrix relation,

a
(~’lwN) = ~R~~(cl(~ - ‘C)IVN) ,

c

(5)

(6)

which is a matching condition that can be used to determine quantities of interest in aay
scattering or bound-state problem. In the case of n coupled chtmnels, the fundamental
R-matrix relation holds for each of the n linearly independent solutions @N so that in
tetms of the marnces

‘,,= (c,h/N)and U~l = (cil~il~N) ,
I

(7)

it becomes the matix relation

U = RN (U’ - BU) * RN= (u’u-l - B)-1 , (8)

Thus, the R matrix is essentially the reciprocal of a logarithmic derhtive _ UU-l,
for the coupled radial solutions, Any particular solutmn of the coupled problem can be
constructed from a linear combination of the columns of the matrix U.



If one has a multichannel problem in which only a subset of the channels is of
explicit interest, the partitioned matrix technique of the reduced R matrix~ is oi(en
useful. This method consists of wri!in the fundamental R-matrix relation, Eqs. (6) or
(8), in partitioned matrix (P,Q, where B+(kl ) term, and assuming that in partition Q,

(9)

tile logarithmic derivatives ~ are those for purely outgoing-wave solutions ~~. Then

the R-matrix relation for the radial solutions in the P partition can be written as

up={F$p+ Rm(L#Q![l - R~(L~-BJ]-l R~P}(Up - BPUP) , (1 O)

which means that the motion in channel group P is described by the reduced R matrix

Rpp= ~pp+ RM(LQ-BQ)[I- Rm(La-BQ)]-’Rap . (11)

With these preliminary ideas established, we can proceed to a brief description of the
application to reactions in the SHe system.j A summary of the channel configuration,
data included, and X2values for each of the reactions is given in Table I. The important
points to note are that: (1) the energy range of the analysis is rather broad, extending to
energies well above and below the d-t threshold; (2) many different types of
observable (cross sections, polarizations, etc.) arc included in the analysis for each
reaction, allowing the R-matrix parameters to be determined accurately and
unambiguously; (3) the overall X2per degree of freedom for the fit (1.55), while not
ideal, indicates in our experience quite a good representation of the measurements for a
multichannel system.

Table I Summary of the ~Hc system R-matrix analysis

y lmax U.(l@
3 5,1

n.4Hg 4 3.0
n.4He* 1 5,0

EnsKaLmue u2maMkuYQas &QawQim X2

T(d,d)T q-w Mlev 6 695 1147

T(d,n)4He E@+ Mev 13 1020 1423

T(d,n)4He* E@.8-8 lIAeV 1 10 17

4He(n,n)4He EnmO-28 MeV 2 7% 11~
Totals: 22 2520 :\767

# parameters -97 *X2 per deuree of freedom = 1.55



Exmples of thequality of the fits totieinte~ated cross sections megiven in Fig. 1.
The top part of the figure shows the fit to measurements of the integrated rec. tion
[T(d,n)4He] cross section, with a comparison at the right side, expressed as a ratio, to
the precise new data of Brown and Ja.rmie4over the region of the low-energy resonance.
The lGwer part of the figure shows similar comparisons with the measurements of the n-
a total cross section. Again, the right side shows a detail of the fit over the resonance,
in this case, containing the recent total cross-section data of Haesner et al.s One sees
that the R-matrix representation of these data is quite good.

-(C.-)4w

4 hty(n,n)4He 4He(nJl)4He

‘“T

*

\

S “Lb”mn

Fig, 1, Fits to measurements of integrated cross secti ms tor the 5He reactions.
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At the low relative d-t energies that are of interest in cold fusion, the T(d,n)4He
reaction is almost completely dominated by the resonant J~3/2+ transition. The R-
matrix parameters for this matrix are given in Table II. The first level is mainly
associated with the low-energy resonance, the next two with higher-energy 2D and ‘D
resonances in the dt channel, and the fourth serves primarily as a background term,
especially in the na channel. .41though the R matrix is clearly the relevant quantity in
the muon-catalyzed fusion problem, it is of interest to mention the S-matrix pole
structured that results from matching to outgoing waves in the nuclear sHe system. In
addition to a “conventional” pole on the unphysical sheet (Sheet HI) closest to the
physical sheet of the two-channel Riemann energy surface above the d-t threshold,
there is a “shadow” pole on Sheet II ( the sheet on which the d-t momentum has a
positive imaginary part and the n-a momentum has a negative imaginary part). The
effects of the two poles are separately visible in the reaction and total cross sections, as
is shown in Ref. 6. The presence of the shadow pole on Sheet 11 implies that the
JG3/2 + resonance in sHe would occur only in the na channel in the absence of
coupling between the dt and na channels, contradicting the usual picture that it is
essentially a dt resonance.

Table H R-marnx parameters for the Jx = 3/2+ states of 5He. Channel labels (c) are in
spectroscopic notation. Eigenenergies Ea are center-of-mass values in MeV relative to
the d-t threshold; reduced-width amplitudes yC~are also center-of-mass in units
Me~!l~.

I 2=1 k=2 ?b=3

--t 0ou7’5’6213w3137w06
c(J=3/2) ~(fm) Bc

EL 4 47,475246—.

@(d.) 5.1 -0.37 1.1760678 0.069339? -0.4955438 1.1052421

4D(dt) 5.1 -2.00 0,1688724 -0.2729805 1.9910681 1.9847048
YCA

~D(dt) 5.1 -200 -0.0484797 0,8862475 0.0958513 0.2422464

2D(na) 3.0 -0.59 0.376d218 -0.1562737 0.9994494 -3,8556539

R-MATRIX DESCRIPTION OF THE SHE+)LSYSTEM

The advanta,gc of the R-matrix approach is that the addition of the muon to the
system can be treated differently in the nuclear and channel regions. In the nuclear
region, where the nucleons are in relatively C1OSCproximity, the total htamiltonian H is
approximately separable,

H= HN+HP , (12)

with HN the nuclear hamiltunian as before, and Hp the hamiltonian for a muon moving

about a ‘He core, The wavcfuncticn in the nuclear region is therefore, in general, a
sum of separable terms corresponding to the separation in H. However, we will in the
subsequent discussion keep only the tint term of this sum,



Y = Yf#p ~ (13)

J in which $ is the ground-state g-5He wavefunction corresponding to the ground-state
.!,:+ /

energy E:. This approximation joins smoothly with the adiabatic approximations to be
i..P:

{ made in the channel region, as is depicted schematically in
‘(including the muon) is in this approximation

RC’c
= (C’I(HN+%B+ Hk-/\c) = I L$)R;c(EN)(~’

with RN given by Eq. (2) in terms of the parameters of Table II,

Fig. 2. The R matrix

* (14)

and EN sE-E;.

L
Fig. 2. Schematic of the single muon state (adiabatic) R-matrix approximation

In the channel region, the Coulomb attraction of the muon to the separated nuclear
ions has a significant effect, especially in the dt channel, where it causes bound
molecular dt~ states to occur. Coulomb binding of muom to alpha particles in the net
channel is also quite important, since this creates the “SF~ck”muons that are lost from
the catalysis cycle. Thus, as the radial distance between the ions grows larger than the
channel radius, the separable approximation made in the nuclear region breaks down,
and one is faced with the difficult task (at least for dt~) of solving a three-body
Coulomb problem. Exact (non-adiabatic) calculations of bound-state dt~
wavefunctions have been the subject of extensive research over the past decade,T
However, a complication introduced by the nuclear effects is that, since the channel



region excludes the origin, the wavefunctions in this region contain irregular functions
in addition to the regular functions present in the bound states. In order to avoid having
m deal with this kind of complexity in a fully non-adiabatic calculation, we decided to
test the R-matrix approach using a sequence of increasingly more accurate adiabatic
calculations for the dtp wavefunction in the channel region.

The natural starting point was to consider nuclear effects on the eigenvalues (bound-
state energies) &of the dtp molecule in this approximation,g which allows the relative
d-t wavefunction to be obtained by solving a second-order differential equation
containing the muon attraction in an effective d-t potential. The solution of this
equation that matches at the channel surface to values derived tiom the nuclear R matrix
and tends asymptotically to a purely outgoing wave is a generalization of the bound-
state eigenfunction sometimes called the Sie ert state, which occurs for a complex
eigenenergy E. = E, - iir. Thus, the shift Ai! = Er - Eb and the width r (which is
~wportional to the fusion rate Af) are direct measures of the nuclear effect on the
bound-state eigenvalues.

The matching at the channel surface is most conveniently accomplished by using the
reduced R marnx described in the paragraph containing Eqs. (9)-(1 1). In this case, we
put the 4S(dt) channel (d) of Table II in partition P and the three remaining channels
(q=l,2,3) in partition Q, in order to define the single reduced R-marnx element

in which

R*- N = R~ + R&q-Bq)[l - R\(Lq-Bq)]-l R; .

(15)

(16)

Since the adiabatic solutions in the dt~ channel region near r~ = ~ have the fotm

*

in which ~- o:, we can project the fundamental R-marnx relation, Eq. (6), on (Qfi to

obtain

(17)

as a matching condition in the dt charnel at rdt= ~ = 5,1 frm
The purely outgoing-wave solutions for l’dt> adt were calculated using three

successively more realistic adiabatic approximations: the Born-Oppenheimer (BO),
standard adiabatic (S A), and improved adiabatic (IA) approximations. The
improvements on the familiar BO approximation involved adding diagonal pieces of the
ham~ltonian to the dcfiniton of the adiabatic potentials and using angular-dependent
muonic wavefunctions, the details of which are contained in Ref. 8. In each case, the
complex energy E. at which the matching equation (17) is satisfied was determined by
iteration, Then, by comparing with the bound-state eigenva.lues obtained by matching
to regular bou,~dary conditions at the origin, the shifts and widths arising fr~m
matching to nuclear boundary conditions at the channel radius were found

The results for the lowest vibrational-rotational (v,L) states are given in Table III for
L=O and v=O,1. The numbers suggest that the SA and IA approximations are
converging to something like the correct results, as was also indicated by a comparison
of the adiabatic boutd-state energies to the non-adiabatic value, and of the approximate
@He energies to Ew, The agreement with the earlier calculations of Bogdanova et al.g
is quite satisfactory, considering that these calculations were done using an optical-



potential representation of the nuclear interactions, and different approximations were
made in solving for the dty wavefunction and the complex eigenvalue Eo. Also shown
are the more recent results of Karnikov and .Nlur,10who used the single-level R-matrix
representation of the reaction cross section given by Brown and Jarrnie.J

TABLE III Energy shifts and resonance widths for the (v=O. L=O) and (v=i, L=O)
vibrational-rotational states due to nuclew boundary conditions. Energies are in units
of 104 eV.

AE(v*@) fi-w-=o) @v=lb=@ l--(v=l&o)

BO 987 ~ 763 8.03
SA :8:15 8.53 -7:08 ‘7.44
IA -8.12 8.50 -6.75 7.10
Ref. 9 -9.6 -8.0 6.8
Ref. 10 -12.5 !:; -10.4 7.4

Fig. 3,
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d
rw

P

Coordinates for describing the channel regions of 5He+~.
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WAVEFUNCT’ION IN THE nav CHANNEL REGION AND v-a STICKING

The coordinate labeling used to describe the channel regions of the system is given

Fig. 3. At the na channel surface, rna=ana=3 fm, the outgoing wave can be
~expre<sed in the separable approximation as

Wn~~(rnu~r~J = Phj(knarna)y*~(fnJ $(rw) J (18)

in which ~ is a constant and h: is the outgoing Hankel function for Q=2, For

rna>~na, however, since the harniltonian is exactly separable in the variables (m, l’wa),
the wavefunction cart be written as

Ynap(E) = JJ JdEn dk,~n(kn,rn) dp(Eya)%a(EMmrLJa~ (~n,EPJ

x 5(En+Eva-E)

in terms of the e~,ergy and momentum variables conjugate to rn and r~u. In Eq. (19),
the plane- wave states in and y-a states ~a are taken to be energy -norrnaiized, as is
WnW, so that the snergy-consening delta function in the fwst line results naturally
from the normalization conventions. The energy normalization of Ynap also implies
the relation

Hd~rldp(EMa)laE(Gn,Ewa)12=1 (20)

for the squared modulus of the expansion amplitudes a~ integrated over all neutron

directions ~n and over tie density p(EPa) of all bound ~d continuum v-u s~tes. This
means that the sum over the bound states,

(21)

is the sticking fracaon, and aE(% ,E ~a) is the sticking amplitude for direction&n.

C)necould iilvert the expansion fcr Ynup ~ Eq. (19) md find the stic~g amplimde
from the integral

(22)

but this requires knowing Ynw(E) for all rn and rPa (including the nuclear region).

Alternatively, one could project the expansion for VW onto a complete set of channel-
surface functions

in which the index j ranges over all bound and continuum y-5He states, and obtain an
infinite set of coupled equations for the sticking amplitudes (after a partial-wave

expansion in ~n ). If the coupling terms (tlu~l~n ha) on the right side of the equation



vanish for high-lying states @]vand ~a, then the truncated system of equations can be

solved by matrix inversion, knowing the ieft-hand side matrix elements,

vanish if the n-a angular momentum differs from ~ = 2 or if the p-5He wavefuncaon is
not that for the ground state.

The sticking amplitudes and sticking fraction defined in Eqs. (19) and (21) are, in
principle, quite different from the usual expressions usedl 1, which are based on the
impulse-approximation aansition matrix element

a“Q= (#hJe ‘q”” lv~tP(rP,rd=O)) , (23)

for the (n ,Q)w-a bound state and muon momentum q. However, one can obtain from
our framework expressions similar to those usually used by making the plane-wave

approximation for ~n~,

In this case,

(?n(kn)&lyntiP) b ‘hr”lo!s ~(kna-kn)($uxle

and the leading delta function is a poor approximation to the energy-conserving

6(E”+ Ep.-E) expected, with E = Ena+E~. The sticking amplitude is then

(24)

In these expressions, the mass ratios x=& and ct-~Pyn=00055 are used. The

matrix element in Eq. (24) is energy-conserving only for Eva=aEna+E~=86 keV, far
above the bound- state energies at which it is evaluated However, if the delta functions
are ignored, the remaining matrb elemen$

is similar to the standard &pression for the sticking amplitude.

SUMMARY AND CONCLUSIONS

We have discussed the R-marnx parametrization of the two-body reactions of a
multichannel system, and have shown that such a description gives a detailed and
accurate representation of the experimented measurements for the SHe system. The
“shadow pole” associated with JG3/2’. resonance in the nuclear 5He system is an
interesting phenomenon that could have consequences for muon-catalyzed fusion, since
it occurs on the same sheet as the dtp molecular ground state.

The R-matrix framework is well-suited also for describing the SHe+~ system, since
the division of coordinate space into the nuclear and channel regions allows a relatively
simple separable approximation to be made in the nuclear region that is not valid in the
channel regions. On the other hand, the three-body wavefunctions in the channel
regions can be treated exactly, albeit with some difficulty in the case of dt~. Our


