
LA-UR -84-2335
Q ti~v -~[wl l/-[--/

LA-UR--04-2335

DE84 015515

Lot Almos Nmonsl Labo~hIoFY IS oPomled bylfm Unwmly of cmllfo~nm for lM Unnodstmtos kPwrmanlof EnewY under COnlr#Cl bW.74C5-ENG.36

TITLE CONFIGURATIONMANAGEMENTFORMISSION-CRITICALSOFTWARE:
THELOSALAMOSSOLUTION

AUTHOR(S) G. CortandD. M. Barrus ‘

SUBMITTEDTO SoftoolUsersGroupMeeting,SantaBarbara}CA)
September10,1984.

DISCLAIMER

Thhruporvwnsprqwod u ● ●caunt of work qunvmral by m ■goncy of the Unltal Stnta
Uowrnment. Naitkrthe [JnlteG Slmla Ctirnmont mranja~my the~, nmmny~lklr
emplops, mahas snywmrr~nty, aa~orlmplH, ormwllma ~nyl~lllsbilltym rqmrrsl-
blllty for the accuracy, ~mpkten-, oruwful-of any lnformnlti, ~wralus, duti, m

~d~ww, M mp~nl~!h~t lhum wnuld nnv Infringe prlvntalyowned tighti. Rob
moo Iramln Iomry qAflcoummerclnl product, ~u,nr csrvlca by trula nmrra,trademmk,
mmmfacmmr, or utlwrwiac dum not nccumrily owwtitule or imply Ilm orrdormrrvont,ramrrl-

rrwmhtkwr, or fworhva hy the [Jnlmd Slnta (Mrmvrrrcnl ur wry agency tharoof. l%ev!avm
ml oplrvbvrsof mrlkrn onpramal horuhr do not rvccasarlly stmu or roflcci thrrm OrIbo
Unh~ SlnWn Orwarnmevvlor mry ●gencythd.

LIOSASmnlos
f (

,, .,, . ‘ ‘,1 l,” ll~il~r;lll],,: H

Los Alamos National Laboratory
Los Al~mGs,New Mexico 87545

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

Configuration Management for Mission-Crltlcal Software:
the Los Alamos Solution*

G. Copt and D. M. Barrus
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Introduction

Ad has been the case for most of the disciplines of software engineer-
ing, the evolution of the principles of software configuration
management has been driven mainly by the requirements of large-scale
software development projects. Although this situation has resulted
In very effective an~ efficient strategies for managing these giant
projects, the very different needs of small or intermediate sized
projects have been largely Ignored. This has served effectively to
deny both the immediate and the long term benefits of software en-
gineering In general, and software configuration management In
particular, to the rrraJorityof soi’twaredevelopment projects. Far
more serious Is the dangerous attitude fo~tered by the large scale
approach to these very important disciplines, namely that the tech-
niques of software engineering and configuration management cen only
oe cost-effective when appl.ledon a grand scale.

In this paper we present our experiences as a small group responsible
for the development of a moderately large real-time data acquisition
system. During the early stgges of our project we recognized the need
for a rigorous software configuration management system to support our
development and maintenance activities. This paper describes our
approach to the utilization of the Sof’toolChange and Configuration
Control (CCC) environment. The steps that we have taken to develop a
very powerf’uldevelopment/configuration management environment
(Incorporating CCC) are outlined and justified. The extension of the
Los Alamns system to management of large-scale projects Is discussed.

Project Organization

In order to establish the requirements and operational construlnts
which led to the development of’the Los Alamos system, a brief
description o!’our facility and the organization of our project Is
appropriate. The Los Alamos Weapons Neutron Research Facility (WNR)
is a world-class neutro~ scattering Installation devoted to basic
research In physics, chemistry, materials science and biology.
Operating l.nconjunction with the 800 M(-:Vlinear accelerator at the
LOS Al[imosMeson Physics Fucllity (LAMPF) the facil~ty supports an
expandir~g,International user community. A major facility upgrade
currently being Implemented will significantly enhance present
capabiliticu and will ~1’ansf’ormWNR into one of the worldts premiere
neutron Hcabtering ccntcrs.

.

.

The same upgrade, however, will render the ex~stlng real-time data
acquisition system obsolete. Its replacement, which Is currently
under development by the Computer Section of the WNR Operations Group,
will ultimately consist of a network of 8-12 computers of the VAX
11/750 class each hosting the VMS operating system. Each computer
will be dedicated to acqulrlng data from a single spectrometer. To
accornpllohthis task, each computer will execute identical data ac-
quisition software.

The projected size of the software system being developed to meet the
data acquisition requirements of the new facility is approximately
150 K executable lines. The programming language chosen for the
project Is m extended version of Pascal. Reliable operation of this
system Is essential as software failures can result In total disrup-
tion of the operation of’the facility. Because of the great expense
incurred In producing the neutron beam, and the high demand by users
for access to the facility, the economic, political and scientific
consequences of a system failure can be quite serious. Because of the
sheer size of the project, the complexity of the software being
developed, and the mission-critical nature of the system, It was
decided during the early stages of the project to employ a rigorous
software engineering approach, including the incorporation of strin-
gent software configuration management.

In add!.tionto the basic hardware and software facility characteris-
tics presented above, the organization and structure of the software
development staff is extremely Important in determining the level and
mode of’configuration manar,ementappropriate for the project. Our
organization consists of three very senior staff members with full-
time responsibility for software design and implementation. In
addition, we ha-;eavailable the equivalent of approximately two t’ull-
time people to support the development effort. These individuals
range in experience from very senior staff members wlt.hpartial
responsibility for software to junior programmers and data analysts,

‘lneproj=ct management structure is also quite different f’romthat
associated with most large-scale development efforts. The small stal’f
attachud to the project does not warrant the multilayered, highly
:;trati(’i’edmana~emel]tstructure imposed on large development projects.
Indeed, a single manager oversees the entire software devclnpment
effort. Heavy rellnnce on the expel]ienceand judgement of the
:;of’twat’estaff furthe~ reduces management visibility to a minimal
l(:vel.

Advantages of the CCC Environment

A1’t4~revv.luatlngvarious commercial configuration man~gement systems,
we chose the CCC as the tool beet fitted to support our conf’lguratlon
managcmer]fivj’fort. T:leCCC environment can provide virtually un-
bruuchuhlc !~ccurltyt’crsystem sources (and documentation), thereby
eliminating the posalblllty of inadvertent or unautl]orizedmodll’lca-
tion of’uny of the~w key system ~ornponents. This Cupubility is 01’
partlculnr importance in a highly volatile development environment
such as our:]: one In which every pragl’ammcrhua access to :]ystem

management resources and therefcre Is potentially capable of bypassing
all file protections established by the operating system.

The CCC environment also provides us with a comprehensive, automated
version control sy~tem, a feature that Is essential to the conduct of
an effective configuration accounting effort. This feature gives us
the capability to define the precise configuration of’any software
component of the data acquisition system. In addition, it provide~
for fallback configurations that can be utilized In the event of a
serious failure of a primary software component, thus allcwing the
data acquisition task to continue (though possibly with reduced
capability) while the primary component is under repair.

The almost unlimited extent to which the CCC macro facility allows the
configuration management envlrorunentto be automated Is another ex-
tremely valuable feature. This capability Is particularly attractive
within the context of our project for which the relatively small size
of the technical staff demands that the overhead associated with
support functions (such as configuration management:)be kept to an
absolute minimum. The introduction of automated procedures into the
environment not only decreases the time spent on configuration manage-
ment functions, but also slgnlflcantly enhances the accuracy and
reliability of all transactions.

Finally, the capability to minimize the size of the con~iguratlon data
base by defining global text structures for parent configurations
provides an effective mechanism for conserving precious disk
resources. This allows many generations of each software component to
be nalntained In the data base without duplicating redundant informa-
tion, thereby eliminating the necessity of restoring a previous
version from secondary storage In the event of a maintenance
emergency. This feature significantly enhances the ability of’the
configuration management staff to I’esctto emergency situations as
they arise.

The Need for an Extended Environment

Although we recognize the CCC envlronmei~tas an extremsly powerful
tool to support conflfiurationmanagement activities, It is our posl-
tlon that the conventional rr,ethodologlesfor utilizing this tool are
not adequate to meet the needs of a small software development project
such as ours. At the extreme of maximlqmCCC uclllzutlon, the
methodology requires that every development and maintenance programmer
work entirely within the confines or tileCCC data base, using CCC
commands and the CCC editor to accomplish all programming and main-
tcnunce activities. At the opposite extreme, programming and
mulntcnance staf’fdo not Interact with the CCC data base, hut Instead
conduct their programming activities externally. A manager Is then
responalblc for copytnq all work from the users’ env~ronments into the
CCC d~tn base Ht regular Intervals, The def~.clenciesof these
methodologies are discussed below.

The policy of maximum CCC utilization allows management to exercise a
l~lglllevel of visibility throughout t}]edevelopment process, and

management resources and th~refore Is potentially capable of bypassing
all file protections established by the operating system.

The CCC environment also provides us with a comprehensive, automated
version control system, a feature that Is essential to the conduct of
an effective configuration accounting effort. This feature gives us
the capability to Qeflne the precise configuration of any software
component of the data acquisition system. In addition, It provides
for fallhack configurations that can be uclllzed In the event of a
serious failure of a primary software component, thus allowing the
data acquisition task to continue (though possibly with reduced
capability) while the primary component Is under repair.

The almost unlimited extent to which the CCC macro facility allows the
configuration management environment to be automated Is another ex-
tremely valuable feature. This capability Is particularly attractive
within the context of our project for which the relatively small size
of the technical staff demands that the overhead associated with
support functions (such as configuration management) be kept to an
absolute minimum. The introduction of autometed procedures into the
environment not only decreases the time spent on configuration manage-
ment functions, but significantly enhances the accuracy and
reliability of all transactions.

Finally, the capability to minimize the size of the conflgur’tion data
base by defining global text structures for parent configurations
provides an effective mechanism for conserving precious disk
resources. This allows many generations of each software component to
be maintained In the data base without duplicating redundant lnforma-
tlon, thereby eliminating the necessity al’restoring a previous
version from secondary storage in the event of a maintenance
emergency. This feature significantly enhances the ability of the
configuration management staff to react to emergency situations as
they arise.

The Need for en Extended Environment

Althou~;hwe recognize the CCC environment as an extremely powerful
tool to support configuration management activities, it is our posi-
tion that the conventional methodologies for utilizing this tool are
not adequate to meet the needs of a small software development project
such as ours. At the extreme of maximum CCC utilization, the
methodology requires that every development and maintenance programmer
work entirely within the confines of ths CCC data base, using CCC
commands ~nd the CCC editor to accomplish all programming and maln-
ten~nce activities. At the opposite extreme, programming and
malnten~.ncestaff’do not interact with the CCC data base, but Instead
conduct their programming activities externally. A mannger is then
responsible for copying all work from the uners’ environments into the
CCC data base at regular intervals. The deficiencies of’these
methodologies are discussed below.

The pollcy ~f maximum CCC utilization allows management to exercise a
high level of visibility throughout the development process, and

provides the capability to Identify software version changes with an
extremely fine time resolution. Unfortunately, this approach also
imposes severe overheads on both configuration management and develop-
ment personnel. The most severe management overhead derives from the
necessity for the data base administrator to define and malntaln
access control information for every CCC user. This problem Is fur-
ther complicated by the extremely volatile development environment
that Is often associated with small projects: users’ access control
information may require modification on a dally or even hourly basis.
Add In a constraint that requires all maintenance operations to be
performed In a modular fashion (programmers are allowed access to
only those modules of a software component that actually require
modification) and the process of maintaining access control informa-
tion becomes increasingly error-prone and time intensive. It should
be noted that this activity cannot be extensively automated, so there
is little hope of reducing these overheads through the use of the CCC
macro facility.

Also, the maximum utlllzatlon strategy imposes Intolerable overheads
on the technical staff. The effective relocation of the development
environment to within the confines of the CCC data base has the l,m-
mediate consequence of making standard development tools (compilers,
linkers, etc.) as well as locally deveioped automated software support
tools inaccessible to the developer. As a result, what should be a
simple compile-link procedure becomes tedious, time consuming, multi-
step operation involving exportation of the appropriate modules from
the data base, performance of co,mpllatlonand link steps in the host
operating system environment, and Importation of the sou ‘cemodules
back into the data base. In addition to the direct deleterious ef-
fects upon developer productivity, the ImpoGltion of such overheads
can foster resentment and can result in serious erosion of morale
within the technical staff. To support a modular maintenance effort
within this environment becomes even more dlff~cult, requiring a
s~gnlflcantly Increased level of’partlclpatlon by the data base
administrator.

Additional unacceptable overheads are also chara(:terlstlcof tile
maximum utilization implementation. Developers are required to become
Ilraflcientwith new software interfaces in order to operate within the
CCC data base. In some cases these new Interfaces may be perceived as
less effective than tools that exist at the operating system level
(for Instance, programmers reslat abandoning the versatile, full-
screen VMS EDT editor for the less powerful, line-oriented CCC
editor). Additionally, response times deteriorate rapidly as more
users are forced to access the data base simultaneously. Coupled wtth
the {’xtraresponse time overhead Introduced by a policy of archiving
Incremental changes for most recent versions, these delays can
serl~usly degrad~ development productivity.

‘l’heminimum utillzaclon methodology also presents serious problems as
a configuration management Implementation strategy. Although access
control, tool acce~slblllty and response time overheads are largely
elim’.natedby tillsapproach, significant new management overheads are
introduced. Fol’emostamong these Is the Increased effort required LO
uxport modules l’romthe CCC data base for maintenance, especially In a

modular maintenance environment. When used In this mode, the CCC
environment seems to be reduced to an extremely sophisticated (and
expensive) backup utility.

Both methodologies seem to allow the CCC data base to become cluttered
with uncertified intermediate software versions. This generally
results In rapid Increase In data base size and decreased Intervals
between data base maintenance and backup activities. Almost regard-
less of the time resolution associated with the the smallest Increment
of change, the benefits to be gained by saving uncertified versions in
the data base are offset by the Increased maintenance burden placed on
the data base administrator.

In short, thei-eseems to be a basic incompatibility between environ-
ments that promote a strong development effort (the VMS operating
system environment, for example) and those, such as CCC, that support
rigorous, automated configuration management activities. Environments
In which developers thrive present severe difficulties for configura-
tion management personnel. The converse also appears to be true.
Conventional approaches to the resolution of these problems generally
force one of these groups to work within an Inadequate environment in
order to preserve the effectiveness of the other group. In worst case
situations, each group Is forced to endure a compromise solution in
which both parties sacrifice significant capabllltles and no one Is
satlsfled. The Los Alemos approach, however, Is to define a new
methodology that completely Isolates development activities from the
configuration management effort, thereby allowing the full power of
each environment to be exploited to Its fullest. The unique feature
of this strategy is the provision of an Interface between the two
environments that allows for automated interaction between them, and
act’{allymelds them into a single, comprehensive hybrid environment
for software development and configuration management.

The Hybrid Environmel:t:Specifications

‘dit!lintne context of our project, the fOllOWi[lg properties were
identified as required eeatures of the hybrid environment and its
associated conf~guratlon management methodology:

User e>.elusionfrom the CCC data base. All development/maintenance
actlvit”lesmust be conducted within the VMS host operating system
environment. This requirement was specified In order to eliminate the
management and develcper overheads associated with CCC data 5ase
transactions and maintenance. Only the CCC dat~ base administrator is
permitted access to the data base.

Onl ccrtlfied software Is maintained ui~derconflgurat~on control.
+=---~Y so tware that has b. JR reviewed and passed by the faciI~ty

Con~iguration Control Board (CCB) Is accepted Into the configuration
management environment. Likewise, speci~’lcapproval of the CCB Is
required before any software Is released from configuration cuntrol
(by transfer to the development environment). All uncertified
software verslors (generally Intermediate versions of modules undergo-
ing maintenance or development) remain in the development environment.

Reliance Is placed upon ordinary facility software backup procedures
to provide adequate capability fan reconstruction of modules In the
development environment.

The hybrid environment must Impose no additional overheads upon the
developer. All configuration management tasks must be the exclusive
responsibility of configuration management personnel. In addition,
there must be no degradation in system response attributable to the
hybrid environment.

The hybrid environment must support .the automation of virtually every
configuration management task. Because the configuration management
staff Is responsible for all aspects of the configuration management
effort, and because these staff members generally have significant
development responslbilltles aswell, automated procedures must be
available to reduce the effort and increase the reliability of all
configuration management transactions.

The Hybrid Environment: Implementation

The hybrid environment Is comprised of a development environment and a
configuration management environment, each of which Is strictly iso-
lated from the other. The development environment consists of the VMS
operating system utilized In the conventional manner and partitioned
into the usual user accounts and directories. All activities that
take piace wlthln the development environment are the exclusive
responcibillty of the software developer and are not monitored or
Influenced In any manner by the configuration management staff.

The configuration management environment consists of a Configuration
Data Base (CDB) and automated procedures (VMS command files and CCC
macros) to operate on CDB elements. The configuration management
staff Is responsible for performing all operations on the CDB.

The organization of the CDB reflects our operational requirement that
modules be maintained at different levels of configuration control
depending on the function, utilization and current change processing
status of a module. To meet this requirement, the CDB Is divided into
a Class 1 and a Class 2 partltlcn. The Class 1 partition consists of
the CCC data base and is Intended to hold modules for which access
mu~t be restricted to co,,figuratlonmanagement personnel only. Source
code, user’s documentation and test results are exumples of modules
that must be maintained under Class 1 configuration management. The
Class 1 partition IS organized such that each constituent CCC SYSTEM
structure IS devoted to a different data acquisition subsystem
(primary commands, tools, utilities), and each CONFIGURATION structure
subordinate to a given SYSTEM represents a unique version of one of
the computer programs that comprtse the subsystem. MODULE structures
are used to functionally ~ubdlvlde each version Into user’s docdmenta-
tlon, source code and test report categorler. Subordinate TEXT
structures comprise the co]lstltuentaof each category. Only the CCC
data base administrator is authorized to access structures that reside
within the Class 1 partition.

The Class 2 partition consists of a hierarchy of protected VMS direc-
tories that contain software modules that must be accessed on an on-
demand basis by data acquisition system users or development
personnel. Included In the list of Class 2 modules are executable
Images, llb~arles of object modules and support data bases. All users
have read-access to Class 2 modules; only configuration management
personnel have modify-access. Obviously, modules that exist In the
Class 2 partition are not as secure as those in the Class 1 partition.
However, because these modules exist In non-ASCII format, and because
any Class 2 module can be simply rebuilt (usually by a compile or llnk
operation) trom one or more Class l.modules, the reduced security Is
not considered a serious problem.

The CDB structure Is primarily responsible for reducing developer
overheads to levels comparable to those that would exist In the ab-
sence of any configuration management activities. By extensively
automating the CDB (using CCC macros for the Class 1 partition and VW
command files for the Class 2 partition) management overheads can also
be drastically reduced. Indeed, the only aspects of the configuration
management process that do not lend themselves to automation under the
hybrid environment are those of 1) releasing software from the Class 1
partltlon into the development environment and 2) admitting software
(after certification) f.om the development environment Into the CDB.
This inability to Integrate the constituent environments In an
automated f’ashlonwas considered a serious def’lcier?cyof the hybrid
approach in light of the fact that these processes comprise the vast
majority of the activities of the configuration management staff.

Integrating the Environments

In order to address this deficiency, we further extended the hybrid
environment by defining an Interface data structure that enables the
conp].eteautomation of software transfers between the constituent
envlro”Lments. The structure is called a Program Source File List
(SFL) and consists of a text file that describes the structure of a
program, Each program that Is maintained In the Class 1 partition has
a corresponding SFL that resides with the program source code In the
appropriate CONFIGURATION structure.

An SFL consists of a list of each software module that must be
compiled/llnked to build the executable Image for a particular com-
puter program. The SFL is organized with one module name per line and
allows commentary material to be Included after any module name. The
SFL also contains information that defines the status (unmodified,
modified, or new) of each module In the list. A sample source file
list Is shown below.

Source File List for Program ADD :

ADD
VALDATBAS
SEEKENTRY
UPDATE
PMPTUSER
PARSELINE

Main program
Data base validation routine
Entry locate routlrle
New entry addltlon routine
General prompting routine
Command decoding routine

In order to demonstrate the degree to which SFL’S support the unifica-
tion of the hybrid environment through automation of’the Interface
between the constituent environments, we presmt the following example
of a simple maintenance operation. Consider the ADD program for which
the SFL Is presented above. Consider also that a software f’ault
associated with the execution of ADD has been identified and reported.
Analysis Indlcatea that bugs exist In the SEEKENTRY and the PARSELINE
subprograms and (In accordance with the modular maintenance pollcy) a
request has been placed with the conf’lguratlonadministrator to
release these modules Into the development environment (I.e. Into the
maintenance programmer’~ local VMS directory). Using manual proce-
dures to accomplish the appropriate transfers from the CCC data base
to the maintenance programmer’s VMS directory Is a tedious and error-
prone operation. This Is especially true In llght of the fact that a
transfer operation must be performed on every module of’the computer
program, regardless of how many modules are to be modified. (This
results from the fact that object modules must be generated for all
modules that are not subject to “modification,and these obJect modules
must be transferred to the Class 2 partition in order to allow the ADD
program to be linked prior to testing.)

By utilizing the ADD source file list, however, the entire manual
process described above can be replaced by an automated procedure that
reduces the overhead Imposed upon the CCC data base administrator to
trivial levels. The only step performed manually Involves edltlng the
SFL to indicate which modules are to be transferred to the maintenance
programmer. T’(1sIs accomplished by editing the appropriate SFL (with
the CCC editor to place an asterisk (*) before the name of each module
to be transferred. Within the context of this example the edited SFL
for the ADD program would appear as follows:

Edited Source File List for Program ADD :

ADD I Main program
VALDATBAS I Data base validation routine

* SEEKENTRY I Entry locate routine
UPDATE I New entry addition routine
PMPTUSER I General prompting routine

+ PARSELINE I Command decoding routine

A CCC macro is then invoked that parses the edited SFL and transmits
the source code for the flagged moduleo to the appropriate maintenance
account, and sends object modules for all other SFL entries to the
Class 2 partition from where they can be accessed by the maintenance

programmer at link time. In addition, the macro sends a copy of the
edited SFL to the maintenance account.

Within the development environment, the SFL can also be utilized to
streamline the job of’the developer or maintenance programmer. To
demonstrate this let us continue our example by assuming that ap-
propriate modifications have been made to SEEKENTRY and PARSELINE. We
wI1l also assume that th~ programmer has decided that, In addition to
these modifications, an entirely new module (called VALCOMMND) Is also
required and has been developed.

The maintenance programmer Is now prepared to recompile all of the
modified modules and the newly developed module prior to rellnklng the
ADD program. This could be done manually, or even with a command file
written and maintained by the programmer. A far simpler approach Is
to use the inf~~rmationcontained in the SFL as Input to an automated
utility (a VMS command file) that recompiles all modified or newly
developed m~dules. prior to invoking tk,lsutility, the programmer
must re-edit the SFL to Indicate any newly developed modules as-
sociated with the program. This 1s accomplished by flagging the names
of all newly developed modules with two asterisks and adding them tc
the SFL. For this example the re-edited SFL would appear as follows:

Re-edited Source File List

ADD !
VALDATBAS 1

● SEEKENTRY 1
UPDATE I
PMPTUSER !

* PARSELINE !
**VALCOMMND I

The utility parses the SFL and compiles
new (**) or modified (*).

Simll.arsupport can be provided for the

for Program ADD :

Main program
Data base validation routine
Entry locate routine
New entry addition routine
General prompting routine
Command decoding routine
Command validation routine

any module that Is flagged as

link activity. An automated
procedure can be suppll~d that parses the SFL and retrieves each
required object module from one of several locations depending on the
status (new, modlfleclor unmodlfled) of the corresponding entry In the
SFL. Objects for new and modified modules are linked from the main-
tenance account; objects for unmodified modules are linked from the
Class 2 partltlon.

In addition to r~’duclngthe overheads Imposed upon the
maintenance/development programmer, utilization of these standard
compilation and llnk tools guarantees that the same set of compilation
and link options are used In every operation. This promotes a level
of software uniformity that would be dlfflcult to obtain with manual
procedures.

The final step in the maintenance cycle for program ADD Involves
readmitting (after certification) the modified and newly developed
modules to the Class 1 partltlon (CCC data base). Depending upon

local configuration management standards and upon the level of’main-
tenance performed, this step may also require generatlo:~of a ncw
CONFIGURATION data structure within CCC to accommodatethe modified
software. To accomplish this task a CCC macro can be Invoked to
Insert the new CONFIGURATION, Import and parse the SFL, and import all
modules that are flagged within the SFL as new or modified. As a
final step, the macro deletes all status flags from the SFL. Again,
virtually all manual procedures are eliminated from what would other-
wise be a very complex task.

In addition to ellmlnatlng the tedium and significantly reducing the
time ~nvolved in processing new and modified modules, use of SFL-based
automated procedures and utilities at all levels of the development
and configuration management efforts virtually eliminates the poo-
slbillty of corrupting the Class 1 partition due to an error or
oversight on the part of the developer or the configuration management
staff. Configuration management efforts that rely upon ❑anual proce-
dures to update a data base of protected software are susceptible to
admitting uncertified modules to the data base, or falling to admit
all of the new or modified modules for a program to the data base. In
either case, If these errors are not immediately detected and rec-
tlfled, the integrity of the data base can be seriously compromised.
By providing SFL-based tools that are used by both the
development/maintenance and the configuration management communities,
however, one can guarantee that all modules and the same modules that
comprise a (successfully tested)~ogram are readmlt~to the data
base.

The final aspect of SFL utilization that we will present Is the ap-
plication of SFLIS to the automation of software system rsbullds.
Within the context of our system, the term system rebuild denotes a
process whereby all software subordinate to a particular data struc-
ture In the Class 1 partition (CCC data base) 1s recompiled and
relinked, and the appropriate compone ts of the Class 2 data base are
updated (with the new executable images, for example). To perform
this task manually, even for a very small system, can be an enormously
complex and time-intensive undertaking.

By utilizing the information within source file lists, however, this
process can be completely automated. A CCC macro Is Invoked to mcdlfy
the SFL for each program In the data base, flagging each constituent
module for transfer out of the Class 1 partition. This macro then
invokes the software release macro (discussed above) to transfer all
source modules and the corresponding SFL’S to a location in the Class
2 partition ~rom which they car?be compiled and linked. The standard
compilation and link utilities can then be executed from a command
file to accomplish the recompilation, rellnk and recataloging or the
resulting executable Image for all exported software. All sources and
obJects are then deleted from the Class 2 partition. In this marine!’
the entire system can be rebuilt extremely quickly and reliably.

Configuration Accounting within the Hybrid Environment

One of the pr.mlere difficulties associated with the conduct of’a
program o co-.’Iguratlonmanagement relates to the generation and
control of’large amounts of printed material. Especially for small
projects, and regardless of the degree to which Interface overheads
are reduced by the utilization of SFLIS, the effort required to gener-

‘“ate,update, file and retrieve the printed byproducts of configuration
management activities often dwarfs the savings gleaned from utilizing
automated Interface procedures. For a pro:ect of our size and or-
ganization, the most significant contributor to this sea of paper Is
the configuration accounting effort.

Our configuration accounting procedures specify the use of four dif-
ferent reports to Initiate software changes and track the change
processing status of a software component through the development,
maintenance and certification processes. Typical of these forms Is
the Discrepancy Report (DR), a standard form that Is completed and
submitted by system users to report a software fault and to initiate

‘.the maintenance activity to repair It. In order to track these
reports accurately, It Is necessary to maintain logs of pending
(unassigned), in-progress, and completed DRIS as well as a
chronologically-organized log for all DRIS. In addition a copy of
each Di?submitted against a particular software component should be
filed (In the Class 1 partltlon) with the source code of the repaired
sortware. Obviously, malntalnlng the various logs of printed copies
of these fcnms requires a major clerical effort. In addition, even If
the logs can be maintained In good order, the process of generating
reports that summarize their contents cannot be easily accomplished
with manual procedures.

Within the structure of the hybrid environment, however, these
problems can be very effectively addressed by automating all aspects
o!’the configuration accounting process. Templates for all configura-
tion accounting forms reside In the Class 2 partition of the CDB,
where they can be accessed by all users. A template Jan be completed
usin~ a text editor and submitted via electronic mail to a special
holdin~ area In the Class 2 partition where ~t Is assigned a unique
Identll’ylngnumber. A ccllcctlon of CCC macros can then be used to
perform all operations upGn a submitted DR, including:

a) importation from the holding area to the chronological log
(within the CCC datcibase);

b) r~odiflcatlonof the DR text to record the identifying number
on the I.)R;

c) assignment of’a change name to re~’lectthe PENDING status of
the DR;

d) automatic change of status of the DR from PENDING to ASSIGNED
when the DR ~.sussigned to a programmer or analyst. Upon
assignment, automatic exportation of the Dllto the program-
mer’s development environment;

e) automatic change of st~tus of the DR from ASSIGNED to
COMPLETED when the mal:~tenancespecified by the DR has been
completed. Upon completion, automatic exportation of the
uatlsfled DR to the origlnatorts account (In the Class 2

partition), and automatic copying Into the Class 1 data struc-
ture that contains the certlfled, repaired software sources.

In addition to supporting automated operatloinsupon conflgurat~on
accounting forms, the hybrid environment, by making use of CCC’S data
bcisemanagement capabllltles, supports automated management of these
forms. CCC macros that employ the LISTCHANGE and JJISTSTRUCTUHEcom-
mands can be used to generate the foilowlng reports on the status of
the change processing effort:

a) names and status of all entries In the chronological log ;
b) all change processing requests that have been submitted after

a specified date and time ;
c) individual lists of all change processing requests correspond-

ing to a particular status: PENDING, ASSI(3NED,or COMPLETED.

For a small project with a limited staff, the hybrid environment makes
possible the Implementation and support of very powerful automated
change processing and configuration accounting procedures without
burdening the del.elopment/maintenancecommunities with additional
overheads. Definition of these procedures accomplishes the goal of
addressing all configuration management activities in an automated
fashion, thereby maximizing the effectiveness and productivity of the
configuration management staff without interfering with the
devel.opment/maintenanceeffort. It also allows for electronic storage
maintenance, transfer and retrieval of information that would other-
wise be maintained In printed form, thereby moving us one step closer
to ~be goal of ‘tpaperlessifproject management.

Conclusions

In this paper we have presented the results of our efforts to imple-
ment an effective automat?d configuration management environment to
support a small software development proJect. We have demonstrated
that the introduction of a hybrid environment that exploits features
of the Softool CCC (for configuration management support) and the VMS
operating system (for development support) provides an ex~remely
~owerful structure within which both of these complementary activities
can be conducted. We have further clemons.ratedthat a simple lnter-
f’~cedata structure (the SFL) can be defined that aliows automation ofI
the interactions that must take place between the constituents of the
hybrid environment. [~inallywe have shown that the performance of
this system (In terms of operational overheads, convenience and user
training) significantly exceeds that of conventional configuration
management environments. Indeed, we have shown that the capabilities
of a developer operating within the hybrid environment are actually
enhanced, without imposing any significant additional.overheadn.

The hybrid environment approach to configuration management was
developed upeclflcally to address the requirements of a small software
development proJect. These requirements dictated the elimination of
intrusions upon the development effort by configuration management
activities. In addition, the ability to automate all phases of the
configuration management effort was deemed the only practical way to
guarantee that all configuration management aatlvities could be

carried out by a very small staff. It Is our opinion, however, that
the hybrid environment approach is also appropriate for use in con-
Junction with large-scale software development projects. Although the
high level of management vlsiblllty supported by the hybrid environ-
ment, and the prohibition against retaining uncertified ver~lons
within the CCC data base may be considered limitations, the tremendous
reduction in the overheads Imposes upon both ❑anagement and technical
staffs could potentially result in even greater productivity gains
than are seen on a small project.

We predict that the minimum impact of the Implementation of the hybrid
development/configuration management environment upon a large-scale
scf’twaredevelopment project would be the]-e-assignmentof a large
fraction of’the configuration management staff from tedious manual
tasks to (more productive) development-oriented activities.
Certainly, It Is true that the automated procedures that we have
described In this paper constitute a minimum exploitation of an ex-
tremely powerful resource: a subset that enables the small project to
conduct effective configuration management. The enhancements to this
system that might be realized by redirecting the efforts of staff
formerly engaged In manual configuration management activities to the
development and support of new automated capabilities could
revolutionize this very iinportantsoftware engineering discipline.

