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LOW-DIMENSIONAL BEHAVIOR OF THE PATTERN FORMATION CAHN-HILLIARD EQUATION
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Bruno Scheurer N "

Centre d'Etudes de Limeil - R
and Universite Paris-Sud (Orsay), France

We investigate the fourth-order Cahn-Hilliard parabolic partial
differential equation which describes pattern formation in phase
transition. Neumann and periodic boundary conditions are
considered for a domain in R, 1 < n < 3. This equation 1is
characterized by a negative (backward) second order diffusion and
multiple steady states for the appropriats range of parameters.
We establish compactness of the orbits in H () and convergence to
some steady state. We demonstrate that the Cahn-Hillfard equation
admits an intrinsic low dimensional behavior: im R, the number
oglfetermining modes (in a Galerkin expansion) is proportional to
L ; where L, the diameter of the domain, is also proportional to
the number of unstable modes for the linearized equation. Similar
results hold for n = 2,3.

1. INTRODUCTION

We investigate the low dimensional behlgior of the Cahn-Hilliard equation with
a quartic homogeneous free enmergy, in R, 1 < n < 3:

g% = div [M(u) V (-Au + au3 - Bu)])
= div (M(u) V J(u)] in QCR®
u(0) =uy 6 K@) , @ >0 and B>0 ; (1.1a)
the following hypotheses are made for the mobility coefficieat M(u):
M(u) > 0 , monotone non-increasing in |u], c!
and M(u) > M(() exp =Aful , A >0 ; (1.1b)

the boundary conditions on 30 (boundary of the pattern cell) are either of the
Neumann type or periodic (periodic cell structure):

g% =0 , g% =0 , (1.1c)
n an
or
u(x + Leit) = u(x,t) 1<4i<n , (1.1d)

L being the size of a typical pattern cell.



Eq. (1.1) is in fact a normalized form for the claasical Cahn-Hilliard
equation {2,5,9]):
dc

8c - 2 3
T div [M(u) V (-Ac + bzc + b3c + bac )],

2 eitker > 0 or < 0, b3 <o, b4 >0 , (1.2)

with the same boundary conditions. As shown below (1.2) reduces to (1.1) by a
sipple translation c(x,t) = u(x,t) + c*, c* constant.

b

Eq. (1.2) is a continuum model for pattern formation resulting from phase
transition. It is associated to s classical Landau-Ginzburg free energy [1]:

f = [ (l.(v?:)2 + f(¢))dx , fcdx=f c(x,0) dx = ct , (1.3a)
Q 0 Y]

vhere the homogeneous free energy f(c) is a quartic polynomial whose
derivative is:

of _ 2
3c bzc + b3c + bac

Steady-state solutions of (1.2) are given by critical points of the non-convex
functional F. The corresponding Euler-Lagrange equation is:

-AZ + byE + b3e2 + b,.e-"’ =ct , (1.3¢)

3

» by <0 ,b, >0 . (1.3b)

plus appropriate boundary conditions.

The influence of the homogeneous free energy function f(c) appears in the sign
of b2 and the parameter B [9]:

%3

b= -- . (1.4)
(Ib, 16,08

If b, <0, there is a '"negative viscosity" destabilizing wmechanism somewhat
linif%r to the one observed in the Kuramoto-Sivashinsky equation for unstable
flame fronts [6-8]). The gzero solution is unstable and this regime is referred
to ss "unstable subspinodal." The special limit case b2 £ 0 is called the
"spincdal regime."

If b, >0 and 22 > 3, the cubic 9{ defined in (1.3b) possesses two distinct
extréba. 1{ B" <3, b2 >0, it is well known that zero is a monotonically
stable attractor [5,9]¢ ZA Novick-Cohen and L. A. Segel [9] have extensively
studied the casse 3 < B" < » in s one-dimensional geometry. They have
cpecified the fu&} cet. of equilibrium solutions. They have also established
that for 4.5 < B~ < », the basin of attraction of zero is bounded, whereas

there exists at least another nontrivial equilibrium with its own basin of
actraction. B® = 4.5 is the distinguished "binodal" case.

H! investigste some g.obal dynamical properties of (1.2) when b, > 0 and
¥ >3, or b, € 0. Either case reduce to the normalized equation (F.l); set.:

u(x,t) = c(x.t) - c* ) (1.5a)



where

ck = -b3/3b4 >0 , (1.5b)

and is such that

TR
* = ’

8c3 c=c

through the translation (1.5), the cubic g{ is changed into:
b2

of 173 3

2 = ok - 2

3c - © + [b2 3 b‘.] u + b4 u . (1.6a)
We define

a=b6>0 (1.6b)

1 b5
B=-lby =351 +B>0 (1.6c)

indeed B2 > 3, b2 > 0 implies B > 0. Injecting (1.5) and (1.6) into the
Cabhn-Hilliard Eq.“(1.2) yields the normalized form (1.1), with M = M(c* + u),
and ug = c(x,0) - c*.

In Section 1, we verify boundedness of orbits in HI(Q) and the existence of
Lyapunov functional. Althqugh the above is implicit in the literature,
compactness of orbits in H' (1) bas not previously been established, to our
knowledge. This is done in Section 2, and enables the correct application of
a3 classical thological dynamics theorem of Male [4]: all orbits strongly
converge in H () to critical points of the non:convex functional (1.3a).

However, the most important results are found in Section 4, we establish the
intrinsically low-dimensional hehavior of the Cahn-Hillard equation.
Essentially, we project any 0:51: onto the linear manifold of the first
m-eigenmodes of the biharmonic A™. Suppose that the m-dimensional projected
orbit converges to some m-dimensional fixed point; we will sey that thc first
m-eigenmodes are determining if this implies convergence of the infinite
dimensional orbit.

Following ideas developed in the Navier-Stokes context by
Foias-Manley-Temam-Treve [3], we prove that for the onc¢~dimensional
Cahn-Hilliard equation:

m > ct L3/2 ,

vhere L is the pattern size.

L is alro proportional to the number of unstable modes of (1.1) linearized at
u =2 0; indeed the eigenvalue spectrum is:

A= B2 CERY L AR 0,2,
JAL



.and

b aIA >0 = (R,

wvhere [a] is the usual integer part of a. So for the determining modes:

m > ct (# unstable nodes)3/2 ;
in some heuristic sense, the impact of the nonlinearity is reflected orly
through the exponent 4. Similar results hold for n = 2 and n = 3, periodic
boundary conditions.
To simplify the technical derivations, we restrict ourselves to

M(u) = constant; the general case is easily disposed of, as soon as one
obtains an estimate such as:

Zim |lu(x,t)} , <K ;
t-o L ()
then from (1.1b)
0 < M(0) < M(u) < M(K)
2. BOUNDEDNESS OF ORBITS IN Hi(Q): THE LYAPUNOV FUNCTION
We consider the normalized problem:

du

Bt AJu) =0inQ , (2.1a)
J(u) = -Au + oqu’ - Bu , a and B > O
u(0) = uy € K () (2.1k)

with either

- periodic boundary conditions , u(x + Lei, t) = u(x,t), 1 <i <n
(2.1c)
(L being the size of a typical pattern cell) or
g%m-g%lmto . (2.1d)

In this section, QC R", 1 <n <3.
First ve have the:

- ~ - 1
Lemma 2.1. u(t) ® u(0), where u(t) is the average J u(x,t) dx and
[ = meas 0. 1al



Remark 2.2. The previous lemma implies that Poincaré-like inequalities hold,
as u can be renormalized to 2 function of null mean value. From now on, we
set

Hull = (f % a0¥
urless specified othervise.

We nov look for a Lyapunov function associated with (2.1). Multiply (4.1) by
J(u) and integrate by parts over 1. With either set of boundary conditions:

J 5 ax + W) ax =0 (2.2a)
2

9]

and injecting the explicit form of J(u) into the first integral:

E% (5 J (Vu)2 dx - g ] uzdx + % I uadx) +J (VJ)zdx =0 . (2.2b)
Q Q 0
Let us define V(t) as:
V(e) = % J (Vu)2 dx - g J uldx + % J uadx . (2.3)
Q 9] Q
Then (2.2b) implies:
d ' )
rr G I (2.4)

To eltablish]that V(t) is a Lyspunov function, we must showlthe boundedness of
orbits in H () and that V(t) is bounded from below in H (). Remark that:

ol

2
vee) = & S )l e f (2w - EyZax - By (2.5)
9] 1] 2Jo

now

V() < V(0) (2.6)

80

VF xS 2020 B g g o ane gl - %
1Y) 1] 2o Q 9] 2Ja

This proves the

Theorcm 2.3. Z£im ||Vu(t)|| < F(u.), where



Ny

Fug) = (11Vu2]] +2 f (

9] 2Ja

Corollary 2.4. 2£im ||u]]| 4 i3 bounded.
L

t>o
Proof. Use the continuous imbedding
B @ert*@ , o<

or specifically Eq. (2.7), together with Poincaré's inequality.

ul - By2 gy (2.8)

Corollary 2.5. V(t) is a continuous, bounded frow below, Lyapunov functional

on H1(Q).

Remark 2.6. All f the above results are valid if we consider the more
general equation (1.1) with the coefficient of diffusion M(u) given as in

{1.1b). Indeed:

du _ .
3t div M(u) VJ(u) =0 ;

multiplying by J(u) and integrating over Q:

J g% J(u) dx + [ M(u) (VJ)2 dx = 0 ,
] 9]

and we gtill have
d
i V() <o ,
with V(t) same as in (2.3).
3. ASYMPTOTIC BEHAVIOR OF ORBITS.

We wish to establish some kind of convergsnce of the orbits u(x,t) to
critical manifold M of fixed points U(x) of:

A6+ a @2 - pi=y 3.
f G dx = [Qlu(o) 3.
0

%%|an = 0 or periodic boundary conditions . 3.

To apply classical topological dynamics {esults of Hale [4]), we first need
relative compactness of orbits u(t) in H (Q):

the

la)

1b)

1c)

the



Theorex 3.1. 2im ||D2u|| is boundod(z), for either periodic boundary condi-
o

tions (2.1c) or Neugann cgnditions (2.1d) if Q c.Rl; and for periodic boundary

corditions if Q € R® or R”.

The proof is technical and will be outlined bﬁlow. Theorem 3.1 ensures the
relative compactness of the orbit u(t) in H (Q); hence, the w-limit set
associated tc u, is nonempty, compact, invariant and connected. Using a
classical theorem for such flows with Lyapunov functions [4], namely that V(t)
is constant on w(uo), we deduce:

Corollary 3.2. As t +» 2im dist |u(x,t) - M| =0 in HI(Q), for either
boundary conditions if Q0 € Rl, and for periodic boundary conditions if QcC R2

or R3.

Remark 3.3. Problem (3.1) usually admits multiple solutions, whether one
considers B or L = diam Q as a bifurcatioa parameter [9].

4
Proof of Theorem 3.1. Multiply (2.1) by 25 d 35 U» lotegrate by parts
10 n
axl axn
and take the sumation over all § = (61, ceey 6n) such that |§] = 2; we get:
b g3 1%t 4 ptun? - prindali? = 2 e g au? 0% ax
t -
16]=2
= I (6af uIVuI2 D26u dx + 3a [ u2 Au D26u dx) . (3.2)

o
{1

2

Apply Cauchy-Schwartz and Cauchy-Young's inequalities to the R.H.S. of (3.2):
y 53 10%un1? + (-e) 10%11? < B D%l + cce) S udoow)® ax

+cCe) S n® aw? ax (3.3)

from now on C(e) will be s generic symbol for any constant depending upon €.

We will estimate:

Jl

J u? (Vu)a dx , (3.4)

J J u (Au)2 dx . (3.5)

2

T1) For brevity, we set ||D*ul)? = f 110%1 2.
jal=k



" We will aeed the Agmon inequalities (for functions periodic and/or with zero
mean value):

v ilu@®N® H%@® |, ifa=1 ,

1 o < Jy,lla@nMim@n? , ifa=2 (3.6)
L

Yyl 1Y Haw) ¥, ifn=3

We also need the following general interpolation inequoalities:

+ - +
1D Yyt < 1% gt ?/3 |D**20) /3 (.7
- +
o%ag1 < 1105 Tup 1310 u) ¥ (3.8)
. hob o, X_ b, _
Also, as H'cpL" (n = 2) or 'L (n = 3), we will need:
1Dullfe < 1iDult® 1D%ul) , n=2 ; (3.9a)
1Dulife < 11Dal 1?2 0%¥? =3 (3.9b)

which are obtained by interpolation of H& (resp. Hi) between L2 and H2. We

will give explicit technical details only for n = 2. The casen=1and n =3
are similar.

In (3.3), we first comsider the term

BIID3u||2; from (3.7) and using
Cauchy-Young's inequality with p = 3/2, q = 3:

No2u12 < 1io®ut1*3 1imut1®3 11 < e 1i0%ui1? + c(e) 11pult?

€ |ID"uII2 + C(e) , (3.10)

fr

since Zim ||Vul| < F(uo) (Theorem 2.3).

Lt

Now estimate J1 in (3.4):

5 ueyax < i, nvan®,
L L

using Agmon's inequalities (3.6) and the interpolation inequrlity (3.9a):
3, <ct Iluil 1102l foul? 1l

and from Theorem 2.3:
3, < ce 1%l 1Dl < ce 11p%u))?

(using Poincaré's inequality) and

|
following (3.10).

J. <¢e |ID%1? + ce) (3.11)



Now estimate J2 in (3.5):

4
ot an? ax < nmn’®, ntné,
L L

using Agmon's inequalities (3.6):

4 4, .4
3, <ct Hasil Hp%ult Hhe*n® < ee 1ip%up) tiotun)

(using Corollayxy 2.4); now using the interpolation inequality (3.8):
i
3, <ct (oull® (io%uli® 1intarl < ce (%t 0%l

but from the interpolation inequality (3.7):

1/3 4  .2/3

3
[1D7ull < |{Dul] 1D ul | ;

§0:

3, < ct Lol 18 (pbur#?

and using Cauchy-Young's inequality with p = 3/2, q = 3:

3, <e HID%11? + cCe) I1imelf®

2

32

We nov collect all terms in Eq. (3.3), applying (3.10, 3.11, 3.12):

[ W)

£ IID‘°u|I2 + C(e) . (3.12)

A

% 5o 10%ul1? + (- 3¢ - Be) [10%ul1? < ce) (3.13)

We conclude with the help of Poincaré's inequality and Gronwall's Lemma, that:

Tim | ID%u]| <= . g
e

4. NUMBER OF DETERMINING MODES

This section gives our main result, namely an upper bound of the number of
determining modes for any solution of the Cahn-Hilliard equation (2.1) with
periodic boundary conditions. This bound is formulated in terms of L.
Although we give the detailed derivation for space dimension n = 1, analogue
results can easily be derived for n = 2 and n = 3.

CQnsider u,v two solutions of (2.1), corresponding to two initial data (in
H°(Q)); set w = u-v. Due to the periodicity of u,v, we can use a Fourier mode
decomposition of w and set:

P wix,t) = 2 "k(t) expg%! k.x (4.1)
o Ik|<m
vwhere k € Zn, and "k(t) is the kth Fourier coefficient of w(x,t). We will
slso use:
Q, w(x,t) = (I - P w(x,t) . (4.2)



Definition 4.1. We say that the first m Fouriler modes of w = u-v are
determining if:

lim IIP' (u(t) = v(e))Il =0 =+ 1lim Jlu(e) - v(t)}l =0 . (4.3a)

t» t o0

Remark 4.2. For Neumann boundary conditions (2.1d), we use the appropriate
eigenfunctions of (A2) as a Galerkin basis in (4.1 - 4.2).

Remark 4.3. If = is a compact positive invariant set under the semi-flow
defined in Section 3, then from (4.3) we deduce:

lim dist =(PIn u(t), PIn Z) =0 -+ lim dist(u(t), Z) =0
L+ te

since v(t) € = for all times if v(0) € =.

* *
In particular, if u = u , where u is some equilibrium sclution belonging to
the set of M of fixed points (cf. Eq. (3.1}, then:

* *
lim {|P_u(t) =P u |] =0~ lim |J{u(t) ~u || =0 ; (4.3b)
two T 0 o

if the projection of the orbit converges to some (projected) fixed point, the
same is true of the infinite-dimensional orbit.

The main result of this section is stated for space dimension n = 1; with
Q = [0,L] and periodic boundary conditions:

Theorem 4.4. The first m Fourier modes are determining if

m+1>K L3/2 . (4.4)

where K is some constant depending on a,B and {

0’ with initial values
Va0 11 < g

Proof of Theorem 4.4. For sake of brevity, in the sequel, we will denote
qH = Qmw, Py E me. Now, if u,v are two solutions, w satisfy the following
e

uation:
aw

13
Mulciplying by 9 snd integrating:

+ A(Aw + Bw - a[u2 + uv + vzlw) =0 . (4.5a)

b Hgg 1%+ ag 112 - 8 119g 1% - o f [u? + uv + v?] w Aq dx = 0

(4.5b)
But w = q, + Py and so by Hilder's inequality:
I (u2 + uv + vz)w 8q dx
< 1w+ uv + VP11 Ulp Il + gyl 118g || (4.6)
L

10



and

d 2 1 2 2
Ygp Hagll™ + —— {IlAqmll - B 11V Il
g |
2 2 2
- allv” +uv +ut] o 1lAq ll g 11} Tlgyll
L

2 2

Sa [[u® +uv+ v Hag bl e Il . (4.7)
L

We must prove that IIPm|| + 0 implies ljq || + 0. This will be completed by

verifying the three assumptions of the generalized Gropwsll's Lemma 4.1 of
[3]. We recall this Lemma:

Let £(t) be an absolutely continucus nonnegative function on (0,®) such that

g% + A(t)t < B(t) a.e. on (0,®) ,

where A(t) is a locally integrable function on (C,®) satisfying for some T,
0 <T < o

t+T
lim iuf [ Ads =y >0 (H1)
L@ t
t+T _
lim sup [ A ds =T <> | (H2)
> t
where A" = max (-A, 0) and B(t) is a measursble function on (0,®) such that
B(t)+0 ,t-r>e (H3)
then
E(t) »0as t » o
(Here, we set §(t) = IIqm(t)IIZ.) We define:
2 2
+
llag Il - B Ilvg 1?2 1w vl g
A () =2 - - 2a IlAquI (4.8)
m 2 ||qm||
CNE
B (t) = 20 |lu? + uv + v2I| _ liag il I1p_ |} (4.9)
@ L’ Uy m ' )
2
Haq || o y T
Pp(t) = —— Pp(t) = 5 I Py(8) ds (4.10)
||qm|| t
2 2
R(u,v) = allu® + uv + v7|| . (4.11)
L

Ll



'Inequality (4.7) now can be rewritten in a more compact way:
d 2 2
ac [legl!™ + A () Dlg 117 < B () . (4.12)

We first verify Hypothesis (H1) from the generalized Gronwall's Lemma:

2
2] 1aq 11 2Bl laq || I1Aq ||
Ap(®) 2 v Z " T qT| - 2Ry, ’TTgETT
Fgy !l % 4
=2 - ‘ g - 5
= pm(t) 28 pm(t) 2 R(u,v) pm(t) . (4.13)
From (4.13):
1 t+T - o y 2 t+T 3
T ft Am(s) ds > 2 pm(t) 7 2 B pm(t) - 5 ft R(u,v) pm(s) ds
t+T
>2 5 (1) - 2 Bp (0N - z(% i R(u,v)? ds)” B (t)"
t
t+T
=27 wr-p- A rewmiat , Gaw

t

where we use a classical incerp>lation inequality for IIqull2 and Jenssen's
inequality. From (4.14), a su:ficient condition ~ = (H1) is:

t+T
s w>p+d s ruw?ant (4.15)
t
but
Pt) 2 E . (4.16)
where E is the (m"'l)t'h eigenvalue of the biharmonic; EIn+1 = (ZEL%:ll)a.
Then a Tﬁ*ficient condition for hypothesis (H1) is:
2 2 t+T
L R T W R T T T LR T I R O b

L t

We will further elaborate on (4.17). But we first verify Hypothesis (H2) and
(H3) from the generalized Gronwall's Lemma. To -~ erify (H2), notice that
(4.14) implies by the Cauchy-Young inequality:

t+T N - o~ L )
_rt A (s) ds > 25 (t) -2Bp (t) -5 (t) - ﬁi: R(u,v)* ;  (4.18)

3

(H2) 1is satisfied as soon as

B (t) 2 4 p? (4.19)

12



which is implied by (4.16) and (4.17). To verify (H3), remember that R(u,v)
and ||Aq || are uniformly bounded in time (cf., Section 3); moreover,
Ilpm(t)ll + 0 from the very hypothesis of theorem 4.4.

We now further explicit the remaining sufficient condition (4.17). Using
(Lemma 2.1), namely tlat

u(t) = u(o) ,

the continuous injection of HI(Q) into LO(Q) can be sharpened as:

Hluall < 4L 11Vull , + u(0) . (4.20)
' 12

Then:

t+T
2, .2 2,,2
( S max (l|u “L°° » 1lv “L" ds)a

i

t

< max (Fm |1ul1?, , = IIvI1Z)
Lt L to L
< max ((I Flug) + w0n? , (L Fivg) + vond) (4.21)

where we have used Theorem 2.3, i.e., Zim ||Vu(t)|! < F(uo). Then for m and
>
L large enough, (4.17) is equivaleat to:

2 2
4n” (m+1)
S ~ ct(a,Bugvg) L,

(4.22a)
L2
m+ 1~ Ct(a,B,Co) L3/2 , (6.22b)
where we have taken both ||Vu(0)|| and ||V (0)|] < CO' D
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