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ABSTRACT

The origin of the I/v crosn ●ectlon for the 6Li{n,t) re.~tion qnd the be-

hevior of its ●n8ular distribution sre discussed in the context of (1) con-

ventional R-matrix ●nalyacs, (2) PWEAcalculations of oeuteron exchange, ●nd

(9) consistent R-matrix ●malymaa. Results of ● comprehensive, conventional

R-metrix ●nalysis of reactions in the 7Li syetem ●re presented, ●nd the poa-

sibl. interpretation of come of it~ parameters in tema of the deuteron ex-

cha~e mechanism is dimcussed. An extension of the usual WBA calculation to

include internal bound-etate ●ffects in a simple model is shown to introduce

additional pole- into the T ●atrix ●nd broaden the energy range over which

particle ●xchange may be impartant. A consistent R-matrix treatment of the

scattering ●quations in the internal ●nd external” regions leadt to channel

overlap terns Ott

with

I.

8ial

the resonances

INTRODUCTION

●ppear to include particle-exchange effects automatically

in ●n unitary f~nhion.

The 6Li(n,t) cross section has been ●n interesting ●nd sometimes controver-

mubject for the pa-t oeveral years. Althou8h ●eamurementB ●nd theoretical

deacriptiona of the reaction have been converging in recent years, qucutions of

interpreting the theoretical results in

mainad opon. The major quwtiom to h

l/vbohavior of the cross section at low

term of reaction mechanisms have re-

anawered ● re (a) What ia the orisin of

enercaas? and (b) How doe- one account

for tk rather cqlicatod behsvior of the ●n8ular distribution et higher

●nergies’~ ~~ee quottion- will be discu~ted ia the context of thrwe different

dmcriptionmi (1) conventional R-matrix approach; (2) deuteron ●xchanse in

plme-wavo Born ●pproximation; ●nd (3) consistent R-matrix approach.



II. CONVEHTIONA,LR-HATRIXAPPROACH

In conventiael R-utrix ●nalyses, the I/v cross section C-S from poles

in the R metrix located ●ither ●bove or below the n-6Li threshold. At low

cmer@es, about 8~ of the cross section comes frem the J = \ S-wave transi-

tion.
1

Early ●ttewptu 2,3 to explain the n-6Li reactiona put ● pole in the J = +

S-wwe juut below the n-6Li threshold. Our coqreheuaive ●tudy4 of rtactionm

in tie 71,i ●yatem, includina t-a scattering, from which the EHDF-V cross sec-

tions for 6Li were obtained, found that such r pole waa inconsistent with t-a

ocstterin~ data, ● result tkt was later reinforced by ● atudy5 of low-ener~

n-6Li ~las~ic scattering done in the Soviet Union. Distant lewela both above

●nd below the n-6Li threshold were tentatively ●scribed ia Ref. 4 to ● direct-

resction mechanism for the ~+ transition. Knox ●nd Lane6 recently reported ●n

R-matrix ●nalysis of the n-GLi reactions in which the I/v cross section in the

J = # state is attributed to ● level ●bove the n-6Li thrashold that they asrno-

ciste with a coqound nuclear state.

All of these R-matrix analyses ●ppear to ●gree, however, that the J = 3/2

component that ●ccounts for th- remaining 20% of the low-energy I/v cross mc-

tion comes from ● 3/2+ level in 7Li that occurs ●t’Ex - 9.5 HeV. Therefore,

the pole positions ●nd sasociated resction mechanisms seem to be leaot clear

for the J = # transition, which ●ccounts for ●ost of the l/v cross section ●t

low energies.

Recently we extendad the ●nalysis that ups used for ENDF-V 6Li cromm sec-

tions to include more data ●nd htgher ●nersies so that it id t!lt ●ost compre-

hensive R-mstrix study of reactions in the 7Li system tbtit has been done. Thin

analysia will provide Li(n,t) cross sections for the combined MDF-VI standards

file, ●s described by Carl#on’ ●t this conference, as well as the other neutron

cross #actions ●t ●nersiem below 4 ?W for the BMW-VI 6Li ●valuation. The

table below lists tha chmnal configuration ●nd the types of data for the

varioua resctionm that were includgd in thw analysis,



TABUI

~ MB MTA lYPES IBCMDED IN 7L1 R-MATRIXANALYSIS

Chenmal R_diue (fro) Au%— ——

h

Ii

,i*

Ii

h

t. k
m-%i

bm- *

Illte#rstad
hwrgy Cross

Ran&e (Hev) Section

3.1-14.2 %
8.7-14.4

12.9

0-4

0-3.5 x

4.02 s

4.50 2

4.50 1

Differential
Cross

Section Polarization

x x

x

x

x x

x x

Number
Data Points

2063

39

4

761

734

a 1 shows the types of fits obtsined to the t-a ●lastic acatterin~

ion ●nd snalyzing-power measur~nt.c of Jarmie et ●l.” One sees

le structure in these obse~ables an functions of both energy and

?roapomding to relatively narrow resonances in 7Li . Fits to n-6Li

:atterin# cross sections
9,10

●nd polarizations
11,12

●re shown in Fig.

IS 3 ●nd 4 show calculated neutron total ●nd el~~tic scattering cross

mparad to come of the measurements.
13-16

Calculated 6Li(n,t) cross

E* to shew deviation from I/v behav-plottad ●t low ●nerties as On,t ~

thown cqsred with son of the ●easurement ‘7-]9 in rie. 5. These

otethor with the cqarisons of thermal croso sections 8iven in Table

rata that the ●nalysis 8ivea #enerally very good representations of

stealcrom ooctionn in the standards retion.

TABM II

a
n,t

an,tl

=R?lAL n-6Li

Rocommndoda

(b) 940 * 4

(b) *75& .02

CROSSSECTIONS

Cslculatad from R-llatrix haly~is

939.46

0.74

I
I

E#!%,%%EJenam, ad N. il.
tron Crosc Sections, Vol. 1, Part A, by S. F.

lIolden, Academic Press (1981).



The 6Ll(n,t) eqular distribution chenges urkedly in the region Em $ 4

HeV, but there does not yet sea to be en experimntel ccmmnmm on the deteilm

of the changes, Calculations from the R-metrix ●elyeim of the xero-dqras eml

180-degree differential C:OSS sections ●re cqared in Fig. 6 with recant WaO-

ure9ents20’21 ●t neutron ●nersies below 400 keV. me relative Legendre coeffi-

cients of Knitter et ●l. 20, which were derived from rsthcr coaplete angular dis-

tributions ●t energies between 0.035 ●nd 32S M?, heve been converted to xero-

●d llBO-degree cross sectionc whose norulizations ●re determined by the fitting

process. Also shown ●re ●bsolute mea-ur~nts ●t zero ●nd 180 de8rees by Brown

et ●l. ~1 which •pp~ar to be ●nergy-shifted with respect to the Knitter data.

‘*I)’* 7.W w 4H8(Q4PIB 7.W w

d ,

4HO(U)41+0IM w

-“”-
‘F4(tQ4nDM w

up

rig, 1. Differential cross mctiom (left) ●ad ●lyains wwera (riuht) for
t-a ●lantic ocatterins ●t Et ● 7 and 13.5 ?leV. The solid cu~e~ ●re th~ R-
●aurix calculations ●nd the data ●xe tho~e of Jam~e ●t ●l.s
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h
e 2. Iliffaraniial cross sections (left) and polarinationa (riiht) for

o

n-aLi
Btic ●csttsrint ●t E = 0,25 and 9.5 Ml. The solid curvee ●re the R-matrix
culatious and tho da~t are those of Leac,e~lo &ith,li and Dri#o.lg

-R-
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4 NEUTRON ENERGY (MEV)
Fig. 3. Comparison of the R-matrix calculation (solid line) to the n+eLi
total croBs-uction ●es~uremrnts of Rnitter,14 lImrvey,lB Oueuther,le and to
the ENDF-V cress snction (dashed ltn~). The ncaleB for the three parts of
the figure rnt~,bffnet by s factor of 10,
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. Coqarimon of the R-metrix calculation (solid tune) of the n-eLi
●ted cross section with data of A#amila ●rid of Knitter,14 and wit~
DF-V cross section (dashed curve).

:N,T)4HECRM9SIHX1 ON

g UUAZEI ma I

1 , v t

4P
v

~

NEUTRON ENBRGY (MEW

#
6LI(N,T)4HE CR(3S SKTION

~. c~ariaun of tic R-matrix calculation of the ‘Li(n,t)4He integrated
section [solid curve) with the data of Lamase,17 Ronnar,ls ●nd Bartle,lg
,W8MDWV (dashed CUflC), h tha riththand fisure, ~is plotted to
Ieviationm from Ilvbahsvior ●t ●ner-ies below 100 ken.
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Fig. 6. R-matrix calculations (solid tunes) compared. to the measurements of
Knitterzo and Brown21 of the ‘Li.(n,t)4He differential cross section at 0° (left)
●nd 180° (right).

Absolute 4He(t,n)6Li zero-degree differential cross-section measurements

by Drosg 22 ●re compared with the calculatioi~ in Fig. 7. The calculation lies

- ]6% below the data in the region AS Et S 13.5 HeV. In a comparison with

Overley’a 23 6Li(n,t) differential cross-section measurement in Fig. 8, one aces

a~ain the tendency of the calculation to be low ●t fomard anglea in the range

0.4 S En S 1 HeV, ●lthough the overall shape ●greement is fairly good.

The problems with shape disagreements ●mong recent measurements in regions

where the ●ngular distribution is changing rapidly ●re illustrated in Figs. 9
.24●nd 10. The top panel of Fis. 9 rnhows relative ●easurements of Conde c9m-

pared with Overley’s 23
●btolute ●easurements (bottom panel) ●t nearly the same

●nergies, ●nd with the calcdations. One sees that, with the ●xception of a

few isolated Cond6 points, the measurements ●re generally consistent with each

other ●nd with

clear in Fig.

the calculations ●t

10 where the Cond&

these ●nergies. The situation i~ not 00

data (top) ●re compared with %e(t,n)6Li



~1 -*-S@ction =asur~ts by Drocg22 (bottom) ●t nearly ●quiva-

.@@$@e. In W. ceae, the fit has issued ● shspe intermediate between.;
* WSWMta, but clearly more data ●re required to better define the

k 6iStribllti0ne in the 2-4 MeV region.

Of prticular interest in this enalyait is the level structure ●ffecting

~ti-~ trmaition (of which the 4+ is one).

levels ● few HeV below the t-u threshold (in

m), positive-energy levels at Ex - 12.0 MeV,

ts. The reduced-width products, ynyt, in the

levels have the opposite sign from those in

In the S- ●nd P-waves, there

the P-waves, they ●re bound

and hipher-lying background

negative-energy (relative to

the - 12 kleV positive-energy

1s . A possible interpretation of ●uch structure comes from considering the

Bron ●xchange contribution to the 6
Li(n,t) reaction in plane-wave Born ap-

kation (PwBA).

?

O.om

O.oao

%e(tr$% 0°
,

- ..—

Fig. 7. R-matrix calculation of the 4He(t,n)eLi diffsrentisl
croos stction at sera degree- compared with the measurement
of Dromg,aa
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Fig. 8. Calculated ‘Li(n,t)4He differential srosn sections compared with
the measurements of Overleyaa ●t neutron energies between 0.4 ●nd 1 HeV.
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Ms. 9. R-matrix calculations [solid curves) of ‘Li(l~, t) differential
●.ctiona cqsrad with measuramento of Cond@4 (top) ●nd of Overleyaa
at ●nargim near En = 1.S ●nd 1.8 ?leV.

Croma
(bottom)
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Fiu. 10. Calculation of ‘Li(n, t)6He differential croaa section- compared with
data of Cond@4 (top) ●t E = 2.32 ●nd 2,75 HeV, ●nd of 411e(t,n)*Li differential
cross sectiont ●t ●pproxim~tely co:reopondin8 values of Et (bottom) compared
with nea~urement- of Drosg.’a
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:, 111, ~EXCHANOE IN PWBA.-

UeiFm.n ●nd ?lanakos= have su8gested that deuteron ●xchange ❑ay account

for the t+ component of the Li(n,t) I/v cross section ●t low ●nergica, ●nd

se~e ●s ● %ckground” mechaniam ●t low energies for the resonant behavior of

the ●ngular distributions. Their PUBA calculation (which ●ppears to have in-

herited ●rrors in numerical factors from ●arlier work) makes the standard a~-

●~tion thst the bound-state wavefunction~ for
6

Li ●nd 3H have their ●%ponen-

tially decaying ●symptotic forms ●ll the way in to zero radius, with the result

that the Born-approximate T matrix has only negative-energy poles. A more

reali-tic calculation would take into ●ccount the internal behavior of the

bound-state wavefunctions, properly matched to the exponentially decaying

U3ymptotic forms. This calculation camot be done in ● model-independent faah-

ion, but ●ven a simple model of the internal behavior of the bound-state wave-

functions Bivea qualitatively different effectg.

We have aosumed S-wave, square-well ●igenfunctiona (sine functions) for

the internal bound-stmte wavefu.nctions. The depths (V”) ●nd rangea (c) of the

●quate wells were determined by matching the binding ●nergies and asymptotic

normalization constants (?2) for d-u binding in 6Li ,and for n-d binding in 3H.

These values ●re given in Table III.

TABLE III

SQUARE-WELLPOTENTIALP4RMETFRS FOR6Li AND 3H BOUNDSTATES

V; OleV) Ci (fro) Bi (FieV) --2 ~ecomended ~2(a)
CA i——

6Li(d-a) 5.08 4.45 1.474 4.62 4.60

%(n-d; 98.51 1.95 6.258 2.57 2.59

‘*) Takan from H. P. Lecher ●nd T. tllzutani, Phys. Rep. 46, 43 (1978).

Tha Born-tpproxlmste Tmatrix in this ❑odel is given by

~(e) ■ -~ V“vo $-$P1P3)*
4# 1 J1”U)3 *

‘1K3 (1)
D(t,e)[D(c,e)-( l-a)vf] [D(c,e)-(1-a)V~l



in which the label 1 refers to n-6Li, 3 refers to a-t, PI im the d-a reduced

m-as, p3 is the n-d reduced mass, B1 in the binding energy of a ●nd d in 6Li,

2111
B3 ia the binding tmersy of n ●nd d in %, ●ad # .— The energy denom-

*2 ‘i “
inator ia

D(&,e) =Bl + B3 + (l+c)c - 2~a(&+B1)(&+B3~ CCC9 , (2)

in terms of the total center-of-mass energy c (relative to the n+d+u mass), ●nd

scattering ●ngle e between the incident neutron and ovtuoing triton. We alao

have the residue factors

Pi -Pici

‘i =~i (COS qici + ~ sin Iicih P

which ●re functions of momentum transfer

oi
qi=[ —D(c,e) - 13:11’2 ,

(1-u)n2

mn ❑a 2mnd the ❑ama factor a ❑ —-=-,
‘t ‘6Li 9

Using the identity

(3)

(4)

(3)

Zq. (1) can be reduced to ● sum of pale tema, in which D 8ivas the nmgative

-energy pole in the nquared momentum trmsfer (gi2 = -~i2), ●nd the other tetm

#ive positive-energy poles, th lowett of which has a roaidue with opposite

sign from that of the D-] tem tinc~ V; > V!. This Aa qualitatively the same

●m the pole ttructure seen in our R-matrix ●naiysis for the spin-$ transition

●lthou$h the comparison is quite approximate. The point is, however, that h-

cludint the internal behavior of the bound-state wsvefunctions appears to

broaden the ●nersy rmae over which particle ●xchang~ contributor to a reaction,

●O that its ●ffeqtn need not be concentrated jutt at low ●nersies in no#atlve-

enorsy polec, but ●ay be manife~t in po~itive-enerty pole- a~ well.



W. COMSISTBNTR-MATRIXAPPROACR

Tho ●iailaritims between our R-matrix amplitudes for the spin-~ transi-

ieus ●nd s PWBA calculation includint internel behevior of the bound-state

mvafumctions lead one to seek ● more definitive correspondence within the

kitary fraaewark of R-matrix theory. The deuteron exchmge mechanism in the

Li(m,t) reaction belongs to ● lmser class of ●ffects that come from non-

rtho$onal chann~ls that ●re ne@ected in con=entionsl R-matrix theory. This

D becauso the equationo used to relate $he R matrix to the T (or S) ❑atrix

me froa matching to ●n ●symptotic scatterin8 solution that is valid only ●t

infinity, where the channel overlap ●ffectt vanish.

When a consistent R-mtrix formulation of the acatterina equations in :he

(t.raal (asymptotic) resion i- metched to the R-matrix solutions in the inter-

tl retion, additional terms due to channel overlap ●ppear in the relation

?tween the T setrix ●nd R matrix, which can be considered as off-dia~onal con-

ributiona to the “hard-sphere” ●mplitude. These terms ●re mathematically

lmilar to th MM T-ua;.rix contributions from particle exchan~e, ●xcept that

)oy arc properly unitary. We ●re presently reducins the integrals for the

~rtisl-wave amplitudes of these t~ms to computational fona so thst they can

I included in our R-matrix calculations. The expectation is that these terms

ill accouat for most of the spin-+ transitio. strensth presentlv coming from

ha in our conventional R-matrix ●nalyai-.

SM9ARY ANDCONCLUSIONS

A coaprehmsive, conventional R-matrix fit to reaction- in the 7Li -yttem

,von a #ood rapraaentation of almost ●ll the data included. In th!z ●nalymia,

Ie I/v cross ●ection for the 6Li(n,t) reaction ●t low enertie~ comes primarily

‘H th. comtructive interference of J ● $ S-wave levels below the t-a thresh-

,d snd #hove the n-6Li thranhold. Similar levelu for the F ■ \ P-wave transi-

,oas provide the forwarfl-peskad backsroumd umderlyin~ the behavior of the

A(n)t) en@sr dittributiono, althoush thi~ =ontributiou appears to be some-

mt too small in the resion 0.4 : En : 1 lleV,

A MA colculatioa of the deuteron ●xchange contribution to the rsaction

Iat takes into sccoumt the behavior of the internal bound-state wavefunctions



gives, in ●ddition

tum-tranmfer (q2 =

to the pole normelly encountered ●t negative squered momen-

-~2), poles at positive q2 thet interfere constructively

(residues with opposite sign) with it. This is qualitatively the pole struc-

ture we see for the s = # transitions in the R-metrix ●nmlyais, ●nd suggests,

●lon~ with the similarity of the ohapes of the ●ngular distributions calculated

for those transitions with the PWBAresults, that the dominant mechanism for

the s E \ transitions in the Li(n,t) reaction is deuteron ●xchanae.

Channel overlap term that correspond to deuteron ●xchan~e in s simple

■odel of the bound states for this reaction ●rise naturally in R-metrix theory

with ● properly consistent treatment of the scattering equations in both the

internal ●nd external ~~gions. These terms, which ●re similar to the PUBA

results except that they ●re umitary, may ●ccount for most of the s = + tranai-
6tion strength obsemed in the Li(n,t) resction. The final results of the Loo

Alamos 7Li R-matrix analysis, including these channel overlap ●ffects, will be

u~ed in the combined ENDF/I!-VI ~tmndarde ●valuation and in the Ver#ion VI

general-purpose cross-section ●valuation for 6Li .
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