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DYNAMICALCALCULATIONSOF NUCLEARFISSION

AND HEAW-ION REACTIONS

J. Rayford Nix and Arnold J. Sierk

Theoretical Division, Los Alamos National Laboratory

LoS Alaax)s, New ~XiCO 87545, USA

A8STRACT

With the goal of determining the magnitude and mechanlsra

of nuclear dissipation from comparisons of predictions

with experimental data, we descrfbe recent calculations

in a unified macroscopic-microscopic approach t.olarge-

amplitude collective nuclear motion such as occurs irl

fission and heavy-ion reactions. We describe the time

depend~nce of the distribution function in phase space

of collective coordinates and momenta by a generalized

Fokker+lanck equation. The nuclear potential ●nergy of

deformation is calculated as the sum of repulslve Cou-

Iornband centrifugal energies and an attractive Yukawa-

plus-exponential potential, the inertia tensor is calcu-

lated for a superposition of rigid-body rotation and

incompressible, nearly irrotational flwby use of the

Werner-Wheeler method, and the dissipation tensor that

describes the conversion of collective energy Into

single-particle excitation energy is calculated for two

protot~pe mechanisms that represent opposite extremes of

large and small dissipation. We solve the generalized

Hamilton ●quatfons ofmotfon for the first moments of

the distribution functfon to obtain the mean transla-

tional fission-fragment kinetic energy ●ndmass of a

th?rd fragment that sometimes forms between the two end

fr~gments, as well ●s dynamical thresholds. capture

cross sections, ●nd ternary events in heavy-ion reac-

tluns,



1. INTRODUCTION

Nuclear physicists have been struggling for years to determine

the magnitude and riechanismof nuclear dissipation--to answer two

elementary questions: Is a nucleus’overdamped like a drop of honey, or

underdamped like a drop of water? Does a nucleus dissipate its energy

of collective motion primarily through interactions of nucleons with

the mean field generated by the remaining nucleons, or do two-particle

collisions play a substantial role? Despite numerous experimental

clues provided by fission and heavy-ion reactions, the answers to such

questions posed by this challenging many-body problem have pro”:ed

elusive. This is because of the many complementary aspects displayed

by the atomic nucleus. With its relat~vely small number of degrees of

freedom, the nucleus is both microscopic and macroscopic on the on?

hand and both quantal and classical on the other, which gives it a

rich dynamical behaviour ranging from elastic vibrations of solids to

long-mean-free-pathdissipative fluid flow with statistical fluctu-

ations. On this occasion of the Golden Jubilee of the Indian National

Science Academy, we would like to tell you abo~t some of our recent

calculations at Los Alamos directed toward answering these questions.

Our approach is not to explain the experimental data in terms of

some model with adjustable parameters--since often several models with

widely different physical bases are capable of doing this equally

well--but instead to find and calculate physical observable that

depend sensitively upon the magnitude and mechanism of nuclear dis-

sipation, The difficulty arises because many of the gross experi-

mental feetures of fission and heavy-ion reactions are determined

prfmerily by a competition between the attractive nuclear force and

the repulsive Coulomb and centrifugal forces, and any theoretical

approach that includes correctly these relatively trivial forces re-

produces the data with fair accuracy. Also, the final ●ff@cts on

observable quantities caused by dissipation are often very similar to

the final ●ffects caused by collective degrees of freedom.

In our studies here, we consider two prototype mechanisms that

represent opposite extremes of large and small dissipation. For these
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two mechanisms we use a macroscopic-microscopic method to calculate

observable quantities in fission and heavy-ion wactions and confront

these predictions with ●xperfnntal data in an attaqt to determine

the magnitude and mechanism of nwlear dissipation.

2. MACROSCOPIC-MICROSCOPICMETHOD

We focus from the outset on those few collective coordinates that

are most relevant to the phenomena under consideration. In particu-

lar, for a system of A nucleons, we sepmate the 3A degrees of freedom

representing their center-of-mass motion into N collectivedegrees of

freedom that are treated explicitly and 3A - N internal degrees of

freedom that are treated i~l icitly.

2.1 Collective Coordinates

In our earlier dynamica? studies we have usually described the

nuclear shape in terms of smoothly joined portions of three quadratic

surfaces of revolution, with three synsw?ric and two independent asym-
1-51 Although suitable for many purposes,metric shape coordinates.

this three-quadratic-surfaceparametrization breaks down in the later

stages of many heavy-ion fusion calculations, is unable to descr~be

division into more than two fragments, and leads to very complicated

●xpressions for the forces involved.

Because of three disadvantages, we have switched6] to a more

suitable parametrization in which an axially symetric nuclear shape

is described in;;linc!rical coordinates by means of the L;gendre-poly-

nomial ●xpansion

p:(z) = R*
!3Op % pn[(z-i)/zol . (1)

In this expression, z is the coordinate along the ~ymetry ax~s, ps Is

the value on the surface of the coordinate perpendicular to the sym-

metry ●xis, Z. is one-half the distance between the two ends of the

shape, ~ 4s the value of z at tht midpoint botwesn the two ●rids,RO is

the radi~s of the spherical nucl~us, Pn is a Legendro polynomial of

degree n, ●nd qn for n# O ●nd 1 ●ra N - 1 shape coordinates. Since
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the nucleus Is assumed to be tncoaprs$sible, the quantity ~ Is not

independent but fs Instead determined by volume conservation. Also,

~ isdetermined by fixing the center of mass. Inadditlon, we in-

clude an angular coordinate 9 z qwl to describe the rotatfon of the

nuclea;*synmeetryaxis in the reaction plane, which leads to a total of

N collective coordinates q = q2,...,qN+l that are considered. Through-

out this paper we use N = 11, corresponding to five independent sym-

metric and five i~dependent

lar coordinate.

2.2 Potential Energy

We consider excitation

single-particleeffects may

asymmetric shape coordinates and one an~u-

energies that are sufficiently high that

be neglected and calculate the potential

energy of deformation V(q) as the sum of repulsive Coulomb and cen-

trifugal energies and an attractive Yukawa-plus-exponentialpoten-

tial, 9]8] with constants determined in a recent nuclear mass formula.

This generalized surface energy takes into account the reduction in

energy arising from the nonzero range of the nuclear force in such a

way that saturation is ensured when two 6emi-infinita slabs are

brought into contact.

2,3 Kinetic Energy

The collective kinetic ●nergy is given by

(2)

where the collective momenta p are related to the collective veloci-

ties ~ by

(3)

In th~$e ●quations and the remainder of this paperwe use the conven-

tion that repeated indices are to be summed over from 2 to N + 1. At

the high ●xcitation ●nergies and large deformations considered here,

where pairing correlations have disappeared and near crossings of

single-particle levels have become less frequent, the rotational mo-

10] and the vibrationalment of inertia Is close to the rigid-body value

inartia is C1OSQ to the incompressible, irrotational value,111 we



therefore calculate the fnertfa tensor M(q), which fs a function of

the shape of the system, for a superposition of rigfd-body rotatfon

and fncompressfble,nearly frrotatfonal flow. For thfs purpose we use

the Werner-Wheeler method, whfch determines the flow In terms of cir-

cular layers of flufd.1-6]

2.4 Dfssipatfon Mechanisms

The coupling between the collective and internal degrees of free-

dom gives

direction

Ff c

rise to a dissipative force whose mean component fn the f-th

may be written as

(4)

For the calculation of the shape-dependent dissipation tensor q(q)

that describes the conversion of collective energy into single-par-

ticle excitation energy, we consider two prototype mechanisms that

represent opposite extremes of large and mall dissipation. The ffrst
4-6,12-15] which arises from COl-machanism is one-body dissipation,

lisions of nucleons wfth the movfng nuclear surface and when the neck

Is smaller than a critical sfze also from the transfer of nucleons

through it, wfth a magnitude that is completely specified by the
2,4-61 which ISmode1. The second mechanism fs two-body viscosity,

responsible for dissipation in ordinary fluids. Because in nuclei the

nucleon meaf~free path is long compared to the nuclear radiu~, the

conventional result for this mechanism is not ●xpected to apply.

Nevertheless, with a coefficient of two-body viscosity that is adjus-

ted to reproduce experimental results, it represents a tractable and

useful phenomenologica! approach for describing small dissipation.

Compared to most of our previous calculations with one-body dis-

sipatlon~’5’12] our present calculations incorporate three improve-

ments. First, to describe the transition from the wall formula that

applles to mononuclear shapes to the wall-and-window formula that

spplles to dinuclear shapes we now use the smooth interpolation]

q =sin2(~) qwall + COS2f~) flwall-and-window ‘ (5)

whera



a=(r
neck’Rmln)2 (6)

is the square of the ratfo of the neck radius rneck to the transverse

semi-axis Rmfn of the end fragment with the smaller value. Second, in

determining the drift velocities of the end fragments relative to

whfch velocities In the wall-and-wfndow formula are measured, we now

require the conservation of linear and angular momentum rather than

6] However, the resultsusfng the velocities of the centers of mass.

calculated with both prescriptions for the drift velocity are nearly

identical. Third, for asymmetric shapes we now also ta~e int~ account

the dissipation associated with a time rate of change of the mass

asynanetrydegree of freedom fn the completed wall-and-wfndow fonn-
U,a 14,15]

●

2.5 Generalized Fokker-Planck Equation

In addition to the mean dissipative force, the coupling between

the collective and internal degrees 04 freedom gfves rise to a residu-

al fluctuating force, which we treat cnder the Markovian assumption

that it does not depend upon the system’s previous history. At high

excitation energies, where classfcal statistical mechanics is valid,

we are led to the generalized Fokker-?lanck equatfon

for the dependence upon time t of the distribution function f(q,p,t)

tn phase space of collective coordinates and momenta. The last term

on the rfght-hand side of this equation describes the spreading of the

distribution function in phase space, with a rate that Is proportional

to the dissipation strength and the nuclear temperature r, which is

measured here In energy units.

2.6 Generalized Hamilton Equatfons

Although a useful approximate solution of ● two-dimensto~al
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Fokker-Planck equation has been obtained recently,16] it is Sttll

difftcult in practice to solve “&hegeneralized Fokker-Planck equation

except for spectal cases. Therefore, in some of our studies we use

equations for the time rate of change of the first resents

distribution function, with the neglect of highv moments.

the generalized Hamilton equations

+ = (N-bijPj

of the

These are

(9)

which we solve numerically for each of the N generalized coordinates

and momenta.

3. FISSION

As our first application, we calculate for the fission of nuclei

throughout the periodic table thefr mean translational fission-frag-

ment klnetlc energies and compare with experimental values, Although

similar to earlier studies,2,41 our present calculations are performed,

as discussed above, with a more flexibls shape parametrization, with a

more realistic set of constants, and with an iqmoved treatment of

one-body dissipation. Also, our initial conditions at the fission

saddle point now incorporate the effect of disslpatio,~on the fission

direction17] and are calculated for excited nuclei with nuclear temper-

ature ~ = 2 MeV by determlntng the mean velocity of all nuclel that

pass par unit time through the saddle point with positive velocity.18]

Because this procedure is no longer valld when the fission barrier Is

less than the nuclaar temperature, fn such cases we use the mean

velocity of the nucleus whose barrier is 2 MaV high. The atomic

number Z fs related to the mass number A according to Green’s appruxi-

19] Our calculations for two-mation to the valley of beta stability,

body vlscoslty are performed with viscosity coefficient



P =

which aS

0.02TP = 1.25x 10-231WS/fJt13, (lo)

wesee later is the value required to optimally reproduce

experimental mean fission-fragment kinetic energies.

3.1 Dynamical Uescent

In our fission calculations we specialize to reflection-syuunetric

shapes and zero angular momentum, so that only five coordinates are

considered explicitly. The mean dynamical trajectories in deformation

space for light nuclei correspond to short descents from dumbbell-like

saddle-point shapes to compact scission shapes, whereas those for

heavy nuclet correspond to long descents from cylinder-like saddle-

point shapes to elongated scission shapes. Compared to the trajec-

tories for nonviscous nuclei, those for one-body dissipation lead to

more elongated scisslon shapes for light nuclei and to more compact

scission shapes for heavy nuclei. In contrast, the trajectories for

two-body viscosity always lead to more elongated scission shapes.

3.2 Ternary Division

An exciting new aspect of these dynamical calculations is the

formation of a third fragment between the two end fragments for suf-

ficiently heavy nuclei with either no dissipation or small two-body

viscosity. As shown in Fig. 1, the mass of this third fragment in-
2 1/3creases with increasing Z /A above a critical value that is slight-

ly lower for two-body viscos~ty than for no dissipation. Since no

third fragment Is formed with one-body dissipation, accurate experi-

mental Information concerning such true ternary-fission processes

should help decide the nuclear-dissipation issue. Further theoretical

aspf~ctsof this problem are currently being studled at Los Alamos by

Ciirjan.203

3.3 Fission-Fragment Kinetic Energies

In calculating the mean

●nergy at infinity, we treat

terms of two spheroids, wfth

continuous the values of two

flssion-fragment translational kinetic

the post-scission dynamical motion In

initial conditions determined by keeping

moments and their time derivatives. When

● small third fragment is formed in a realistic situation off the

8
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~6ti- 1600 1700 1800 1900
p/~113

Figure 1
Effect of dissipation on the formation of
two end fragments.

symmetry axis and/or with some transverse

contributes less to the kinetic energy of

2000 2100 2200

a third fragment between the

veloclty, it moves away arid

the two larger end fragments

than it would in our Idealfzed calculation, where It remains statlo~-

ary at its origin. In the presence of a third fragment, we obtain a

lower llmlt to the ftssion-fragment kinetic energy by calculating the

post-scisslon separation of the end fragments in the absence of the

mfddle fragment, Also, we estimate an upper lfmit in terms of the

kfnetic energy at scission of the two end fragments plus the Coulomb

~nteractlon energy of three spherical nuclei positioned at their re-

spective centers of charge.

As the nucleus descends dynamically from tts fission saddle

pofnt, the repulsfve Coulomb force can overcome the attractive nuclear

force and rupture the neck prior to Its reaching a zero radius, as is

requtred In our calculations. Although such a neck rupture at a non-

zero radius would ~ncrease the calculated kinetic ●nergy slightly,21]

we neglect this effect here because of the d~fficulty of properly

incorporating the nuclear compressibility energy, whichplays a cru-

cial role in the neck-ruptureprocess.

9



We compare in Figs. 2 and 3 our mean kinetic energies calculated

in this way with experimental values for the fission of nuclei at high
2’22’231 fiem single-particle effects have de-excitation energy,

creased in importance. As shown by the short-dashed curves in both

figures, the results calculated with no dissipation are for heavy

nuclei substantially higher than the experimental values. Dissipation

of either type lowers the calculated kinetic energy. However, as

shown by the long-dashed cuwe in Fig. 2, one-body

magnitude that is specified by the theory predicts

V81U2S that lie below the experimental data. This

arises because the highly dissipative descent from

damps out much of the pre-scission kinetic energy,

dissipation with a

for heavy nuclei

underprcdic;ion

the saddle point

and our improved

parametrization leads toinoderately elongated scission shapes with

lower Coulomb repulsion. We regard this discrepancy as experimentally

250

---- Nfjdissipation

I
o 111 ~ ~ ,: , ~d

o 500 1000 1500 2000
~2@3

Figure 2
Reduction of mean fission-fragment kinetic energies by one-body dis-
sipation, uompiiredto ●xperimental values.
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, , I 1 1 , I 1 1 ’11 IZr

Oat’”’’’’’’’’’’’’’””
o 500 1000 1500 2000

z2/#3

Figure 3
Reduction of mean fission-fragment kinetic energies by two-body vis-
cosity, compared to experimental values.

demonstrating that one-body dissipation as presently formulated is not

the complete dissipation mechanism in large-amplitude collective nu-

clear notion.

In contrast, as shown by the solid curves in Fig. 3, when the

two-body viscosity coefficient is adjusted to the value p = 0.02 TP,

the experi~ntal data for heavy nuclei lie between the calculated

lower and upper limits and are adequately reproduced throughout the

rest of the psriodic table. For two-body viscosity, the dynamical

trajectories lead to elongated scission shapes with less Coulomb re-

pulsion, but this is supplemented by some pre-scission kinetic energy.

These results calculated with several improvements demonstrate that

mean fission-fragment kinetic energies are capable after all of dis-

tinguishing between dissipation mechanisms.

.,
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4. HEAVY-IONREACTIONS

Even better prospects for determing the dissipation ~chanism

reside with heavy-ion reactions, where we are able to choose the total

mass of the combined system, the mess asymetry of the entrance chan-

nel, and the bombarding energy with foresight. This permits us to

select for study those dynamically interesting cases that involve

large distances in deformation space.

4.1 Oynamical Thresholds for Fusion

A necessary t dition for compound-nucleus fonation is that the

dynamical trajectory of the fusing system pass inside the fission

saddle point in a multidimensional deformation space. For heavy nu-

clear systems andlor large impact parameters, tne fission saddle point

lies inside the contact point, and the center-of-mass bombarding ener-

gy must exceed the maximum in the one-dimensional zero-angular-momen-

tum interaction barrier by an amount AE in order to form a compound

nucleus.

This additional enerwAE has been calculated for synunetricnu-

clear systems both by solving the generalized Hamilton equations nu-

merically with the three-quadratic-surfaceshape parametrization and

realistic forces3’5’6] and approximately with the two-sphere-plus-

conical-neck shape parametrization and schematic forces.14,24,25]

Such values calculated for symmetric nuclear systems have been com-

pared with experimental values derived from asymmetric nuclear systems

under various assumptions concerning the scat ,g of asymmetric systems

into symmetric ones.5,6,14,23-28] However, our recent calculations

involving asynunetricsystems indicate that none of th$ . scallng as-

sumptions are sufficiently accurate for detailed

We therefore compare here our values of the

calculated for five specific nuclear systems for

ration-residue cross sections have been recently

comparisons.

additional energy AE

which neutron-evaDo-

measured2882gl an;

28] As indicated in Tableanalyzed to yield experimental thresholds.

1, as we progress through these systems the additional ●nergycalcu-

lated with two-body viscosity increases from less than 1 NeV, repre-

senting only the energy that is dfssipatec!during the approach stage,

12



Table 1
Comparison of calculated and experimental values of the additional
energy AE required to fora a compound nucleus, measured relative to
the -isnm in the calculated om-dinansional zero-angular-~ntum
interaction barr$er. The calculated values of additional ●nergy are
for two-body viscosity with coefficient p = 0.02 TP.

Calculated Calculated Experimental
one-dimensional additional additional

Reaction barrier (NeV) energy (NeV) energy (NeV) Note

‘For this reaction involving nuclei lighter than those requiring an
additional energy, the negative experimental value of AE suggests the
importance of zero-point vibrations on the low-energy fusion cross
section (Ref. 30).

bFor thts reaction involvtng a target for which the calculated value
of Nilsson’s spheroidal deformation coordinate c = 0.20 (Refs. 9 and
31), the large experimental value ofAE compared to the calculated
value suggests the importance of static ground-state deformations on
the additional energy.

cFor this reaction involving a target for which the calculated value
of Nllsson’s spheroidal deformation coordinate c = -0,12 (Refs. 9 and
31), the moderately large experimental value ofAE compared to the
calculated value suggests the importance of static ground-state de-
formations on the additional energy,

to several MeV, reprssentlng in addition the energy required to dynam-

ically push the system inside its fission saddle point. Theexperi-

mental values show a similar trend, but three large deviations from

the calculated valu~s suggest the important role played by zero-point

vibrations and static ground-state deformations, as discussed in tne

footnotes to Table 1. Our analogous calculations with one-body

13



dissipation are not yetcospleted; like the rest of you at this Con-

ference, we are eagerly awaftlng their outc~.

4.2 Capture Cross Sectfon .

For the reaction aOsPb + ‘sFe that has been studied experimental-

ly by Bock et al.,26] we calculate the capture cross section corre-

sponding to the transfer of 40 or more nucleons from the heavier aOaPb

nucleus to the lighter ssFe nucleus. Our calculated results are com-

pared in Fig. 4wlth experimental values resulting froma revised

analysis in which the experimental capture cross section is defined in

terms of reaction products with fully relaxed total kinetic energy and
’31 The cross sectiOnmasses lying between the deep-inelastic peaks.”

calculated with two-body viscosity is somewhat larger than the experi-

msmtal points at all energies except near the threshold.

We have not yet fInished our analog~us calculations with one-body

dissipation when the additional term in the completed wall-and-window

formula is included because it requires the specification of amass

asyannetry,which is difficult for shapes with long necks. When this

.’mr’’’””x

JL_IL--
240 260 280 300 320 340 360 380

BombardngEnwgy& (MeV)

Figure 4
Capture cross section calculated with two-body viscosity, compared
to revised experimental values (Ref. 23).

14



additional tam is omitted, the capture cross section calculated with

one-body disslpatton fs even larger at inte~diate an< high ●nergies

than that calculated with two-body viscosfty, but the additional tam

Is ●xpected to reduce it, $imilar calculations with a restricted

shape parametrization where the present difficulties did not arise

have been performd by B+ocki,32] who adjusted his interpolation pro-

cedure to reproduce the original unzwdmod experimental data for a

comparable reaction.26]

4.3 Ternary Events

We consider next tne reaction ‘aeXe + ‘2~Sn at a laboratory bom-

barding energy per nucleon of 12.5 HeV studied experimentally by Gl&s-

sel et al.,33] for which ternary events were obser>~d approximately

10% of the time when the energy loss was large. Gllisselet al. de-

duced that the time between successive scission events is approxi-

tsately1 x 10-21 s, during which the two primary fragments move only a
few nuclear radii apart and perform only a fraction of a rotatior!.

The ratio of mean fragment masses for thu second scission event was

determined to be approximately 1.5.

Figures 5 and 6 show sequences of shapes calc~lated for this

reaction for angular momentum L= 250 and 350h, respectively. In
these two figures our results with one-body dissipation are calculated

for computational ease without the additional term in the wall-and-

window formula, which has llttle effect since the system is nearly

symatr!c. With this dissipation mechanism, the process is essential-

ly binary, with or!lyextremely small third fragmefks forming between

the two end fragments, In contrast, two-body viscosity with coef-

ficient p = 0.02 TP leads to true ternary events, with middle-fragment

m~sses of 51.4 and 69,1 amu for L = 250 6nd 350h, respectively. ?he

mass ratio of the forward-going fragamnt to the middle fragment is

1.93 for L = 250?I and 1,32 for L = 350h,

Although in our calculations with two-body viscosity, which refer

tomean avents, the two necks reach zero radius at essentially the

same time, fluctuations could introduce some difference. Also, the

scissiofi-to-scissiontime of 1 x 10-21 s deduced by GIUssel et al. was

15



Figure 5
Effect of dissipation on ternary heavy-ion events for angular mo-
mentum L = 250~. The Iz%(e projectile Is Incident from the right.
For clarity, the dashed scisslon-shapes are show ndisplacedfrti their
proper horizontal positions.

based on certain assumptions concerning nuclear shapes that are very

different from those calculated here. Although the probability for

ternary events in our calculations with two-body viscosity is much

larger than the approximately 10% observed by Gl#ssel ●t al., the

experimental arrangement could have missed events In which the middle

fragment remained essentially at rest in the center-of-mass system and

detected instead only those with some forward velocity resulting once

again from fluctuations. Although several issues re~atn to be clari-

fied, it is possible that the ternary events seen by Glllsselatal.

have a dynamical origin of the type calculated hme for small two’*body

Viscosfty, If so, this could provide a convincing dlscrfmfnation

between the two extremes of dissipation that we are considering.

16



‘)(0 + ‘%
EJ129=c125NkN, L=350?I

0M4x)dy , Two-body

nenturnL = 350 ii. The

5. CONCLUSION

We are ~ntering a

Ffgure 6
Effect of df$sfD&tiOn on ternary heavy-ion everts for angular mo-

‘agXe projectile Is fncfdent from the r{ght.

new era fn ffssfon and heavy-ion reactfons. Up

to now theoratfcal approaches with vastly dffferent pfctures of the

underlying nuclear dynamtcs have reproduced maqy of the gross oxperf-

mental features of ffssfon and heavy-fen reactfons because they fn-

clude correctly the domfnant nuclear, Coulomb, and centrifugal forces.

How@varo calculations are now befng desfgned specifically to test the

dissipation atechantsm, When compared wfth mean ffssfon-fragment kf-

netfc energfes, theso calculations demonstrate that one-body dfssfpa-

tfon fs not the complete dfssfpatfon mechanfsm. The next step fs to

compute dynamical threshold$ for fusfon and capture cross sections

wfth one-body dissipation and compare wfth experimental results.

Ternary heavy-fen ●vents offer the most excftfng prospect for

ffnally dete~rnfnfngthe magnftude and mechanf$m of nuclear dfssfpa-

17



tion. If experimentally observed ternary events turn out to have a

dynamical ovfgin of the type calculated here with two-body vfscosity,

thts would suggest small dissipation in nuclei. In this eventuality

the theoretical challenge would be to understand the mechanlwa, since

the long nucleon mean free path elid nates the conventional two-body

mechanism that is present In ordinary fluids.
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