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HYBRID SIMULATION CODES WITH APPLICATION TO SHOCKS AND UPSTREAM WAVES

D. Winske
Los Alamos National Laboratory
Los Alamos, New Mexico, 87545
us.?

ABSTRACT. Hybrid codes in which part of the plasma 19 represented as
particles and the rest a9 a fluid are discussed. In the past few
years such codes with particle ions and massless, fluid electrons
have been applied to space plasmas, especially to colllsionless
shocks. All of these simulation codes are one-dimensional and 9imi-
lar in structure, except for how the field equations are solved. We
describe in detail the various approaches that are l!sed(resistive
Ohm’s law, predictor-corrector,Hamiltonian) and compare results from
the various CUUeJ with examples taken from collisionless shocks and
low frequency wave phenomena upstream or shocks.

1, INTRODUCTION

Plasma physics phenomena are characterized by a multitude of length
and time scales, primarily due to the different responses of the
light electrons and Lhe massiv” ions to the imposed and self-gener-
ated electric and magnetic fie.da. Typioally, one is interested in
particular proceasea which occur on some of these scaloa and not
Interested in other processes that occur on shorter or longer time or
distance scales. This can be accomplished in numerical simulation by
treating the various plasma sp+cle9 in different waya, for example,
as dlacrete partiolea or as fluids. Hybrid oodea are defined as
those numerical algorithms in whloh the varioua plasma species are
treated in a different manner, a~ distinct from particle codee where
all the plasma species are treated as particles or fluid codes where
each species (or several Qpeoies together) is treated as a fluid.

Various types of hybrid codes are of’course possible, depending
on the problem at hand. One important subclass of hybrid models are
those in which there are two (or more) population~ of one particular
oharge Bpeolea, whose prOpOrtiOS on a partloular length or time Scale
are different. For example, oonsider the lnteraotion of a small,
cold electron beam with a hot background eleotron population (0’Neil
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et al., 1971). In this case the unstable waves generated by the——
presence of the beam strongly affect it, and thus a particle descrip-
tion Is needed to correctly ❑odel the highly nonlinear dynamics of
the beam electrons. On the other hand, the waves do not affect the
background population very much. Thus, there is no need to follow
the dynamics of each individual background electron; rather, the
contribution of the background component can be included simply as a
linear dielectric in Poisson’s Gquation. Similar methods can be used
when there are several ion populations. For example, in the study of
the interaction of an iOn ring velocity distribution with a back-
ground ion core, Lee and Birdsall (1979) treated the ring ions as
discrete particles, with a fluid de~cription fo~-the background ior19
(and the electrons).

The most common type of hybrid code, however, occurs when the two
species involved are the electrons and ions. The simplest kind of
hylvid model of this type is to ignore one species entirely. For
rxample, in the study of high frequency electron behavior it is
very common to eliminate the ions, except as m charge-neutralizing
background. It 1s also possible to ignore the electrons entirely, as
has been done for tearing mode calculations (Dickman et al. (1969)
and later work to be cited in the next section). Another useful
approximation that is commonly invoked in this type of hybrid model
is qua~ineutrality, which makes use of the fact that the electron
(nct and ion (n ) charge dermities are nearly equal.

i
If one is in-

terested in sca e lengths much larger than the Debye length, the
condition ne - nl is imposed; for smaller systems, a Boltzmann rela-
tion between the electron charge density and the electrostatic poten-
tiai may be used instead, which gives rise tG a nonlinear Poisson
equation. (Okudaet al., 1978). Another common approximation in-——
volves the electron masa. Depending on tne frequency range of inter-
est, the electron mass may be kept (Hewett and Nielson, 1978) or not.

A very commoo type of hybrid code, and the one of interest
throughout the Pest Of this chapter, treats the electrons as a
massless, charge-neutralizingfluid. In recent years this type of
model has bucome widely used in space physics for the study of phe-
nomena at the bow shock (Leroy et al. 1981 and 1982; Leroy and
kiinske,1983. Kan and Swift, 19&;~andt and Kan, 1985), upstream of
the bow shock (Winske and Leroy 1984a; Winske et al. 1984 and 1985;
Hada and Kennel,

——
1985), the magnetopause (Swift and Lee, 1983), the

magnetotail (Swift, 1983b), and the magnetosphere (Omura~t al. 1985;
Tana4a and Goodrioh, 1985).

While all of the calculation cited here are based on hybrid
models with similar properties, thero are differences in the way the
models are implemented numerically, primarily in how the field equa-
tions are aolvsd. Three different techniques, referred to hereafter
as che resistive (Ohm’s law) method, the predictor-oorreotor method,
nnd the Hamlltonlan method, havs been employed. The purpose of this
paper is to expla!n how these various methods work in some detail
(Seotion 2) and then compare results of simulations based on each
method (Section 3). The examples ohoeen are well $tudied phenomena
from the earth’s bow shock and the upstream region, and the discus-
sion will mphaaize numerics rather than the physics content. A
short summary 18 given in Section 4.
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2. DESCRIPTION OF HYBRID CODE MODELS

In this section the numerical schemes used in three hybriC code mod-
els are described. In each case particle-jn-ceil techniques are
employed for the ion dynamics, while fluid equations are used for the
(massless) electrons. Quasineutrality is assumed and the low fre-
quency (~arwin) approximation is used (Nielson and Lewis, 1976). For
the methods described here the one-dimensional nature of the calcula-
tion 1s utilized, but as will be discussed, each of the models has
been generalized to two spatial dimensio~s.

2.1 Resistive Ohm’s Law Method

This model was originally devised by Chodura (1975), and further
developed by Sgro and Nielson (19’76)and Hamasaki et al. (1977), for
the analysis of laboratory magnetic fusion experiments and more re-

——

cently for the study of’the earth’s bow shock by Leroy et al. (1981,
1982). The details of the method and references to earlier work are
given by Mlnske and Leroy (1984b). In this method, as in the two to
follow, a standard leapfrog scheme is used to advance the particles
and fields. The velocities of the particles are known at the half
time steps, while positions of the particles and the fields are known
at the even time steps (time le elJ-1~2to~e~finotfid by superscripts).
Thus, at time step N, we know~ ,x, ,~. To advance the
particles, we solve

“)4+1/2 ~ vN-1/2 Atq
.- +— m

where
~ m vN-1/2+ btq EN ‘-—.

2m

f. 1-l

()

Atq 2 ~N .

7F -

Atq (vN-1/2 . BN)
g“g-

and then
xN+l - # + Atv N+l/2

x

W9 then solve Ampere’s law

V2AT
N+1 -J!w~TN+l

-—-
0

for the transverse components (y

(1)

solving to

(2)

(3)

(4)

or z). The ion Dart of the current,
oomeu directly from collecting the ion moments, where we advance (but
do not save) the particles one additional half time step

#+1 . J4+l/2 Atq (EN+ vN+l/2 XBN,O)

‘K
(6)



where EN and EN are evaluated at #+1, to obtain the Ion density
N+l

n,N+l and velocities~i . Quasineutrality (in l-D) then gives ne -
n; = n and V~x - Vix - Vx.

The elec ron part of the current comes from the electron momentum
equation with a reslstlve term (i.e. Ohm’s law)

!4+1(alesr’bed shortly), we obtain in the usualAfter solving for & .’-
way

ET - ~ x & (Bx - constant)

ET - ‘1 aA.f (8)
7X

Then eolving an energy equation for Te,

(9)

we can obtain the last field component, Ex, from the x Cornporlent Of

(7)

Ex = -1 (ye x ~)x - 1 imTe
(10)——

7 nq ax

The method used to solve (5) for~ 1s slightly different from
8that presented in Winske and Leroy (19 4b) and works better for

oblique shocks. We assume the resistivity tensor to be diagonal (i.e.
nil=nl ●n), which has been shown to correctly model turbulent sys-
tems, such as the z-pinch, very well (Sgro and Nielson, 1976). We
solve

~T “ n-’(~ +~ x~/c)T - qn(vi - ve)T (11)

for~T , and substitute into (5), obtaining

;; ~“ +%
where

Fy - qn(viy - CEZ - VXBY)

~ Bx

Fz = qn(Viz + CEY - VXBZ)

Bx ~

(13)



‘m(H%9(%x)
and no-reference density, u -(4nnoq2/m)1/2

i
and all quantities are

at time level N+l. Using ( ? to express ~T’and * in terms of ~To
(12) can be written in finite difference form and solved, as de-
scribed in Hinske and Leroy (1984b).

In addition to the references cited In klinskeard Leroy (1984b),
calculations based on this ❑ethod have been done ta study oblique
shocks (J.eroyand Winske, 1983), the electromagnetic ion beam insta-
bility (Winske and Leroy, 1984a), the interaction of heavy ions with
the solar wind (Minske et al. 1984 and 1985) and the steepening of
S1OW waves !Hada a:.~Ke=e~ 1985). The method has been exte,ldedto
two dimensions (Hewett, 1980) and has been applied to the study of
magnetic reconnection in laboratory experiments (Hewett, 1984).

2.2 Predictor-Corrector Method

A second method used for hybrid code calculations ~mploys the
predictor-corrector technique. The method is describetiby Byers et
~. (19’78)and has been implemented in a one-dimensional code by —
Tanaka and Goodrich (198s) and Omura et al. (1985) in the study of——
heating of heavy ians by ion cyclotion instabilities. The method
hag been extended to two dimensions by Harried(1982) and used in the
study of rotational instabilities in laboratory field-reve?sed con-
figurations (Harried,1983).

We will describe the method in its simplest form, where the elec-

;;:n$5T92:a:ti:eEAs::p;Nc:::t:::;n‘gain’ ‘e assumeat “me ‘tep N, . In this case the advance of one
time-step involv%s two =teps, a predictor step and a corrector step,
each of which involves g 1?

$%
throug

P!
he particle table.

In the first step, +1 2 and x + are obtained as in the previ-
ous case using (1) -}0. lnt~g~rocess,

;fi+~%ticles &~:+’ 2= XN+AtVx

however, we first advance
1 2/2 to collect the ion moments,

and ni Me then compute the predictor fields (denoted
by subscript p) usi;g Faraday’s law and (7):

BN+l/2 . BN - cAt (VXEN)
--

T f14)
.

~N+l/2 - ,

{

N+l/2
w -LN+’’2) xEN+’’TJniN+”2”2

qn!N+l/2 um c }

to obtain

E N+l = -EN ● 2EN+1/2
-P - -
B N+l - ~N+l/2 - cAt (VXE4N+1)
-P - —-.

2

(15)
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He then go thru the particles again, using the predictor fields,

to calculate v N+3/2 and ~
@//2

‘+3’2. again using (1) - (4), in order to

and nl pfl+3’2collect ~i,p ● Then, recalculate BN+3/2 and
N+~, B N+@E ‘+3’2 using (14) with ~redictoi’fields% and ion ❑oments

‘R 0b’a’nEi!7 :eY ;#:Y?2
–P

+ ~ N+3/21

T-
-P

(16)
#+’ N+l/2 -cAt ~vxEN+l)“g ---

2

Having now advanced Lhe fields, we are thus ready to start the entire
sequence again.

2.3 Hamiltonian Method

This method employs the canonical
of the velocities. A description
pie, by Morse and Nielson (1971),
Hamiltonian and Lagragian methods

❑omenta of’the particles P in place
of the method is given, f~r exam-
and a comparison between the
1s discussed by Nielson and Lewis

(1976). The Hamilton~an method has been used by-Swif’.and Lee (1983)
to study tha rotational discontinuity at the magnetopause, Swift
(lf183b)to examine magnetic slow shocks, Kan and Swift (1983) and
Ma’ldtand Kan (1985) to simulate nearly parallel shocks. The method
has been generalized to tw spatial dimensions in the limited sense
of either completely ignoring the electrons (Dickman et al.,1969;
Ambrosiano et al.;

.—
lg83; Teresawa, 1981) for the study of tearing——

nlcdesand ion fusion physics (Friedman et al., 1977; Mankofsky et
a_l.., 1981; tlankofskyand Sudan, 1984) or in restricting the zyp= of
perturbations allowed (Swift, 1983a).

In this case, at t!me step N, the canonical momenta of the parti-
cles

ET = ❑v-T + q~T/c
(17)

are known at the half time step N-1/2. The particle equation of
motion is

(18)

Note that In the case BX-Q the method can be very z~tractive since ET

is a conserved quantity. Using (17), (18) can be written as

Another nloe featuro 1s that using a complex representation (P - Py +

tPz,
‘- Ai: ‘*Z’

11- qBx/mc) the equations of mction can be written
oompaotly

dPN = -ifJ(PN- c@)
-n c

(20)



or
~-im ~ #eiSit . lRNN

ZE c
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(21)

Thus, in difference form (Swift and Lee, 1983)

#+1/2 - ~N-1/2e-ifiAt N ‘iCIAt/2+iA~Ae (22)
c

Then
N. I (~TN+l/2 + p N-1/2,~T — –T -d

2m mc (23)
,

is known and Vx can be advanced

as can the particle positions, #’l using (4). (I have used v here
for simplicity. It is possible to &ite Px = mvx (AX-O, since ~“A =
O) and use P’s throughout.)

--

Again, we need to solve Ampere’s law (5). There are several

different ways to difference the equationg. One method is to use
N+l/2

(22) to advance PTN+l/2 to pTN+3/2 and express It in terms Of PT

and A ‘+l. Another (Swift and Lee, 1983) is to solve
N~l/2 4mJ N+l/2/c, expressinE~T N+l/2

‘2~T ~+1-- -T as an average between ~TN

and ~T . In either case the resulting equation is implicit in that

it involvesA.T‘+1 on the right hand side. This adds a slight compli-
cation, known as double area weighting, in gathering the moments, ag
described by Forslun

i+
t al. (1972), Forslund (1974) and Mankofsky et

Q. (1981). Once& + l~known, E and B can be obtained u9ing (8)~
An equation for T , such as (9), c=n be=olved !Kan and Swift (1983)
use at,equation of state instead), and then Ex can be obtained ag
before, from (10).

Finally, it should be noted that there is an extra complic&tion
lf there 1s an external B or B in the system. A constant B can be
added in through an addlt~onal term A This contribution to
P of the particles must be added or ~~t%~~ed if the boundary con-
d~tions are such that particles exiting at one end of the system
reenter at the other end.

3. NUMERICAL COMPARISON OF THE MODELS

In this section we compare results of simulations based on the three
hybrid models discussed previously for two test problems. The first
is an electromagnetic ion beam lnatability, the second is a
quasiperpendicular colllsionless shock. Both problems have been well
studied, and the reader 1s referred to the literature for details,

Tho first problem involves the inn beam instability, which 18
tt:oushtto be the mechanism which produce~ low freq’iency
hydromagnetic wavee and diffutieion populatlwv! upstream of the
earth’s bow shock (e.g., see Car] ot al. (19L1) and Wlnske and Leroy
(1984a)).

---—
The instability results from the interaction of a weak
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beam of ions backstreaming from the shock and the incident solar
wind. The situation to be simulated consists of an ion beam drifting
reflatlveto an ambient plasma along a uniform magnetic field Bo. The
parameters are choseilto ❑atch tnose in Uinske and Leroy (1984a) for
the resonant instability: the beam is weak, 1.5$ of the total ion
density, with a drift speed of 10 A relative to the background i0n9.

!Both ion components have B=8nnT/Bo -1.0, with a cold (Be=O.O1) cur-
rent-neutralizing electron back~round. The instability leads to the
generation of low frequency wave9 of well defined wavelength that
scatter the beam. In the nonlinear regime these regular waves break
up intO very nOnlinear waveforms, producing a diffuse ion distribu-
tion In the process.

In Figure 1 we compare results of three simulation. The top
pa!els correspond to the resistive code with rI-O;the middle panels
are from the predictor-corrector code; the bottom panels are fram a
code based on the Hamiltonian method. In each cage we have used
10,000 partic es (half to represent the beam, half for the background
ions) on a s of 256 cells wit~ cell size Ax=c/u .

1
In each case we

use tilesame random numbers to initialize the part cle velocities.
The left side of the figure show9 one component of the magnetic
field, Bz, normalized in terms of the ambier,tfield BO at about the
time when the waves have achieved their largest amptitude, fiit.38.11
(0 -eB /mic).
If

The results from the three cases are very similar,
di fer n~ only In the amount of 10U amptltude, short Wavelength noise
that is superimposed on the dominant structures. The right side of
the figure shows the tim~ histories of the fluctuating magnetic field
energy dens’ty, Ub-SdxB /~dxBo2.

T
Again, the overal,lresults in each

case agree very well. he peak field energy density achieved is
slightly (-3%) larger in the predictor-corrector case, which may be a
reflection of the oetter energy conservation in the
predictor-corrector code (AE/E -0.03%), compared with the resistive
code (AE/Eo-1.2$) and the Hami?tOnian code (AE/Eo-5.4%). The poorer
energy conservation in the Hamiltonian code suggests that the
differencing scheme used here for the test problem could be improved
and should not be taken as an indication that this method is inher-
ently inferior.

The sncond test problem involves a quasiperpendicular
collisionless shock. Again, in this case the physics ha9 been inves-
tigated in detail (Leroy et al, 1981 and 1982; Leroy and Winske,——
1983; Forslund et alfl,1984). The simulation is iniciallzed with
uniform upstream and downstream states related by Rankine-Hugoniot
conditions and then Is allowed to evolve In time. Trleparameters
chosen for the test case are upstream Mach number MA-Vi/VA-8, up-
stream shock normal angle 0Bn-600, and UPStreaIII Be-Bi~0.5. Again, we
show (Figure 2) the results of three simulations: top panels corre-
spond to the resistive code with resistive length L -(nui/4m)

!(O/V1)(C/UJ) equal to the P>ll size Ax-o.3 C/LIJi,rridlc panels corre-
kspend to t e results of the resistive code with LR-O.OIAX, and bottom

panels correspond to the reslstanoe-free predictor-corrector code.
In eaoh case 10,000 particles on a grid of 200 cells with a time step
fJ~At-0.0125 (where the upstream magnetic field B, 1s used to compute
a~).
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The left side of Figure 2 shows one component of the transverse

::Ke::cL::l;:t:::tt”’ 2”’”
The upstream magnetic field 1s to the

he shock occurs in the center uhere the mag_
netic field rises rapidly. The peak value of the magnetic field
component B IS somewhat larger than the downstream value B ~ (cow
puted from ~he Rankine-Hugoniot relations), which lsheldf?xedat
the right hand boundary. This peak value, referred to as the
overshoot, is followed by an undershoot and then several more
oscillations. The middle panel shows the same snapshot of the ❑ag-
netic field in the run where the resie?ivity is lowered. The same
overall stucture is observed, except that the overshoot is larger and
the oscillations behind the overshoot are somewhat less regular. In
addition, there are small oscillations on the ❑agnetic field in the
upstream region and ti,esharp rise of the ❑agnetic field is better
resolved, consisting of a precursory smaller increase (called the
foot) and a very steep ramp. The field profile obtained with the
predictor-corrector code (bottom panel) shows the same general fea-
tures as In the second case, except th~t the oscillations behind the
shock are somewhat larger in amplitude and have a shorter wavelength.

The right hand panels of Figure 2 show the time histories of the
n~agneticovershoot for the three runs. In the case with the larger
resistivlty, the overshoot has a nearly constant value. For small
resistivity, the overshoot oscillates in time and the average value
is about 20% larger. The resistance-free predictor-corrector code
gives a slightly larger average overghoot with larger, more frequent
oscillations.

We corrlude from these results that the three shock simulations
give overall similar results, but the effect of resistivity is to
damp out some of the oscillations. This naturally leads to the ques-
tion of how much resistivity (if any) should be included. It should
be kept in mind that the resistivlty is ad~ed in to compensate for
the fact that the simulations are one-dimensional and therefore do
not include microinstabilities due to the cross-field current that
are seen, for exam~le, in 2-D particle simulations of shocks
(Forslund et al., 1984). In the present simulations, as in Leroy ~——
~1-. (1982), the reslstivity is taken as r constant, although more
realistic forms for the resistivity, either based on phenomenological
expressions (Chodura, 1975) or microphysics (Hamasaki et al., 1977)
are possi’ble. In this regard, one has to be guided by~p~e observa-
tions or laboratory data (which indeed show rather steady structures)
to infer the proper amount of resistlvlty that should be used.

As a final note, the question of resistivity becomes increasingly
complex as the Mach number is raised. Quest (1985) has recently
carried out resistive hybrid simulations of perpendicular shocks with
Mach numbers greater than 20. Ee finds that a shock which is fairly
steady in time can be produced with reslstivity such that LR=Ax, but
that with weaker reslstlvlty the magnitude of the oscillations of the
overshoot is comparable to its average value. In this case the shock
steepens to a very narrow (-Ax) width, then collapses. Because the
amount of resistivlty that would be needed to maintain the shock
steady is unphyslcally large at high Mach numbers, it is suggested
that very high Mach number shocks indeed are oscillatory in character
(Quest, 1985).
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4. SUMMARY

We have described hybrid codes in which the various plasma species
are given different representations. Specializing to the important
case where the ions are treated as partiCleS and the electrons are a
massless, charge-neutralizingfluid, we have discussed in some detail
three ways for solving the field equation~, referred to here as the
resistive, predictor-corrector,and Hamlltonian ❑ethods. Using simu-
lation codes based on each of these techniques, we have compared
results for two problems of current interest in space physics: 1Ow
frequency waves driven by an ion beam and quasiperpendicular
collislonless shocks. For the lon beam problem all three methods
give essentially the same results, with the predictor-corrector
❑ethod giving better overall energy conservation. In the case of the
quasiperpendicular shock, the effect of the resistivity on producing
time steady solutions has been emphasized. Mhile the use of these
codes in one spatial dimension has been stressed throughout this
article, all three methods discussed work in two dimensions, and will
undoubtedly become widely applied in space physics, as they have
already in magnetic fusion problems.
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Figure 1. Results of three different hybrid simulations of the
electromagnetic ion beam instability (top: resistive model; middle:
predictor-corrector model; bottom: Hamiltonian model) showing: (left) one
component of the iluctuatlng magnetic field at flit■ 38.4, (right) time
hiutory of the fluctuating magnetic field energy denaik.y.
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Figure 2. Re3ulte of three hybrid simulations for a q~aslperpendicular
shock (top: resistive code with large reaifltivlty;middle: resistive code
with smaller reSiStivity; bottan: predictor-corrector code) showing:
(left) one oomponent of the magnetic field at flit - 12.5, (rj8ht) time
history of the magnet~c field overshoot.


