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ANALYSIS OF NONLINEAR PARABOLIC EQUATIONS HODELING
PLASMA DIFFUSION ACROSS A tlAGNETIC FIELD

James H. Hyman and Philip Rosenau

ABSTRACT. We analyse the ●volutions.~ behavior of the solution of a

pair of coupled quasilinear parabolic ●quations modeling the diffu-

sion of heat and masa of a magnetically confined plaama. The solu-

tion’s behavior, due to the nonlinear diffusion coefficients,

exhibita many new phenomena. In a short time, the solution

converges into a highly organized symmetric pattern that is almost

completely independent of initial data. The asymptotic aynamics

then become very simple and take place in a finite dimensional

space. These conclusions are backed by extensive numerical

experimentation.

1. INTRODUCTION

We study the asymptotic behavior of a plasma slowly diffusing across a

strong magnetic field.
5-8,12,17

In the initial value problem, the plasma baa

compact support and diffuses into the surrounding vacuum. In the initial

boundary ‘Jalue problem, the plasma is confined within a finite domain and

convective boundary conditions are imposed. Both models are mathematical

idealizations of a more complex physical situation, nevertheless they provide

theoretical insight to the dynamics of a plnsma heat and maas diffusion,

Ir~ past studies, the decoupled problems for the diffusion of particles in

an (essentially) isothermal plaama3-4 and the diffusion of heat in a

stotiondry pla6ima
1,13,18

have been analyzed. The coupling of these two

processes is the source of many new phenomena that are not present in a single

diffusion ●quation.
15

The ●quationa of motion we will study are

(Jt = (DIPX)X ,

Pt = (pD2Tx)x + (TDIPX)X ,

(la)

(lb)



~. P.
where Di = dolp ‘T 1, i = 1,2, P is the plasma pressure, p is the density, T

is ionic temperature, assumed to be equal to that of the electrons, and

P= PT. The initial data is specified over a bounded domain

❑ ass

p(x,cl) = PO(XI , P(x,o) = PO(X] , x c (-x +Xo) .
0’

(2)

The divergence form of Eqs. (1) guarantee that no additional ●nergy or

is added (or subtracted) nfter the process is initialized. AE

alternative form of (lb) :an be obtained for T,

PTt = (PD2TX)X + (DIPX)TX . (lC)

This form revealn the convective nature of second term on the right hand side

of (lb) in a diffusive disguise. The rapid convection of temperature down the

density gradients is a

solution.

2. INITIAL VALUE PROBLEM

We first construct a

dominate force in the asymptotic behavior of the

self-similar solution of Eqs. ‘l) for x & (-~,m) and

P&) = tlo6(x) , PO(X] = E06(x) . (3)

where 6(x) is the Dirac delta function. The appropriate self-similar solution

to (3) satisfies

l/(2+a1)
P(x,t) = p(x,t)Eo/tf 0’ P(x,t) = f(~)/t

where

l/(a1+2)
~ = x/ Wl:’t) 1

(4)

and

l/al
f(t) = [al(t~ . {2)/(2a1 + 4)1

if ~ 6 Lf and f(~) = O otherwioe.

Note that the position of the diffusing front Lf depends only on the

total ma-n Ho of the syotem and al. It follows from (5) that the self-similar

solution d~ucribes an isothermally diffuuing plaama with T = Eo/Mo.



Out of the

selected because

❑ore complicated

the same wass Ii.

many group invariant aolutiona, the one presented has been

of its key role in the late-time evolution of solutions with

initial data. That is, if the self-similar solution shares

and ●nergy E. as another initial value problem,

M=
o ~xoP&)dY , E. = ~xo Po(x)dx ,

-x
o

-x
o

(5)

then irrespective of the initial distribution of the plasma, the self-similar

solution is the leadi~g term in the far-field description of the original

problem. This behavior is a natural generalization of single ●quation case.

Since we have not yet obtained a rigorous proof of the attractive nature

of the self-similar solution, we performed a series of numerical ●xperiments

to confirm this property.

The isothermal nature of the asymptotic solution dominates so strongly

that the specific form of the second diffusion coefficient is of no importmce

in this stage of the problem. A t~icnl rapid t~ansition to the self-similar

regime is shown in Figure 1, After the initial transients, the plasma is

isothermal, Eq. (lb) merely duplicates Eq. (la), and the solution dynamics is

almost identical to the single diffusion equation case.

Fig 1. The initial transient solution cf Eqs. (1) forai =+, pi=+, a~= 1,

P2=l, dol = 1, and do2 =5. ThP initial conditions and solution are
oymmetric about the origin.

Previously,14 it was shown that if ● finite maas Ho is distributed over

the whole apace, then the thermal diffusion as given by

Po(x)Tt = [A(T)]XX



leads to the isothermal ization of the medium if A satisfies A(0) = O,

A-(0) ~ O and A“(T) > 0 for T > 0. That is,

T(x, t) + Ta = F Po(x)T(x,O)dx/H 09-m

as might be anticipated on the basis of physical considerations. The

diffusion of heat in a finite mass medium results in isothermalization of the

medium, irrespective of how the ❑ ass is distributed.

30 INITIAL BOUNDARYVALUE PROBLEMS

3.1 The Reduced Problem.

In order to analyse the behavior of the solution of the initial boundary

value problem, we first drop the convective term in (lc). Later this term

will be restored and its impact evaluated. Thus for the time being, we

consider the ●volution of

Pt = [DI(P,T)PX]X ;

PTL = [pD2(p,T)Tx]x ;

al f31
D1 =dol PT ;

a2 p2
D2 =do2p T , (6b)

and x c [-1,1]. We prescribe initial data for density and temperature

together with homogeneous convective boundary conditions

pxth@=O , Txth2T’0 at x ❑ *1. (7)

These convective boundary conditions ● re physically more relevant and

mathematically more tractable than DircLiet bcundary conditions (h ❑ m).

As in the Cauchy problem, the asymptotic shape of the solution of

Eqe. (6) in simple ●nd can be easily classified. The solution evolves very

quickly toward a universal diffueion mode which is almost independent of

initial data. For this case, however, the highly organized diffusio& pattern

is mathematically represented by ● time-space separable solution. Similar

separable solutionu ● re known before to play ● key role in the ●volution of

the solution to a single nonlinear diffusion ●quation
1,3,4,14

.

The ●nalyais of these separable solutions is the central theme of this

section. While much solutions are special caaes becauae they ❑ust satisfy

special initial data, they attr~ct all initial data and hence play the key

role in the asymptotic stage of problems with arbitrary initial data.



Although rigorously we can prove this proposition only for a subclass of the

considered problem, ●xtensive numerical ●xperimentation has been used to give

strong credence to them being global attractors.

Inserting the separable forms

p(x,t) = Ol(t)N(x) , T(x,t) = $z(t)O(x)

into Eqs. (6a) and (i~b) leads to the following

cfl+l ~:1
~1 = -AIQ1 ; A1~LI

U2 f!~+l

42 = -A2$1 1$2 ; A2~Q

al ~% dN
dol ~ N — “r AIN = O ;

dx

ar,d the spatial part of Eq. (7).

P (8)

conditions

(9a)

(9b)

(lOa)

(lOb)

The relevant cases of the first integrals of motion for Eqs. (9) are

I. al # a2 , p~ # pz ,

Al 131-132 A2 az-al

P2 -d2 ‘z=T”’
=c~;

11, a z al = U2 ,13= B1=P2 J

A1/A2

‘$1 = (02/To) ;

where Co, po, and To are constants.

Even though Case II ia degenerate, it in of considerable practical

interest in many applicatims where D1/D2 is assumed to be constant (such as

(ha)

(llb)

for the diffusion

Integration of

$i(t) = d(h)

of a fully coliisional plasma across a magnetic field).

Eq. (9) yields

-A1/fi
+ nt)] ,n= Ala + A2~ , (12)



where to is a constant. According to whether fl is positive, zero, or

negative, we refer to the solution $1 as decaying slowly (algebraic decay),

exponentially, or fast (@l vanishes in a finite time).

The time dependence of the solutions in Caae I is given implicitly as

-l/al -A/p~

%’1 = (co + AIUIL) , 02 = (To + A2~2T) 9 (13a)

where co and To are constants of integration and

defi~es ~ and T, the stretched time coordinates, Of course, co and to are not

independent, since they are related by Eq. (ha).

Unless either ~1 or a2 vanishes, T may be found only after the

integration of Eqs. (13b) and (Ila). Though the resulting Euler type

integrals can be solved only implicitly, $1 and $2 can be evaluated

asymptotically to determine the large time behavior. The results of this

analysis are summarized in Fig. 2.

; =al-a2

@l(t) J o
I

@l(t) + crmst > 0

I
(D1/D2)4)(l) II

I
I co < ~, (D1/D2j+0

III IV x =P1-B2

@l(t) J o Co<o ❑> @l(t) J O, @z(t) + const > 0

$2(t) + const > 0
I

co = o => $I(t) + o, @*(t) 4 0

co > 0, (D2/D~)Jo I CO > 0 ‘> $l(t) + const > 0, $2(t) 4 0

Fig, 2. Solution states of Eqs. (6) in the (~,~) = (~1-fJ2,a1-a2) plane. In
the first and the third quadrant, the integration constant C must have a
defini:e sign. but its value ia irrelevant for solutions Pn the second
quadrant, and crucial in the fourth quadrant, Everywhere, but on the A z
a2~1 - alP2 = O lint, the decay is algebraic.

We can find important features of the solution’s temporal part directly

from the first inte8rals of motion. In the (~, ~) = (P1-~~,al-U2) plane in

Fi8. 2, the two possible lines where A s al; - ~1~ ❑ O separate regimes of



fast and slow diffusion (the quantifier “fast” ❑eans that the process is

extinguished within a finite time). The behavior of the temporal part of the

solution dramatically changes in ●ach of the four quadrants. In 8eneral, only

in the second quadrant do both @l(t) and $2(t) decay to zero, ●lsewhere one of

the $’b converges to a positive constant (see ha).

For large t, the asymptotic form of $i(t) in the second quadrant is 8iven

by

@i(t) = (Lo+}.iwit)”’i, i ❑ 1,2 , (14a)

where

lq = (132-P1)/A , u+ = (al-a2)/A ; AZ a2111 - alf32 . (14b)

The decay to zero is algebraic as described by Eq. (14), everywhere but on the

lines where A is zero, the solution decay is ●xponential.

The U1 and W2 which give the temporal decay rates are defined a priori,

and are independent of the symmetry in which our problem is considered. This

is an ●ssential feature of the nonlinear diffusion which has no counterpart in

the linear theory.

To obtain the main features of the temporal behavior in the other

quadrants one can use Eqs. (9) along with the fact that the first integral of

motion (ha) forces one of the @i’s to approach a non-zero

but in the cecond quadrant. That is, first assume that

01 ~ $10 = const. > 0

then from (9b) we have

-I;pa

$2 2 (to + 6At) , 6A

Inserting (15b) into (9a) we

constant ●verywhere

(15a)

(15h)

get a correction to I$Lo and ~ consistency

relation ~1 > ~z for (15a) to hold,

Proceeding in a similar fashion with $2, we assume

$2 ~ $20 = const. > 0 (16)



then from (9a) we have

-1/a~ 132

f$~ = (to + 6*L) , 6B = AIC114120 ,

which in turn, when inserted into (9b) yields

(17a)

and

❑a y

the

(17b)
-dl -1/~2

02 E [al - 82 (to + 6Bt) ] )

dl = (CYz - ul)/cY2 , ai ❑ const. > 0 ,

a consistency relation, a2 > al. In the fourth quadrant either @l or ~2

tend to a constant.

The rate of the temporal decay, is intimely related to the role played by

separation constants Al and AZ. To clarify this point consider first the

case when Eq. (6) in a linear system whose solution decays as exp (-Ait),

where Al and A2 play the role of eigenvalues in Eqs. (10). In a nonlinear

diffusive system, the Ai are nonessential ccmstants in Eqs. (10) whose values

depend on the normalization of $ and N. Indeed, suppose that $(0) = A and

N(O) = B with ~ and N being the solutions with eigenvalues xl and X2. For any

410, No > 0, we then find that $ = $o~ and N = No~ are also solutions with
a.

xi + xi No l@oPi, i = 1,2, Alternatively, let A = a ~ - a1p2, then choosing
21

(18)

normalizes both Al and ).2 to one, with *(O) = A?. and N(0) = Bfio.

Thus the A’m may be reshuffled from the spatial into the temporary part

of the solution and are related to the amplitude of the diffusion mode (e.g.,

see Eqs. (14)). This relationship is fundamentally different from the linear

case.

An ●xception occurs when A vanishes. The linear case is a trivial

●xample. In the nonbanal case, where al/a2 = t31/P2 # O (or =I)t only one ~ Can

be eliminated from Eqa. (10); the other A remains as an essential Parameter.

Iu this case, the solutions to Eqs. (6) are invariant with respect to the
-pi al

group of shifts; T + AT, p + A 1P ,andt+t+t If A= ●xp(-Ate), this
o“



this invariance allows solutions of the form

= eAt
-~lAt/ul

T *(X) , p=e N(x) , (19)

where A is an eigenvalue that must be determined from the gl~bal ●xistence

conditions of the separable solution. (A similar situation arises in the

problem of imploding shock wavea, where the A is determined uniquely by

requiring the existence of the self-similar solution in the large.
2,18,

A physically interesting case arises when D1/D2 is constant and (Case II,

Eq. (llb)). Again (A1/A2) plays the role of an eigenvalue with the exponen-

tial case being a transit solution between fast and slowly diffusing regimes.

Here, both the mass and energy decay algebraically at a rate Ai/$2, i = 1, 2.

(See Eqs. (llb) and (12)) that must be found by solving Eqs. (lOa) and (lOb).

For given convective boundary condition coefficients hi and h2, the

following homologous property:

AZ dol /(Al do2) = Ko (20)

means that A1/A2 has to be only measured for one pair of do] and doz and then

it may be calculated for any other dol and do2. Particularly, if a~ < 0, such

as in the fully collisional plasma case wherein al = C2 = 1 and ~1 = ~2 = -#,

by changing the ratio of dol/do2 we may transit from fast into a slow

diffusion regime (or vice versa).

Having delineated the temporal part of the solution, we still need to

interpret the fact that in a diffusive process when a and ~ are r,ot in the

second quadrant, one of the solutions (i.e., either $1 or $2) does not decay

to zero. The time evolution of a particular example is shown in Fig. 3. This

behavior is very different from what is expected from a single diffusion

equation.

To understand the principle mechanism involved in this somewhat

unexpected process, consider the case where ~1 is zero, Eqs. (6a) and (6b)

decouple and can be solved separately. The separable solution of Eq. (6a) is

a global attractor
1,3,14

and represents a universal mode of diffusion with the

temporal behavior

-l/al
L?l(tl = (t. + Ala It) 9 to = const. ; (21)



Figure 3. For this initial data (symmetric about the origin) and these
parameters in the first quadrant, al, = 1, az = $, ~1 = 1, f32 = $,
dol =1, doz=3, h= -10 the decay and diffusion of mass under Eqs. (6)
is inhibited by the rapid decay of heat.

and $2(t) is given by Eq. (ha). If al is positive, the solution asymptoti-

cally converges to the separable form. In numerical tests, the general

solution becomes indistinguishable from the separable one after a relfitive

short time. The constant to de~ends upon the initial data. For a single

equation to is important only in the case of fast diffusion when to/(A1lal 1)

defines the finite extinction time of the process,

Although $2(t) is known from Eq. (ha), analysing the sollltion of

Eq. (6b) directly is instructive. Using the asymptotic form of p, known for

Eq. (6a), we can treat Eq. (6b) as a separate eq~ation in T with a variable

diffusion coefficient. Numerically, we have found that the solution of this

equation rapidly converges to this asymptotic separable form. With this

expectation, we substitute p = $l(t)N(x) and obtain

-CY2 c2+~ 132
N(x)@ Tt = N(x)Tr = (N T Tx)

x’
(22)

where

When O < N < ~, Eq. (22) is a standard diffusion equation, similar to Eq. (6a)

with ~1 = 0, but ❑easured in r units.



If ~1 = O and al ~a2, then ~+mas t+m. For large ~-time,

teWerature converp,;-j to the separable oolntim T = @2(T) ~ (x) with

-1/f32

$Z(t) = 62[(T(t)l = (To + A2~21) t

and again I. is an unknown

If $1 = O and a2 > al

function of the initial conditions.

the integral

l-a2/al
I = T*[1 - (1 + AlaIt/to) 1

where

l-a2/al

‘n
= to /[Al(a2 - al)] ,

in Eq. (23) cou...g<s, and

s

(24)

(25a)

(25b)

Thus, T b TD as t +-. If T is bounded, the time needed to attain the

separable solution is not available, and $2(t + =) c~nverges to a positive

constant. Thus , while p(x,t + ~) decays to zero, T(x,t + m) + T(X,KD) is a

positi-le nonzero steady state.

When this is the case, the asymptotic temperature will remember its

initial conditions. If, in addition, PI = ~2 = O, thee this follows at once

by noting T(x,t) = ~ a. ● exp~-~j~(t)]$j (x). Here 6. and $. are the j
th

J
eigenvaluc and eigenfunction, respectively. Using Eqs! (25), ie can see from

T(x, t + ~) + T(x, YD) = ~ aJ exp(-6.t )$. (26)
JPJ

that none of the harmonic; initially present vanish as t + ~.

For the nou-linear case we show this

cuu,lterpart of (22), as the initial

perturbed solution of Eq. (22) is

T(x, t) = o(t)$(x) [1 + U(x, t)) .

If u = w(t) V(x), then $ is the first

W(TD) > 0 and u cannot return to $2*.

Thus, in the third quadrant where ~2

is slways inhibited by the fast diffunion

property by taking $(x), tnc spatial

condition and perturbing it. The

(27)

●igenfunction uf V. Again w(*) =

> Pl, U2 >aij the diffusion of heat

of density. In thz i~urth quadrant,

depending on the i.~itial data a~d the values of ai and pi, either temperature

or density will inhibit the diffusion of the other.



Numerical ●xperiments have shown that usually the density decays faster and

inhibits the diffusion of heat, as in the third quadrant. If U1 ~s negative,

the process always terminates on the fast scale. If al is positive, the

process is fast if the teqerature vanishes and the plasma becomes cold within

a finite time, but it is slow if the density decays to zero.

When ~1 # 0, the asymptotic analysis of the temporal p~rt is more tedious

but confirms the above conclusions. However, for ~1 # O we were unable to

analytically demonstrate the attractive nature of the separable solution. It

is at this point that an extensive numrical experimentation was used co~-ering
- .,

all of the tour quadrants of the (x, y) plane to ensure the attractive nature

of the separable solution. This leads us to believe that Lhe lack of rigorous

mathematical proof is rather a technical than a fundamental obstacle.

Moreoever if T < -,
D

unlike the semicoupled case, either both T and p come

close to their ideal counterparts $ and N or neither comes close, as t + ~
D“

In practice however, for the many cases considered numerically, T and p

approach their attracting separable solutions very quickly, long before the

process “runs out of time.” That is, by the time the diffusion coefficient

becom?s suppressed, the process is extremely close to its universal ❑ode.

Fig . 4.la. Density, p(O,O) = 10. Fig. 4.lb, Temperature, T(O,O) = 1.

Fig. 4.2am Density, P(O,O) = 1. Fig. 4.2b. Temperature, T(O,O) = 20.

Fig. 4. Synnnetric solutions of the diagonal case, Eq. (6), with parameters in
the fourth quadrant, al = -~, ri2 = -~, ~1 = $, P2 = -$, dol = 1, doz = 5,
h = -10, either the density or the temperature may decay to zero in a
finite time, leaving the other ri, randed.



In Figs. 4, we show two examples with parameters in the fourth quadrant

of bow either temperature or density diffutiion becomes depressed. The initial

conditions and solution are shown for a massive relatively cold plasma whure

temperature vanishes in a finite time (Fig. 4.1), and a hot relatively tenuous

plasma, where density decays to zero in a finite time (Fig. 4.2). In Fig. 4.2

the maximum initial temperature is T(O.0) = 20. If T(O,O,) = 10 then both

components decay faster than exponentially and race toward zero between p and

T ends as it does in 4.2 but with the final temperature several orders of

magnitude smaller.

3.2 The Tensorial Case.

We are now in the position to discuss initial boundary value problems for

the tensorial system Eqs. (1). The evoluticn of the temperature and the

effect of the convective term in (lc) is ❑ ore ●asily understood by working

with this ●quation rather than (lb).

Substituting yields the separable form (8) into (lc) yields

(28)

where

ai-~2 JI-P2
s(t) = $1

Compare t-his equation with

the behavior of S(t). In

(lOb). The status of (28) depends critically on

turn, the behavior of S(t) critically depends on

which quadrant of the (=,;) plane the parameters reside. The possible

behaviors are:

1st quadrant: s(t) J o

2nd quadrant: s(t) = o(1)

3rd quadrant: S(t) + m

$1+ const., Sl(t) A o
4th quadrant: if {

$Z + conatm, Sl(t) +~ .

In the first quadrant, asymptotically the convective term becomes

completely suppressed and thr ~hapc of both N and @ remain unaffected by the

convective part. In the s . quadrant, S(t) is a constant which modifies



the shape of the eigenfu.nctions Q and N. Otherwise the characterization of

the solution in this quadrant does not change.

S(t) has Lhe most dramatic impact in the third quadraut. Here, S(t) will

grow indefinitely unless the temperature becomes isfjthermal. But, the

boundary conditions for T in Eqs. (7) prevent this if hz # O. Asymptotically,

this difficulty is resolved by T converging to a constant everywhere but near

the boundary, where an ever thinning boundary layer will be present. A

numerical example of such a case is shown in Fig. 5 and should be compared to

the diagonal tensor case in Fig. 4. Since the temperature is nearly constant

●verywhere except for a small boundary layer, the dynamics of the problem are

confined primarily to the density Eq. (la).

Fig. 5.la. Density, p[O,O) = 10. Fig. 5.lb. Temperature, T(O,O) = 1.

Fig. 5.2a. Density, p(O,O) = 1. Fig, 5.2b. Temperature, T(O,O) = 10.

rig. 5. Symmetric solutions of tensori.al case, Eqs, (l), with parameters in
the fourth quadrant, al = -~, a2 = -$, ~1 = $, 132 = -~, dol = 1, do2 = 5,
h = -10 ei~her the density or the temperature may decay to zero in a
finite time, leaving the other stranded.

In the fourth quadrant the eituation is, as in Eqe. (6), either an

extension of the firmt or of the third quadrlfic.

Finally, note that if al = a2 and ~1 = ftz, S(t) = O(1) and, aE in the

dia80nal case, the decay rate is unknown a priori and the selected pattern

depends upon the initial data,



4. NLMERICAJ CALCULATIONS

Several hundred numerical ●xperiments were performed to support the

claims m~de about the stability and self-similarity of the asymptotic

solutions. In the calculations, we used second-, fourth- and sixth-order

centered finite difference approximations 11 en grids ranging from 20 to 200

❑esh points on a CRAY X-HP computer. The boundary conditions were

incorporated by extrapolating the solution to fictitious points outeide the

region where the solution wan being integrated.g The cubic extrapolant

satisfied both the boundary conditions and the differential equation at the

boundary. The soiution was integrated in time usiag a variable order -
10

variable time step method of lines code, i’10LID, that retained an absolute
-4

error tolerance betweeu 10 to 10
-6

per unit time step. f’fany problems were

recalculated several times with different urder finite difference approxi-

mations in space) grid resolution and time truncation error criteria to insure

the numerical solutions were converged wit:[~.n an acceptable accuracy.

5. SUMMARY

The dynamics of the highly coupled quasilinear equationa (1), is

surprisingly simple. After a relatively short transit time the dynamics takes

place in a finite dimensional space and is almcst independent of the choice of

initial data. In ‘he initial value ploblem the ❑edium quickly becomes

i~othermal and the dynamics are confined to mass diffusion. The initial

boundary value problem offers a much wider variety of ph~nomena, all of which

depends on the choice of the nonlinear diffusion coefficients D1 and D2.

Among the phenomena which do not have a counterp,lrt in the single diffusion

equation case are:

1) The diffusion ia at an unknown a priori rate and thr density and

temperature are similarity solutions of the second kind.

2) The diffusion rate of one solution component vanishes in favor of the

other. The faster decaying solution component is predetermined in

quadrants 71 and III of the (pl-p2,a1-a2) plane.

3) In quadrant IV the decay is reminiscent of pattern selection where the

winning tiolution component depends upon the initial data; which jn

turn decides which diffusion pattern is chosen.

Aithough we have ●xtensive numerical calculations, the mathematical

status of the problem is that we know ●verything (almoot) about the ●volution

of Eqs, (1) but can prove nothing (almoat).
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