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ABSTI?ACT

In ●n effort to Increase spatial resolution
without adding additional meshes, an ●daptive
mesh was incorporated into a two-dimensional
L8grangi8n hydrodynamics code ●long with two-
dimensional flux corrected (FCT) remapper.

The ●daptive mesh a~tcxnaticallygenerates a
mesh based on 8moothness ●nd orthogonally,
and ●t the same time ●lso tracks physical
conditions of interest by focusing mesh
points in regions that exhibit those
conditions; this la done by definl~g a
weighting function asaoclnted with the
phyolcal oondltiona to be tracked.

The FCT rembpper calculates the net
transportive fluxes based on ● weighted
●verage of two fluxes computed by a low-order
scheme and ● high-ordor scheme. This
●veraging procodure produces solutions which
●re conaervatlve ●nd nondiffusive, nd
maintains positlvity.

This ●daptive rezoner package was
modularized such thht users can add the
●daptive mesh to ●ny loglcal roglon8 bounded
by sllp/oollspse linee. Extonsivo
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pa-fomod, ●nd tho rosulta of thoso calcu
‘latlen.awill b dlscuasod in dotall.

1. INTRODUCTION

The lmrpose of this paper is to describe ●n ●dap~lve
rezoner incorporated into the two-dlmenalcnal (2D) finite
difference Lagranglan hydrodynamic (hydro) code with a
quadrilateral CO1l. This 2D hydro mde 18 ● FORTRAN program
for the Cray-1 Computer designed to calculate the time-
dependent solutlons of two-dimensional hydrodynamic problems
with elaatjc ●nd plastic flou includlng phase transition and
span ir,plane or cylindrical geometry. A quadrilateralcell
18 formed by two ●djacent constant I lines ●nd two adjacent
constant J lines. An overall code ●rchitecture including its
finite difference equations, i8 given in references 1 and 2.

In section 2 of this papers, a variational method for tl)e
automatic mesh generation in a two-dimension [3] is developed.
Firs’L,● fomnulatlon of the functional for generating ●daptive
meshes 1s described. Then the Euler equations for this
fuctlonal ● re derived, ●nd the finite Difference
approximations to the Euler ●quations are solved by iteration.
A two-dimensional (2D) FCT (flux corrected transport) remapper
[4] la developed in section ~, First, an ●lgorithm for
calculating a low-order flux and high order flux with corner-
coupling 18 given. Then a method for llmiting fluxes, and
the final ●ntidiffusive transport steps ●re briefly described.
SQVeral test problems including ● reactive HE (high explosive)
burn were calculated using this code with adaptive meshes.
Some results of these calculation are given section 4.

2. VARIATION METHOD FOR MESH GENERATION

It is well known that there ●re two ●pproaches to
increaso s spatial resolution of tho finite difference
approximations to the time-dependent partial differential
●quatlons without using finer uniform meshes over the whole
■esh system. One 10 the use of ● atatlonary mesh system uith
the ❑esh refinement in space to obtain tha dosirec!accuracy ●t
the proper locations. The other 1s the u~e of ●n ●utomatic
❑esh goneratlon scheme to move the mesh polnte in eucl’● way
that they conoontrate ●t tho plauo8 where they ●re needed most
for high.:’ resolution. Researchers ●long the first ●pproach
are exemplified by tho multi grid methods for Brant et ●l.,
(6,71 and the 10ual mesh roflnement M@thod of Bcrger ●t al.,
[8]. Tho ●aoond approach 1s th~ variational method for ❑oving
mesh points of Brackbill and SaltMan [3], and ianonko et ●l.,
[91. Tnc variational method of Braokbill ●nd Saltzman was
uo~d in this paper.

The mothoda of multigrid ●nd local mesh refinem lituan



●chieve high local ●ccuracy, but thy lose the numorioal ●o-
curacy ●nd stability ●t the bO~tiry b@tUOOn tino ●nd cmrso

mesh regions. S~nca their ●osh systoue ●ro not boundary-
fitted, complicat.odinterpolatlona nocmeary for the proidw
with shocks ●nd complex geomotry. Om the other hand, the oon-
trol ❑echanism in the variational methods of Yanenko,
Brackbill, ●nd Saltman 1s more prablem-oriented, ●.g., the
velocities of the ❑oving mesh points, tk distortion in tM
❑esh and concentration of the mesh points can be controlled
almost i?idepencientlyby varying differmt oontrol parameters
in the functional to be ❑inimlzad.

The detailed description of the variational formulation
of the mesh generav.orof Brackbill and Saltzman is elaborated
in reference 3. Therefore, only its brief description will be
given in this section.

2.1 Variational Formulation of the Mesh Generator

Consider a ❑a? from the two-dimensional parameter apace
x(c,rt) to x(i,.j), and we define the following functional
which ❑easure the p“opertles of the map:

‘n (1)

(2)

(3)

(4)

where ((,n) are ~ontinuous variables which take on integer
values, (l,j) are the indices which give the location of mesh
vertices x(i,j), w(x,y) 1s a given function of x and y, J is
the Jacobian of the map.

The integral in equation (1) ❑ easure the smoothness of
the ❑apping from (C,n) Lo (x,Y). ‘n particular, the gradients
in the integrand measures the apaclng of the constant ( ●nd n
lines. It aeoms pauslble that ● mesh that has amoot,huhanges
in spacing would have a functional,value leas than ● jaggedly
spaced moeh. We Mill call this integral the smoothness
functional. The lnt6rgral in ●quation (2) measures the or-
thogonality of oonatant t and n lines. If the meeh were
p@rf.otly orthogonal then the integral would M zero. U. will
call this integral the orthogonality funotionml. TM integral
in .quation (3) m~asuros how well tho volumo elemtnts ●r~
oonformlng to ● Sivon weight fun~tion u(x,Y). Xf WQ wora to



minimlzo this lntogral, M. would pradict that where w 1s large
J should b mall and conversely mar. J 10 large w should be
r~latlvoly’mall . Further. if J 1 =all in ● neighborhood of
some point P then the fi~idshould have many points C1OSS
togather in ● neighborhootiof the POlnt P. We will call this
last integral the vol=e wetghtlng functional .

Then, we take ● linear combination of the integrals as
bglou. The lambdas ●re ●ll chosen positive and their relati’e
size determines the importance given to ●ach integral.

J=l, +AVI. +AOIO, (5)

2.2 Euler Equations for the variational Problem

The Euler equations for the smooth functional Is is are:

●nd

where



●nd (12)

(13)

Three sets of Eul er equations are to be ●dded t~gethei with

coefficients given by

a ~ a,+ La, +Lanm

c -. C,+ AC, +Alco.

The resulting system of elliptic equations are numerically
solved by the classlca: Gauss-Jacobi iteration.

3* THE TUO-DMENSIONAL FCT RE?9APPER

La8rangian hydrodynamics calculations ●re sometimes
termlnatcx! prematurely because of severe distortions in the
computational cell. Then, &here is the need to change the
computational celi in order to continue the calculation. Or
the computational ❑esh has to be changed to statlofy various
trite: la if an adaptive mesh algovithrn Is used with the
Lagranglan hydrodynamics calculations. It 1S then nec-~arY
to transfer the conaervad quantities (such ●s mass, momentum,
and energy) from the old mesh to the new mesh. This process
1s called remapping or rezoning. In essence, it 1s an
interpolation procedure frm one mesh to ●nether. However, we
would like to impose three important restrictions on this
process: namely we want it to ~oonaervatlve,n ondiffu~ive and
positive.

The FCT remapper used in this paper was dev810ped by
Scannapiceo [4] and Zalesak [10]. The detailed description of
FCT mmapper is elaborated in reft?enoes 4 and 10. Therefore,
only its brief description will be given here.

The basis for the new remapper 1s ● fluy corrected
tr~naport technique developed by Zaleaak for fixed E~Oerian
meshes. Zalesak’s tcchniquo hsd to be modified to run on ●n
●rbitrary quadrilateral me8h, This meant that the high ●nd



lW ordw f luxos treed in the technique had to be defined cn an
s.rbltrmry~~ii~t~al -h.

The bmsic philosophy of the F’CTtechnique in that two
•l~rit?ns mro tiredto cwry out the transport of the fluid
quantltios: An algorlttm low-order, in ●pace, that 18 highly
diffusive but C1V8S mmmth re8ul ts, 1s combined through the
●edium of ● flUF-limitW with ● hiRh-order •lgorit~ that 18
vary nondlffuaive but causes ripples in the sLlutl on. The
combination produces ●n ●lgorithm that is ●ccurate to any
desired to order in space, la nondiffusive, Fnd does not cause
numeriual ripples. Since the FCT remep:~r 1s written flux
cons~rvative fore, it conserves all transported quantities to
machine roundaff, ●nd ❑aintains positivlty.

?ig. 1 Calculation of Noncorn~r-Couplod

Low-Ord@r Pluxot

Now we will aescrlbe how to Oalcul ate the lower-order
fluxes. Fig. 1 shows tuo overlapping qu&drlla Leral

Legranglanaosh@s and their vertices j, j-l,.jl-l, .j’,.j’,j’-~,
‘1-1 ‘1

J ●nd J The mDrlmetd quantities refer to
the ol”dmesh ●nd*tho primed qUtntltiCO refer to tho now mesh.
Tho Iow@r-ord@r fluxes aro aalcul~tcd by donor cell (or

upind) difference scheme ~saumlng tha oons@rv~d q~antitiea
●rc pioocwlag oonstant ovor tho old ●nd ncu oella. For



●xample, the lou-ordor flux between tho moshea J and j 2 18
calculated by ■ultlplyln.ga displmad oo11 vol~e aasoclatod
with ● dotted ●raa in Fig. 1 and ● conaorved quantity from ●

donor-eel 1.

Fig. 2 Calculations of
Order Fluxes.

Corner-Coupled High-

I’ocalculate the corner-coupled high-order fluxes, we
cons:ruct ●2hy~thetical cell j and its five neighbor cells ,j-

l. J- l,.I, J + 1 and j +1 as shown in Fig. 2. The vertex
of this hypothetical cell 1s located at tne average position
between the old and new cell vertices. Then , the conserved
quantities ●re linearly interpolated along the top side
panel betueen the hypothetical cell j ●nd its five neighbor’
cells. Finally, the corner-coupled high-order fluxes ●long
the topside panel ●re calculated by taking the line
lntegraLion of the advective terms. The corner-coupled
higher-order fluxes ●long the rightslde panel are calculated
in a similiar way.

Slnoe we calculated the low-order ●nd high-order fluxes,
we ●re retdy to calculated the conserved quantities in the naw
mesh as Mlou:

1. Define the ●ntidif’fusiveflux,

‘s - ‘Hj ‘FLJ (15)



*r* ‘w io ● net hi@? -WdUP flux away frcnua new cell-j

2.

3.

4.

‘Lj
is ● not lcw-order flux ●way fra a new cell j.

Compute the conserved quantltiez in the new cell using
the lw-order fluxes,

(16)

L
‘*re ‘Nj

is the conserved q~antities in the new cell j

using the lw-order fluxes,
Q is the conserved quantities in old cell j.
O.j

v is the volme of the old Cell j.
Oj

Limited Lhe A
J

in a manner such the QLNj
as computed in

step 4 below 1s free of extrema found in QLNj
or Q

Oj‘

Apply the limited antldiffusive fluxes,

L
‘NJ “ ‘Nj

- A:/V
Oj

(17)

(18)

‘here ‘Nj
18 final conserved quantities

in the new cell j.

Zalesak’s flux limiter [10] was used in this paper.

4. Results, Discussions, and Conclusion

Figs 3 ●nd 4 show comparisons of 2D Hydro Code
oalculatlona for the shock te?t problem ●t the same time, with
or without the ●daptive ❑esh update.

The tmt problem has two layers of hollow metal ba.ls
which ●re made of ● high density material. An ideal gas with
gamma of 5/3 was sandwl-chcd between two hollow balls” (
strong ohocks whose etrengths are ●pproximately 1 Megabar,
gonoratnd ●long two forty-fivo dogroe lin~s frcm the North
South polca, ●nd those two shocks ❑ove ●zimuthally toward
●quator.

The ●daptive moeh waa only ●dded on the ideal gas reg

Two
●re
&nd
the

on,
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Fig . 3-a

Comparisons of
U@ing 2D Hydro
Adaptive Mesh.

Fig. ~-.a

Two Azimuthally-Mvhg shocks
Code with (Fig. 3) or without

-1

(Fig. 4)

I

R-AxMm~ MISS *

Fig. 3-b Fig 4-b

Comparisons of Tw Azimuthal ly-Moving Shocks Calculations
Using 2D Hydro Code with (Fig.3) or without (Fig. 4)
Adaptive Mesh.

&nd both the smooth functional aa well as the volune ueignting
functional W8S turned on. The purpose of the smooth
functional 1s to connect finet●nd coarse mesh regions with
smoothly lncroasing or decreasing meshes. On tho other hand,



Calculations of Two Azimuthally-Moving Sbcks ofter their
C91158ion8 at the Equator Region using 2D Hydro Code with
Adaptive Flesh,

the purpose of the volune flmctional is to resolve a certain

physical varl&ble associated with a function (e.g., a shock)
by adc!lngf’inemeshes, and to follow this physical vBriable.
The physical variable LC be followed in our test problem is a
pressure gradient.

The mesh interface and the shock pressure v3. the Z-
dlrectional distance are plotted together with the same scale.
Figs. 3-a ●nd 4-R show that two shock fronts move azimuthally
toward the equator. Please, note how closely the adaptive
mesh follows the shock front. In addition, the fine and
Ooarae mesh regions are connected smoothly by increasing or
decreasing meshes. Figs 3-b and 4-b show the results of mesh
i?ItIBPfaC08 and shock pressure prOfileS at ●pproximately 0.195
mlcroseoonds when LUO shocks collide with each other, forming
● ?lachztem. Two-dimensional Hydro Code without the adaptive
mesh update, died at thlo time becfiuse of mesh tangllngs.
Hwever, 2D Hydro Code with the ●daptive mesh kept calculating
the transient behaviors of two shocks as shown in Figs. 3-c
and s-d. The maximun shock strength ●ttained approximately
6.5 Hegabars at ●bout 0.21 microseconds ●t the ●quator.

Th*n, two shocks moved back to the polar axis ●nd were
rofleoted ●t about 0.382 ❑icroseconds.

Now we will use the ●daptive mesh for calculations of
rcactlvs HE burns. The test problom has ● cylindrical
geomotry, ●nd ham one detonation point 8urrouncled by ●
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Fig. 5-a
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Fig. 6-a

Comparisons of Forest Fire Reactive HE Bun Calculations
Using 2D Hydro Code with (Fig. 5) or without
Adaptive Mesh.

(Fig. 6)

Fig. 5-b

u—. - && 9—

Fig. 6-b

Comparisons of Forest Fire Reactive HE Burn Calculations
Using 2D Hydro Code with (Fig. 5) or without (Fig. 6)
Maptive Me&h.

Sensltlva HE and a rectangular lnart foam material ●t the :op-
left alclt. An entire HE device was e,lcloaed by two ●luminum



plates ●t the top and bottcxn sides.

Figs. 50 ●nd 6 ahoti comparison of 2D Hydr O Code
calculations for the reactive HE test problem at the same
time, with ●nd without adpatlve megh update.

The mesh interface and unbtirnedHE maaa fraction contour
were plotted together with the same scale in Figs. 5 and 6.

The heavy aolld llnes irIFigs 5 through 6 indicate the
boundary line between the burr .d and unburned HE. The
●daptive mesh was only added on the HE and inert foam material
regions. The smooth functional, the volume functional, and
the orthogonal functional were turned on. The physical
variable to br followed in our test problem in a pressure
grad lt.

Figu?es 5 and 5 show how the detonation front moves with
time. Please, note how closely the adaptive meshes follow the
detonation front in Fig. 5. In addition, the fine and coarse
mesh regions are conr,ected by smoothly increasing or
decreasing meshes as shoun in Fig. 5. There~ore, Fig. 5 shows
a relatively narrow del:onationfront without any hourglass and
finger-i~.kelnstabilites behind. However, Fig. 6 shows both
hcurglass and finger-like instabilities behind and at
detonation front. Two-dimensional IiydroCode without tlie
adpative ❑esh died at about 6.o5 microseconds because of
hourglass instabilities. 2D Hydro Code with and without the
adaptive mesh calculated the detonation velocity 1s 0.8$
and 0.78 cm/mlcroaoconds, reapoctively. The theoretical
detonation veloolty la 0.89 cm/microaecGnda.

Two major obstacles preventing a successful calculation
of reactive HE burns using the adaptive mesh have been
tendency of ● mesh adjuster to pull most of meshes from a
region ●head of a detonation front to a detonation front
region and a mix of a partially-~urned HE cell with an
unburned HE cell by a remap?er The former makes the mesh
●djuster r~n out of mes..ea at the region ●head of the
deton~tlon front, ●nd the latter’s ,r+IIl.ta in artificial
burning of the tlEs,making the detc”at’on ?ronc move faster
?han its theoretical velof?lty. To cure these problems, the
dlsplacemclts of mesh polnte which pack the meshes close to
tho detonltlon front, ●re calculated by a linear weighting of
two dleplacements, that 1s, one by c&lculated by the mesh
adjustor, ●nd the other by multiplying a 100al fluid velocity
●nd ● timestop. Sinoe the local fluid veloclty is zero ●t toe
roglon ●head of the detonation front, this linear weighting of
two dlaplacement tends to mako the ❑esh adjuster pull more
meehoa fram the region behind the detonation front ra~?.er than
&h@ad of tha detonation front which, in turn, ❑ akes the
remappor 10DO likely mix the pmrtlally-burnadHE cell with the
unburned HE cell.



The main thrust of this work has been to implaont the
adaptive rezoning capability into the code, ●nd we ●re nh
beginning to use it, in particular, for calcul~ti~ns for

reactive HE burns. These ●re preliminary reaulte ●nd do not
represent the word.

He plan to incorporate Lhe more ●dvanced rezoner [5] intO

2D Hydro Code ●s part tif’an effort to cure the artificial
burning of the HEs. This rezoner was developed by John
Dukowicz ●nd maintains the second-order accuracy in space.

In conclusion, the adaptive mesh can handle intractable
problems, and increases the spatial resolution of the physlca~
variables without adding ●dditional mesh.
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