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COMPRESSIDLE LACRANGIAN HYDRODYNAMICS WITHOUT LAGRANGIAN CELLS----------- ---------------------------------------------------

Robert A. Clark
Computational Physics

GrOUp X-7, MS B257
Los Alamos National Laboratory
Los Alamos, New Mexico e9745

I. INTRODUCTION------------

The formulation ncrmally used to calculate compressible Lagrangian

hydrodynamics in two dimensions 1s the following. First define a two-

dimensional ❑ esh containing a set of Lagrangian cells. Assigz each

cell a fixed ❑ ass. Compute the acceleration of’ the mesh points and

mcve the points. The volume of the cell changea with the moticn of

the points. The cni,nges in ueii GGfisity, energy, and pres~l~r~ arp

computed from the changes in volume. Difficulties occur when there

arc large distortions in the flow that cause similar large dlsto?tions

in the Lagranglan cells. The usual solution is to somehow adjust t!le

mesF, as the calculation proceeds. This involves either movin~ in-

dividual mesh points or actually rc-connectirig the mesh. In either

case, it becomes necessary to ~“e-map the mass from the old cells to

the new. This necessarily produces some amount of undesirable numeri-

cal diffusion. khen and how to adjust the mesh and how to accurntcly

re-map the mass and other variables so as to minimize numerical difru-
sion arr the prob:cmr.

One way to ellmlnat(’ these problems 1s to abandon the ifica or tllc

Lagranglan cell since it is the distortion of the Lagri]nglan ccl] th~t

1s the caus~ of all thr o(.h~l’ problems. In the next s~ct.ion w(? w~ll

cllsruss how the consrrvfil!on equat.ions can be solved directly without

rcsortinv to Lap-allElan r~lls. Next, UP will givfI some examples of

culculat~i)ns using this method. Finally, wc will RIv(! details f3r the

calculiitlonal method pres~ntly being useci.

11. SOLVING THll :ON!5FRVATION E.QUATIONS—-_.-———-—---- - . --- - - .- -- .- - .- - . --—- ---—

ThP cquilLlors wc arc trying to SOIVC c!nn be Written

[;’.11



:,
1

P = P(p,e)

[2.2]

[2.3]

[?.~1

where ~ represents the vector velocity, p the density, e the specific

internal energy and P the pressure of the fluid. Equation [2.1] ex-

presses conservation of ❑ ass, [2.2] canse~vation of ❑ omentum and [2.3]

conservation of energy. The Lagrangian time derivative, l.c., the

deriv&tive fnllew!!?~ Z5: fl:id, i= illdicd~en Oy
n

Et “

In a standard Lagrangian calculation only Eq. [2.2], the momentun.

equation is solved directly. The proccdu?e 1s to integrate [2.1] over

some re~~on of space to arrive at the acceleration of PaCFI mesn FIOIE! .

The mesh points are then moved and the new cell VO]U!IIC9 alO~g With L!IC

fixed cell mass determine the new density, hence, indirectly solvln~

Eq. [2.11. The associate PdV work term upuate? the cell cnf’l”gy anti

indirectly SOIVCS Eq. [?.3] and the ncw pressure 1s obtained fr’r,rn th.’

equation of state [2.4].



finite difference ●pproxi mat ion to 6P and 6 s ~, using these

bora , and update p. ~ ●nd ● at each point. Each point is then

the distance t bt and one time step is completed.

nelgh-

moved

At the next time step the 8electlon of a set of “representative”

neighbors may change, but this does not require any sort of re-mapping

of’ variables. It only means that a different set of points w1ll be

used in thp next finite difference approximation to 6 ● ~ und 6P.

Large distortions in the flow will produce frequent chsnges in neigh-

bor selection, but since there are no cells to dis:ort and no re-

mapping to be done the calculation proceeds from cycle to cycle with

no difficulty.

111. SOME EXAMPLE CALCULATIONS------ ------- ------ ---- ---

3.1 Hcr~ uc will give three examples cf calculations performed by the

code HOBO using the free Lagranglan method described herein. ?,-,Ir.u

first test problem 1s the implosion or’ a gaseous sphere. The initial

condition is a sphcrr of perfeci gas with a gamma of 5/3. The Ra9 iS

divided into four rcRion3 as seen in Fig. ?.1. FressuPcs ar~ in

megatrars, density in gmtcc and dimensions in cm.
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cycles with 73 points in the radial direction ●nd 64 Points cover~ns

180” of ●ngle. The left half of the snapshot is ● reflection of the

right half which was calculated.

000 0 0 0

.

t-().() t-.(xi!l t=.ogq t=.l~(j t=ml#j t=.JR~

FiIB. 3.2

The second challenge 1s the accaracy of the solution. For comparison?

purposes we ran a standard one-dimensional L:!grangian code usir,g 8C2

zones , 200 zones in each region. In Figs. 3.3.a, 5, r, and 3. He

have plotted the average density and average speclflc !nternal energy

in ?egions I and 11 as calculated by HOBO with 73 points in the radial

Cllrectkon and the one-dimensional Lagrangian calculation wltn 5?0

points. Uc feel the agreement to bc quite good. One n3table :if”-

ference is the time at uhjch minimum volume
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slow by about .0075 MSUC Or ‘:$ of the pro bAem time ●t thst point.

Since ●verage density and energy ● re integral quantities we have

plotted one of the variables as a function of radius in Fig. 3.4. We

cnoae radial velocity, but the agreement in all other variables is

very similar. The plots are from sllghtly different times to compen-

sate for the time shift just mentioned. The ID Lagrange plot 1s at

2.125 usec and the HOBO plot Is from 2.25 usec. Apart from the in-

●bility of the more coarsely zoned HOBO to resolve the shock front at

the radius 1.2 cm we feel the agreement 1s eXCel lent. The time chosen

for the plot is late ~n the calculation when region II has expanded

almos back to its original volume.
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● ir to helium density ratio is just over 7. There 1s ● n inl Lial per-

turbation in the uir -- He interface which grows with tiMe ●fter the

I shock passes through the interface. In Fig. 3.6 we plot several snap-

ehota of the Lagrangian point positions in the air (the He is not

plotted). FQr eomparisok~ purposes we ran the same problem on a two-

dimensional Eulerian code with the cell size similar to the point

.

t-umo t= 354. t=!) -111. t-ii5J. t=l Uq3.

Fig. 3.6

separation used in H09C. In Figs. 3.7a and b, we

L=iLU(l.

compar~ the size

the perturbation 3s It grows in time. In 3.7.a the initial perturba-

tion, d, ia . ‘2 cm and in g.7.b it is .4 cm in width. Tne agreement

between the two codes 1s excellent.
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1= !1111. t f,:,!),

Fig. 3.8

change in the length of the steel rod. The sound speed In the rod is
2. 45J15 cml”gec a,ld (v/c) . .22, so Lhls p~oblem should not be too fa-

f’rom the incompressible solution. AS 1S shown in Fig. 3.9, the rzd

length as a function of t~me ❑ atches the jncomprcssible theory very

well. Calculal ions Wltn a two-dimensional Eulerlan code producud ;~rl

glmost identical result.
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Iv. THE FINITE DIFFERENCE SCHEME
a —..-.. ——--— -------------

4.1 The pressure ~rsdient
* -------- —-----

We want to approximate ?P at the point k whose neighbors are the

points k,, k2 . . . knmax. Our neighbor selection guarantees at leagt

three neighbors for ●ach point, the averaae 1s 8ix and there is n~

❑ aximum number. Clearly there are ❑any ❑ ethods that could be uses LO

approximate $P. The following was al-rived at through much trial and

error and appears to work very well.

.k
2

‘2 ‘1

●k,

‘4

“k4

Fig. 4.1

Considvr point k in Fig. 11.1 that has five nC16hb0P9. WC construct ii

polygon wl~h vertlcc?i midway bt?twccn the point and ea’h of’ its

n~lghbors. Th~ position of thv nth vertex 1s ;n - 1/2 [;(k) + ;(krl)~

and Lhr vrctor from ~k Lc) ; n Is df!noLcd by d;n - ;n - ;k. Thr pPl!!3-



The resulting expression for the pressure gradient is

; : Pn (AYn.l
$Pk -

- dYn+l ) + ; ~ Pn (6xn*1 - dxn-l)n--------------------------- ---------------- ---- [4.1]

.
where ~ and y are reapectlvely the unit vectors in the x acd y direc-

. .
tions and din ● 6xn x + 6yny.

If the preceding in done in cylindrical geometry, the result is iden-

tical for *P with x and y replaced by r and z. It is of i~terest to

note that if the ~Jfl is not taken, the result does not give a 3phe?i-

cally symmetric pressure gradient in a spherically symmetric p?fiblem

using cylindrical coo~dinates.

There 13 an eaaler way to arrive at EG. [4.1] although the method ~us~

described 1s how we originally derived it. Since it takes only th?ee

points to describe a ?lane su~face, each consecutive pair of neighbo?s

along with the Point k defines a pressure plane to first order. If we

assign a weight to each of these approximations we have an approxima-

tion for VP. If the weigh!ing function is the area uf the triangle

formed by the three points, the result is the same as Eq. i4.1]. He

have tried other weighting functions, Q and Sino where 0 is the angle

between 6~n and d;n+l both work fairly well, but srea weigF,ting ap-

pears to be best at this tj.me.

4.2 The divergence or the velocity field------ -—--- ----- ----------- ----- -------

in cartesean coordinates we represent the velocity at the point k by

dk-uki+vk; a The divergence of the velocity fieJd can be CX-

pressed as ? ● ti - ;;: where V is the specirlc volume of the fluld.

Referring back to FIR. 4.1 the speclfl~ valume of the const.ruc!t.ed

polygon is proportion Lo the area of the polygon given by

A- 1/2 In (Xn+l + Xn) (Yn+l - Y“)



Hence we can write

--- 1 (Un+l
?+ +::-”

+ Un) (Yn+l - Yn) + (Xn.l + q (V,,+l - v“)
‘2

—------------------------- ------------------------- ----
~ x“+, yn- yn+l x“
n

[14.2]

Equation 4.2 can be derived directly from Eq. 4.1 by noting that

4.1 implies a definition for the operatora ii ~- and when the~e
and ay

are applied to ~ .;-;;+~Eq. [4.2] is obtained. Tt. us, we have

in effect th?ee ways of deriving the same finite difference appPoxlm3-

tion to the operators ~;
a

and 5;”
In cylindrical coordinates we

express the divergence of the velocity field as

au
where -- +

ar
$: is calculated by Eq. [4.2] with x,y replaced by r,z.

4.3 The midpoint pressure and velocity----- ----- ------ ---------- --------

In 4.1 we use a pressure Pn wh!.ch is midway between points k ans k
n“

Thiz is not a numerical average. Consider the one-dimen~lonal problem

depicted In Fig. 4.2.a.

What pressure should we use for P; = P~+l? If’ we use the average, 1/::

(P. + P2) the acceleration ai 1+1 will be MUCh greater than at i.

However, we know that the velocity should be contir,uous across thr

discontinuity. Given equal zoning the boundary pressure wk,ich gives
+

●qual ●cc~lerations to points i and 1+1 is Pi - (Pj p itl
p ]/

(Pi + O1+,).

+ Pj+l i

It can be ahoun that the resulting finite dlffcrencc approximation Px

- (P: - P; )/5x 1s second order accurate whrn the de~slty 1S

continuous.

Now consider the problem depicted in 4.?.b. Here we have a hcav

❑aterial on the left moving into a very llght material on the right



What should we use for U: = U~+l? If we use the average, 1/2 (Ui +

U,+,], there w1ll be a very large rate or compression in region 2

which is incorrect because region 1 is ❑ ovl!!g into a near vacllum. Tnc

quantity that should be co~tinuous 13 pressure. The velOclty which

causes equal pressure increases at points i and 1+1 is U+ - [(PC2), u,

+ (Pc2)l+f ui+, l/[(oc2)i + (PC2) ~+l]. This assumes the sound spe~d ~

is a constant. Again it can be shown that the resultant rinite dif-

ference approximation to Ux 2
is second order accurate ir pc 1s

continuous.

P

\
\

\

‘i-2 ‘1-l al ‘i+] ‘1+2 ‘1+3

~i+lpi+~iri+]t; -
pi + *1+1

Fig. 4.2.a
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The midpoirit pressure used in Eq. [4.1]

and the mid’>oint velocltle~ in 5q. [4.2]

4.U. ‘rhe artificial viscosity------ ---e- ----- ------- . .

are inverse c~nsity wc:~h:(:d

are PC
2

wclght(c.

An artlricial viscosity, q, is added to the mldpoin~ prrssum(’ 1P E(I.

[4.1]. It is quadratic in fo :;. Let Uc be the closing ratr betw~f’n

points k and Itn, i.e.

(ik - ik )
Uc - (i!k - fik ) “

n

1

--—-—— --
n ~Tik-k

rl



Then let qk = ●2pkU~ and qk = a2pk U:. In the spirit of paragraph
n n

4.3, we inver;he density weight the two to get OUP expression for the

❑idpoint q, 1. e.,

qn = 282 UC2 / (l/pk + I/pk )

n
[4.3]

In all of our ●xample calculations in section 2 we used a
~

= 5.76. Now

we ❑ ust fold q into the internal energy equation in which we need to

evaluate (P A q)?=fi. Our approxim~cion for $*6 is given by Eq. [4.2].

Th? q term la brought inside the aummatlon so that

Ifp+q)u(Y )+ ~(P+q)v[Y 1-)

(P + @)t@fi -
n ‘ k n n n-l ~-~~~~, n k _- n n n+ ‘n-1

~ xn*l yn - yn+l Xn
n

4.5. Prevention of density striations------ -—----- ------- -- -----------

The method so fa~ d~scri bed has one remaining difficulty. by hnvln$

all o!’ the variablca centered in space it becomes imposslkle to detvct

a sawtooth type save as depicted in one dimension in FIR. 4.3.

‘1 -2 ‘l-1 ‘i ~j+.] ‘i+?

cl.. II ?



.

scheme. To correct for this, we define an artificial veloc~ty u’ ● s

depicted in Fig. 4.3. We use our calculated ? p to extrapolate from

point k to point kn giving P~xt ~ Pk + (~
k. - ~k) ● f pk~ If the

n

pressure field is llnear then’’ P~xt = pk . If they are not equal,
n n

there 1s a second d-rivatlve in

re~uce. Physically what should

at the ❑idpoint as indicated in

and compres~ point 1+1. This
ext

‘kn - ‘kn” We chose to use u’

the pressure field which we attempt to

happen is a velocity would be produaed

4.3, which would decompress point i

VelOCltY dust be proportioned to 6P =

= b2 &P/pc. We then use pc 2
weighting

betb;een points k and kn to arrive at

b2 dP (ck ● Ck )

u’ , n------------ -----
n 2 2

Pk Ck + Pk Ck
n n

[4.4]

u: is added to u
n

in calculating $oflm

~
In our present calculations b - 1.4ti.

II
Wc further limit U’n to be

less than 201 of the maximum of (Cko Ck ). In practice, u’ 19 a veiny
n

small term, but an absolutely ,lecessary one. For example, in tetit

prcblem 1, density str~ation9 of arohnd 5GZ will occur without using

u’. He note also that. 4P is proportional to 6X2PXX and thus is quad-

ratic in nature. The similarity brtween q and u’ is striking. The q

is an aritiflcial prcssurr which smsctho the velocity field while u’

is an artificial velocity which smoothu the pressure field.

4.6 Nci~hbor sclrction_—- .—____________

The meLhod rcqulrcs a good selection of representative neiRhbors at

each point in time. b’” hrve round out tha~ thp neighbors whose bisec-

tors form the Vornol polygon [31 arollnd the point k arc an excellant

choice. TtJP kth Vornnl polygon Is dcflncd as that, region of GpiIcc

which 1s neavrr point k *.han nny Other point.

v. SUMMAHY-—- ____

The partial differential Eqs 12.1, 2.2, and 2.J~, along with th~ equa-

tion Of stotc 2.4, which describe thr time evolutlon of compressible

fluld flow can be solved without tha us~I oi” a Lagranglan mesh. The



method follows embedded fluid points ●nd uses finite difference ap-

proximations to VP ● nd ? ● ; to update p. ; ● nd e. Me have

demonstrated that the ❑ethod can accurately calculate highly distorted

flows without difficulty. The finite difference approximations are

nOt unique, improvements may be found in the near future. The neigh-

bor selection is not unique, but the one being used at present dppears

to do ● n excellent job. The method could be directly extended to

three dimensions. One drawback to the ❑ ethod fs the failure to ex-

plicitly conserve ❑ass, momentum and energy. In fact, at any g!ven

time, the ❑ ass 1s not defined. He must perform an auxiliary calcula-

tion by integrating the density field over space to obtain mass,

●nergy and momentum. However, in all cases where wc have done this,

we have found the drift in these quantities to be no more than a few

percent.
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