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I. INTRODUSTION

The formulation ncrmally used to calculate compressible Lagrangian
hydrodynamic¢s Iin two dimensjions is the following. First define a two-
dimensional mesh containing a set of Lagrangian cells. Assign each
cell a fixed mass. Compute the acceleration of the mesh points and
mcve the points. The volume of the cell changes with the moticn of
the points, The changes in celil density, Cncrgy, and pressure are
computed from the changes in volume. Difficulties occur when there
arc large distortions in tne flow that cause similar large distortions
in the Lagranglan cells. The usual solution (s to somehow adjust the
mesh as the calculation proceeds. This involves either moving in-
dividual mesh points or actually rec-connectirng the mesh. In either
case, It becomes necessary to rre-map the mass from the old cells to
the new. This necessarily produces some amount of undesirable numer{-
cal diffusion. When and how to adjust the mesh and how to accurately
re-map the mass and other variables 80 as to minimize numerical diffu-

sion arec the prohliemsg.

One way to eliminate these problems is to abandon the idca of the
Lagranglan cell since it {s the distortion of the Lagranglan cecll that
is the cause of all the othrrr problems. In the next section wre will
dlscuss how the conservai.lon equations cdan be solved dircctly without
resortinT to Lag-angian cellsa. NexL we will glve some examples of
calculations using this method. Finally, we will give details of the

calculational method presently bLeing used.

I1. SOLVING THFE CONSFRVATION EQUATIONS
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The equatiors we are trying to solve can be written
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Bt U= - ; 3 P [2.2]
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where ﬁ represents the vector velocity, p the density, e the specific
internal energy and P the pressure of the fluid. Equation [2.1] ex-
presses conservation of mass, [2.2] conservation of momentum and [2.3]
conservation of energy. The Lagrangian time derivative, f.e., the
derivative fallnwing the flUld, io indivdriea Dy %E.

In a standard Lagrangian calculation only Eq. [(2.2]), the momentun
eguation {s solved directly. The procedure is to Integrate [2..] over
some region of space to arrive at the acceleration of each mesn point.
The mesh points are then moved and the new cell volumes along with the
fixed cell mass determine the new density, hence, indirectly solving
Eq. [2.1]. The associatea PdV work term upuater the cell ener'gy and
indirectly solves Eq. [2.3] and the new pressure {s obtafned frem the

equation of state [2.4].

We propose the followling: Instcad of Lagrangian cells, we think of
set of Lagranglan pointsn which are embedded Iin and move with tLhre
fluld. There {s no mass associated with Lheae polints. They are jusnt
moving tracer points at which we will attempt Lo keep track of the
velocity, density, encrpgy, aAand pressure of the fluid, In ou~ later
example calculations we will show polint poaltions at varlious times fn
the calculation. At cach of these points, we know th denuily, cnergy
and velocity of the fluid, but we do not assoclate any particular mans

with the point.

Looking now at Eq. [..1], we note that to approximate the tLime In
tegral of the density change from Lime ¢t to time t + §U we need an
approximation to 6 « 0 at that pofnL. To solve Eq. [2.2], we need an
approximation for 6? and for [2.3] we agaln need 0 . ﬁ. To ubtatn

these, we aclert a4 sct of "representative" nefghborsn. We then make A



finite difference approximation to 3? and 3 . ﬁ. using these neigh-
bors, and update p. ﬁ and e at each point. Each point is then moved
the distance { ét and one time step is completed.

At the next time step the selection of a set of "representativen”
nei ghbors may change, but this does not require any sort of re-mapping
of variables. It only means that a different set of points will be
used in the next finite difference approximation to 3 . ﬁ and VP.
Large distortjions in the flow will produce frequent changes in neigh-
bor selection, but since there are no cells to distort and no re-
mapping to be done the calculation proceeds from cycle to cycle with
no difficulty.

I11. SOME EXAMPLE CALCULATIONS

3.1 Here we will give three examples cf calculations performed by the

code HOBOD using the free Lagranglian method described herein. Hi A

[¢]

first test problem is the implosion o' a gaseous sphere. The initiul
condition i3 a sphere of perfec. gas with a gamma of 5/3. The gas |s
divided i{nto four regions as seen {in Fig. 2.1, Pressures are |n

megabars, density Iin gm/cc and dimensions in cm.
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The high preasure In regton IV will drive a apherical fmaploston which
will Rreatly compress region 111, 11, and particularly 1. There are
tWwo challengens Lo thina problem, the flral Ia to maintain a sphertceal
ball while running the calculation in oylind=ical (r,2) geoometry. B I
snapshota ol region I1 are shown In Flg. 3... Region &2 fa Interior Lo
region 11, The minimum volume of reglon 1 occurs {n the rifth anap-

shot after which reginn | hepina In synand Ha maem tnnmn e e s



cycles with 73 points in the radial direction and 64 points covering
180° of angle.

right half

The second

purposes we

zones, 200

have plotted the average density and average specific
in regions I and Il as calculated by HOB0O with 73 points
direction and the one-dimensional

points.

ference is

MR

1 L) v
o ny, [[] L} o (LS, 1] o.m

which was ~alculated.

OO o e°o0

t=0.0 t=.049

Fig.

challenge s the accuracy of the solution.
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in each region.

3.

t=.150

ran a standard one-dimensional Lagrangian code

In Figs.

t=.145 t=.2R9

The left half of the snapshot is a reflection of the

For comparison

usireg
3.3.a, ", ¢, and 3.
internal

energy

in the racial

Lagranglan calculaticn withn

We feel the agreement to be quite good.

which minimum volume i3 reached.
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Slow by about .0075 usec or %“s% of the probiem time at that point.
Since average density and energy are integral quantities we have
plotted one of the variables as a function of rsdius in Fig. 3.4. We
cnose radial velocity, but the agreement in all other variables is
very similar. The plots are from slightly different times to compen-
sate for th2 time shift just mentioned. The 1D Lagrange plot is at
2.125 usec and the HOBO plot is from 2.25 usec. Apart from the in-
abllity of the more coarsely zoned HOBO to resolve the shock front at
the radius 1.2 cn we feel the agreement is excellent., The time chosen
for the plot is late {n the calcJilation when region 11 has expanded
almos back to its original volume,
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3.7. For our second test prublem we have chosen a Meshkoyv

Instnlyllltyl 1

bascd on the geometry used {in one of Meshkov's
experiments, The initial conditicns are shown {n Fig. 3.5. A piston

driven shock s driven through o reglion of air and then helium, The

Alt L
'.-I.".ll"
vyt N

=i He  y=l . ni
N e A

T AT R




air to helium density ratio is just over 7.

There is an initial per-
turbation in the air --

He interface which grows with time after the

shock passes through the interface. In Fig. 3.6 we plot several snuap-

shots of the Lagrangian point positions in the air

(the He is not
plotted). For romparison

purposes we ran the same problem on a two-
dimensional Eulerian code with the cell size similar to the point

separation used in HOBC. 1In Figs. 3.7a and b, we compare the size of

the perturbation 3s {t grows in time. In 3.7.2a the initial perturba-

tion, 6, is .2 cm and Iin 3.7.b {t {s .4 cm in witdth. The agreemernrt

between the two codes is excellent.
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3.3. Our third LlLest problem (s the penetration of a concrete plate by

a steel rod moving abl an Initjal velocity of ."Vi4 em/ysec. The rod

is 9,066 cm in oiameter aand U5 cm in length. The conerete {a 50 e

thick. In FIg. 3.E we show six snapshots of the rod penctrating the

)
concvrete, Incompreasible lheoryl‘l predicta a conatant time rate of
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t=0.0 t=80.
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change in the length of the steel rod. The sound speed in the rod is
. 4545 cm/ysec and (v/c)2 = .22, 50 this problem should not be too fa-~
from the incompressible solution. As {s shown in Fig. 3.9, the rzd
length as a function of time matches the jncompressible theory very
well, Calculations witn a two-dimensional Fulerian code producad an

almost identical result.
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IV. THE FINITE DIFFERENCE SCHEME

8.1 The pressure gradient

We want to approximate VP at the point k whose neighbors are the

points k1. k K Our neighbor selection guarantees at least

2 """ "nmax’
three neighbors for each point, the average is six and there i{s n»
maximum number. Clearly there are many methods that coulc bhe uscd to
approximate 3?. The following was arrived at through much trial &nd

error and appears to work very well,

.k2 .k1
P2 P1
k3. P3 'k PS lk5
Py
.k“
Fig. 4.1

Consider point k in Fig. 4.1 that has five ncighbors. We construct a
polygon with vertices midway betweecn the point and ea*h of its
ne{ghbors. The posftion of the nth vertex is ;n - 1/2 [;(k) + ;(kn)'

- -

- > B
and the vector from X to xn s denoted by cxn - xn - xk. The proes-

sure at the nth vertex, Pn. Ils a weighted average of P(k) nnec P(kn)
(to bhe descrlibed in section 4,.1%). We assume a lincar pressure dis-

tribution along ea~h edge of the polygon and Integrate the pressure

over the aurface Lo get a forcece F. We a3nume a constant density P
over the polygon to calculate n mass M. Then we have %t ﬁ - 5 . Now
Iet ;A - ;h ' uﬁin and the preasure at the new vertex fs PA - Pk +
r(l'n . Pk). Now ¢ and M are functions of ¢ and wee compute



The resulting expression for the pressure gradient is

»
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.)O;EP(Gx &x__ )
. n+1 n 2:1 __n 1 (4.1]

where x and y are respectively the unit vectors in the x and y direc-
> - L]
tions and dxn - axn ) éyny.

If the preceeding iIs done in cylindrical geometry, the result is iden-
tical for 3? with x and y replaced by r and z. It is of interest to
note that {f the %15 is not ta“en, the result does not give a3 spheri-
cally symmetrjc pressure gradient in a spherically symmetric problem
using cylindrical coordinates.

There i3 an easler way to arrive at Eg. [4.1] although the methoZ just
described is how we origlinally derived it. Since it takes only three
points to describe a plune surface, each consecutive palr of neighbors
along with the point k defines a pressure plane to first order, If we
assign a welght to each of these approximations we have an approxima-
tion for VP. If the weighting function is the area of the triangle
formed by the three points, the result is the same as Eq. (4.1]. We
have tried other weighting functions, 0 and sin@ where © is the angle

between G;n and 6;n+ both work fajirly well, but area welghting ap-

1
pears to be best at this time.

In cartesean coordinates we represent the velocity at the point k by

Gk - u, ) S vk y. The divergence of the velocity field can be ¢x-
1

pressed as $ - U - ] %% where V is the specific volume of the fluid.
Referring back to Fig. 4,1 the specifl: volume of the constructed
polygon is proportion Lo the area of the poiygon given by

-y, )

A2 ] (x net n

n+1 xn) (y



Hence we CAN write

) - -
- 3.0 ann (a2 un) (vney = vp) @ (xpy * %) (vi0y = vn)
A A ot~ _
E !n01 vn yn01 xn
(s.2]
Equation 4.2 carn be derived directly trom Eq. 4.1 by noting that
4,1 {mplies a definition for the operators %; and %; and when these

du Vv

are applied to V « (0 = = Eq. [4.2) is obtalned. Trus, we have

ET;
in effect three ways of deriving the same finite difference approxima-
tion to the operators %; and %;. In cylindrical coordinates we
express the divergence of the velocity field as

1 3 Vv u Ju . av
V.0 ¢ F W cE 5 N
Ju ov .
where 7 + 3z is calculated by Eq. [4.2] with x,y replaced by r,z.

In 4,1 we use a pressure Pn which is midway between points k and kn'
Thie 13 not a numerjical average, Conslider the one-dimensional problem

deplcted in Fig. 4.2.a.

What pressure should we use for P; - P If we use the average, 1/

T .
1+1°
(P, + P2) the acceleration at {+1 will be much greater than at 1.
However, we know that the veloclity should be contiruosus across the
discontinuity. Given equal zoning the boundary pressure which gives

equal accelerations to points i and 1+1 is P, = (Pj P 1/

1 Pieq 1+1P4

(pl + 01‘1)-

It can be shown that the resulting finite difference approximation Px
- (P; - P;)’ix 1is second order accurate when the density 13

continuous.

Now consider the problem deplicted in 4.2.b. Here we¢e have a heayv

material on the left moving into a very light material on the right.



What should we use for U; - U;+1? If we use the average, 1/2 (U1 +

U”1). there will be a very large rate of compression in region 2

which 1s incorrect because region 1 is moving into a near vaecnum. Tne

quantity that should be coatinuous {s pressure. The velocity which

causes equal pressure increases at points | and 1+1 |{s U’ - [(pcz)i u,

. (pc2)1*1 ui,,}/[(pcz)1 + (pc2)1.1]. This asscumes the sound speed c

is a constant. Again 1t can be shown that the resultant finite aif-

ference approximation
continuous.

to Ux is second order accurate |{f pc2 is
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Fig. 4.2.a Fig. 4.2.t

The midpoirt pressure used in Eq. (4.1] are inverse censity wveighted

and the midooint velocities in Eq. [4.72] are pc2 welghtcoca,

4.4, The artificial viscosity

An artificial viscosity, q, Is added to the midpoint
fu.1]. It 13 quadratic in fo
points k and kn' i.e.

presaur-e {n Fqg.

. Let Uc be thre closing rate betwenn



Then let qk - nzpkui and Q - Izpk Ug. In the apirit of paragraph
n n

4.3, we inverse density weight the two t> get our expression for the
midpoint q, 1. e.,

2 .. 2
q, = 2a° U/ (I/pk . l/pkn) [4.3)]

In all of our example calculations in section 2 we used a2 = 5,76. Now
we must fold q into the internal energy equation in which we need to
evaluate (P =~ q)v-ﬁ. Our approximscion for v.0 1s given by Eq. [4.2].
Th2 q term {8 brought inside the summation sov that

! - ) 3
b eried o Btk t On)un(ynos = Ynea) n (P andve(vngt xply)
E xn°1 yn N yn+1 *n
(4.4

4.5. Prevention of density striations
The method so far described has one remaining difficulty. By having
ali of the variables centered in space it becomes impossitle to detect

8 sawtooth type wWwave as depicted in one dimension in Flg. 4.3.
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scheme. To correct for this, we define an artificial velocity u' as

depicted in Fig. 4.3, We use our calculated V P to extrapolate from

ext 2
point k to point k  giving PP*‘ . P« (ikn - X)) - VP, 1If tne

:Xt - Pk . If they are not equal,
n n
there is a second drrivative in the pressure field which we attempt to

pressure fileld is linear then P

reduce. Physically what should happen is a velocity would be produced
at the midpoint as indicated in 4.3, which would decompress point |

and compress point {+1, This velocity uust be proportioned to &P =«

ext

Pk - Pk . We chose to use u' = bz éP/pc. We then use pc2 welghting
n n

betveen points k and kn to arrive at

B¢ &P (ck . ckn)
uj o g [4.4)
P Sk P K
n n

uﬁ is added to u, in calculating V-ﬁ.

.
In our present calculations b“ = 1.4, We further limit Iu'n| to be

less than 20% of the maximum of (Ck. C In practice, u' i{s a very

K )
small term, but an abeolutely necessar: one. For example, in test
prcblem 1, density striations of around 5G% will occur without using
u'. We note also that §P is proportional to sszxx and thus is quad-
ratic in nature. The similarity bctween q and u' §s striking. The q
is an aritificial pressure which smooth: the velocity field while u'

is an artificial velocity which smoothy the pressure fleld.

4.6 Necighbor sclection
The method rcquires a good selection of representative neighbors at
each point in time. ¥~ hrve found out that the neighbors whosc bisec-
tors form the Vornol polygon[3] around the point Kk are an excellant
cholice. The k Vornoi{ polygon Is defined as that region of uspace

th
wvhich is nearer poini k *han any other point,

V. SUMMARY
The partial differential Eqs [¢.1, 2.2, and ?.3], along with the equa-
tion of state 2.4, which describe the Lime evolution of compressible

fluid flow can be solved without the usc oy a Lagrangian mesh. The



method follows embedded fluid points and uses finite difference ap-
proximations to VP and ¥ - U to update p, U and e. We have
demonstrated that the method can accurately calculate highly distorted
flows without difficulty. The finite difference approximations are
not unique, improvements may be found in the near future. The neigh-
bor selection is not unique, but the one being used at present appears
tdo do an excellent job. The method could be directly extended to
three dimensions. One drawback to the method {s the fallure to ex-
plicitly conserve mass, momentum and energy. In fact, at any given
time, the mass i3 not defined. We must perform an auxiliary calcula-
tion by integrating the density field over =space to obtain mass,
energy and momentum. However, in all casos where wc have done tnis,

we have found the drift in these quantities to be no more than a few
percent.
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