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EQUATION OF STATE FOR DETONATION PRULDIUCTS

W. C. Davis
Los Alamos Nationa! Laboratory
Los A'amos, N.M. 87545

The concepts of hydrodymanics and thermodynamics as they apply
to equations of state for explosive products are collected and
discussed. The physics behind the behavior of derss gases i
considered. Some ideas about applications are presented.

This paper is intended as an introduction to the subjec* of
equation of state for detonation praducts.

1. INTRODuCTION

The concepts and foraylas that
are pertinent to the development ang
use of an equation of state for explo-
sive products gases, taken from hydro-
aynamics, thermodynamics, and the phy-
sics of gases are collected and discus-
sed in this paper. Perhaps having
them Collected in one place will help
clarify the confusing subject usually
called "equation of state” by those
who work with explosives.

The second and third sections are
devoted to the equations of hydro-
dynamics and their solutions. The
fourth section prasents thermodynamics
for use with nhydrodynamics, and the
fifth a discussion of incomplete equa-
tion- of state as they are used for
explosives. The sixth gsection presents
the simple physical principles that
determine the general form tor an
equation of state. Sections seven,
eight, and nine discuss engineerin
applicattions, the choice of a fitting
form for an equation of state, and the
calibration of the fitting form,

This peper 1s intended t) be an
fntroduction to the mysteries of the
subject, and g certain’'y not the final
description of all the intricactes.

I1. FQUATIONS OF HYDRODYAAMICS
The equattons for the conserva-
tion of mass, momentum,K ana energy,

for flow in one dimension, can de
written ag

@ - vu_ =0 (2-1)

[ vp, ¢ A=0O (2-2)
(_“_;I_;_ (2-3)
;E < ) . vlpu)x = B

where v is the specific volume, u fis
the particle velocity, p is the pres-
sure, ard £ is the specific internal
engrgy. The dot denotes the tota!l
time derivative such that v = v/t +
u dv/ax, and u. = du/ax 1s a partial
dcrlxntivc. In €q. (2-3) the term £ *
1/2u¢ is the sum of the internal! and
kinetic energies, and is the totai
specific energy of the fluid alemant.
The term A in Eq. (2-2) reprcsents
nongquilibrium processes that transfer
momentum, usually viscous effects.

The term B in Eq. (2-3) represents
nonequilibrium processes that transfer
energy, usually viscous and thermal
diffusion processes.

In addition to these equations,
there fs an equilibrium equation of
stete for the material
£ « E(p,v) (2-4)
that describes the equilibrium material
properties. The equilibrium equation
of state can be used to expand the
term $n £ 1n Eq. (2-3) as
E e Epo . E'0 . (2-85)
where

En - (oEI.p)' . Ev- (lEIu)D . (2-6)

ISTRISUTION, OF TiHS DOCUMENT 15 UNLIMTED
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Equation (2-3) can be written, after
doing the indicated aifferentiation

and substituting terms frowm Eqs. (2-1),
(2-2), and (2-3), as

v(iE_ * p)
o - '-ﬁr;-" (pIv)® = (VIE )(ud = B)/v

(2-7)

The coefficients that describe the
material properties have their own
special names. The coefficient
{v/Ey) 1s called the Gruneisen gamma
and QS represented as

vIEp - T . (2-8)

The coefficient v(E, *p)/pE, is
called the agiabatic gamma and is writ-
ten

v(E' * P)IpED -y . (2-9)

Witn these definitions, Eq. (2-7)
becomes

p/p * yviv afT(uh = R)fpv . (2-10)
The conservat.on equations, Eas.

(2-1), (2-2), and (2-3), can now be
replaced by

v-ovu =0 (2-11)
wu*vp, A0 (2-12)
PID * yviv = [(uh » B)Ipv . (2-13)

A1l the dgescription of the material is
given in the two derivatives, r and I.
[f tha two derivatives are given as
finctions of p and v, the equaiions
are a complete set of three equationg
with three dependent variadbles.

IT1. SOLUTIONS OF THE EQUATIONS

The equattons of hydrodynamics
have simple solutions for special
coses, and tnese solutions allow some
insights into the physical meaning of
the various termgs in the equatigns.

Lat us first consider the important
case of a steady shock wave propagat-
ing in the material. Steaay mears
independent or time, and thus the par-
tial derivativas with respect to time

tn Eqs. (2-1), (2-2), and (2-3) are
all zero. The equations become

uv, - vu_ = 0 (3-1)

uu, *vp A =0 13-2}

W€+ ulu_ * vup_ * vpu_ = B . (3-3)
b 4 x X X

The first equation can be immediately
integrated to give v/v = conrstant., 1If
we require that thc shock wave bhe
localized near x = 0 with the material
flowing in the positive direction from
negative values of x at velocity ug,
and set the specific volume in the
undisturbed material at v,, then the
solution is

Uiv = uolv° . (3-8)

For the solution of the next two equa-
tions more informatfon about A and 8
is needed. 1In the Navier-Stokes
equations,

v e - 3 [tar3hug, ] (3-5)

B/u = (v°Iu°) %; [(413)nuul - kT‘](3-5)

Equation (3-2) can be written, using
Eaq. (3-4) .ng (3-5), as

: 3 - '_ i
(uo'vo)ux Px = o= [("3)"ux] - 0(3-?)

and immediately integrated to give,
with the bcundary conditions impcsed,

D -D = p uo(u

0 " % - u) ¢ (8/3)wu, . (3-8)

0
where og = 1/vy,. After dividin
by v, and using Eq. (3-1) to eliminate
ug/u, one can write Eq. (3-3) as

- .v -
Ex uul DI pv,

- (vglu,) = [(413)......x - ka]. (1-9)

and this can be i‘ntagrated to give,
with the bovndary conditionsg imposed,

. 3 F e 172 2
(E = pv) - (E) * pyvy) = ?(uo - w9
* rglug) [dwu, < 1] L -1

Far from the shock in the region of
large poittive x, the terms in Eqs.
(3-8) ana (3-10) containing derivatives
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nave decreased to zero, and the Eqs.
(3-4), (3-8), and {3-10) can be written
as the usual jump conditions for a
steady shock wave. These are

vlv° - uluo (3-11)
or
vlvo =1 - (u° - u)Iuo (3-12)

for the conservation of mass, from Eq.
(3-4). Equation (3-12) is writien to
correspond to the more familiar form
in laboratory coordinates, where the
mass vrlocity is (up - u). Equation
{3-8) becomes

D -p. = o uo(u -u) , (3-13)

0 (4] 0
already 1n its familiar form. It can
also be written, using Eq. (3-12) to
eliminate (uy - u), in 1ts Rayleigh
1ine form as

2 2. i
P - Py = oquglvy, - v) . (3-14)

Equation (3-10) can be written in its
several familiar forms a-

iEaen . . 1 2 1 2
{(E*p ) -(Eo Dovo)- T U, - T {3-15)

E-E, = % (g1 * D (v-v) (3-16)

1 - i t 3
E - ) =3 (p*py)lv -v) . (3-17)

Equation (3-16) 1s obtained f.om 3-15)
Dy svbstituting p « py *

(ul/v){ug -~ ), which s cotaineg

from Fqs. (3-13) and (3-11). Equation
{3-17) 45 obtainea from (3-16) by sSub-
stituting for one of thg .erms

(ug - u) from E¢. (3-13), and for

the other ¢ne in the squared term from
€q.(3-12). These equations describe
the conditions far »rom the shock wave,
relating the properties on the two
sides of tne shock,

The adetails of tre gshock fitgself
can be obtained by inteyrating Eys.
(3-8) and (3-10), considering them as
the differential equaticns that des-
cribe the shock 1tself. Some addi-
tional! assumptioni: about the equation
of state ard the values of the shear
viscagity , and thermal conductivity k
are requiraed. The prodblem is we'l
treated by Hayes (1).

The jumpg in entropy is also iater-
esting. The equations show that the
entropy is increased by the dissipative
procasses in the shock. From the first
law of thermodynramics

TdS » dE * pdv , (3-18)
ons can write

TS, =€, *pv, . (3-19)

Using Eqs. (3-7) and (3-9) to substi-
tute for terms on the vhs, one finds

s, = - (v 3, [(ar3)a, ]

* L L) -
(voru UTY 3p [(4i3)uuu, kT, (3-20)
The equation can be simplified to

boueSy = (A13)ulu V2T (ki) J2(T)) .

c
(3-21)

Integration then givas

x Ty |*
0gug(S = So) = v :??)

*o

[ @) e

2

X (ul)
. f (413)y —F— ax . (3-22)
"o

While the first term on the rhs ig
zero tar from the shock, the twd inte-
gral terms are positive contributions
to the entropy.

At thiz point, although it nas
n~thing to do with finding srecial
solutions to the equations, let us
logok briefly &t the viscous terag in
the equations, represented by A and
p4-t of 8 in Eqs. (2-2) and (2-3) or
(3-2) and (3-3). Often writsrs use
the term ~“visccus pressure,” utvally
denoted by q, and 1t 1 fdentitied
with tne tarms in Eqs. (3-5) and (3-6}
as

Q= - (83)u, . (3-23)

For numerical solution of the equa-
tiong, artificlal viscusity s used tn
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mak2 the solutions of the equations
stable to perturbations by numerical
noise. Many different forms have heen
used for q. We see that q has the
dimensions of pressure, and that the
coefficient of u, in Eq. (3-23) must
be a product of aonsity. velocity, and
aistance. The important distance for
numerical stability is the mesh spac-
ing ax for the calculation, and the
density o must be the locai density,
but the valocity term can be chosen to
sake the numerical oscillations dawmo
in optimal fashion. Some popular
choices are the Landshoff form

q~ - ocaxux (3-24)

using the sound velocity, the
Ricntmyer-von Neuman or quadratic form

q~ - °(A‘"x)5x"x (3-25)

using axu, as a veloucity, and the
Harlow or PIC form

qQ~ - osulxu, (3-26)

using the local particle velocity. In
a numerical caiculation all tnree forms
may be useéd in linear ccembination,

with dimensionless multipliers chosen
for optimum damping.

NOow let u$ tu-'n away from the
strong shock wave, ard look for solu-
tions corresponding to the propagation
of an infinitesimal disturbance, a
sound wave. We wish to consider a
uniform medium with no strong gradi-
ents, so the viscous and heat conduc-
tion terms are negligible. we use
Eqs. (2-11). (2-12), ar- (2-13), re-
written here as

V- o= 0 (3-27)
W *vp =0 (3-28)
DID * yviv a0 . (3-29)

We look for sclutions for infinitesimal
waves moving at constant velocity ¢
without change of shape, descrited by

vaev,* 1lf(x-ct) (3-30)
uw0-=- ulf(l-ct) (3-31©
D=0, * P flx-ct) (3-32)

where 71, uy, and pj are very small.
Differcntiating, and neglecting terams
higher than first order in the small
perturbations, we find

; - - cvlf' (3-33)
u, = ulf' (3-34)
U= - cuyf (3-35)
Py = plf' (3-36)
P e-cpf . (3-37)

Supstituting these values into the
orfginal differential equations gives

cvy - vo¥y * 0 (3-38)
Cuy - vpy =0 13-39)
P * (vnolvo)v1 -0 . (3-40)

From Egs. (3-3b) and (3-39) we fingd

2 2 -
[N vnpllvl R (3--1)

corresponding to the usual definitian

c2 - - vz(ODIlv)s {5-42)

if p} and vy are infinitesimals,
Using Eqs. (3-40) and (3-41) we “iny

v = cioge, . (3-43)

corresponding to the usual definition,
after we subst<tyte from Eq. (3-42),

Y = - (vlp)(opiov)S . (3-44)

Thus we have shown that our equations

describe a medium that trans.its sound
vaves and the y, defined by Eq. (2-9),
ifg simply the square of the dimension-
Tass »nund speed.

In Eqs. (3-27} through (3-23° the
Jdissipative terms A and were r -
glected. Inclusion of these terms
allows for Jissipation of energy, and
there?ore attenuation of scund. For
most cases of physical interest, the
damping is small, The sound velocity
remaing that for the nondissipative
case. Discustiong of the damping arg
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given by Bond, Watson, and Welch (2),
and by Lighthill (3).

Iv. THERMODYNAMICS FOR HYDROODYNAMICS

Compressible flows usually contain
large regions where the flow is ap-
proximately isentropic separited from
other isentropic regions ty small
regions wiere the flow is strongly
nonequilidbrium and nonisentropic. The
natural theraodynamic potential to
describe such flows is tha specific
internal energy E, written as

E = E(S,v) (4-1)

where S is tne specific entropy and v
1s the specific volume. For the
regions of isentropic flow the poten-
tial £ i; a function only of volume,

Tne gifferential expansicn of Eq.
(8=1) is

gE = T dS - p dv (4-2)
where

T = (aEIaS)v and p = - ()Elav)s (4-3)

The independent varianles S and v, and
the varfables obtained from the first
partial derivatives, are the varfiables
of thermodynamics.

The derivatives of these variables
can be cxpressed as second derivatives
of the potential. There are thrae
injependent second Zerivatives, so all
the derivatives can be expressed in
terms of three independent second
gerivatives. In what follows, we use
the subscript notation for differen-
tiatian, so tnat, for example,

2 2
Evv = (a"Elav )g (a-4)

and the independent variable neld con-
stant 1s obviogus from the context.
The definitions used hcre are

Y o vavIn - - (le)(oDIav)S (4-5)
MNa - vESv[T - - (vlT)(oTlu)S

= - (viT)(aara8), (4-6)

9 DVESSITZ - D'ICVT . (‘—7)

These three partial derivatives form
the standard set for nydrodynamics;

all other thermodynsmic first deriva-
tives can be written in terms of them.

The meaning of these secend deri-
vatives that form the standard set for
hydrodynsmics may be msde clearer by
considering the following expressiens:

y= - (3 1np/s 1In v)g (4-8)
Fe-(31nT/s Ynv)g . (4-9)

Now suppose that y and I' are constants,
Then one can inteqrate to find, on an
isentrope, that

pvY= constant (ea-10)
Tvl o constant . (4-11)
Similarly, one can write )

r(TS/pv) = {(» In p/2 1n S), (4-12)
g(T3/pv) =« (» 1n T/ In S), (4-13)

and integrate these tc get expressions
on the curves of constant volume.

(The factor TS/pv enters because we
did not use S when we maue the second
derivatives dimensionless.) Since we
do nd>t measure S, perhaps the ratio of
the two,

Trlpg = constant (a-14)

on a curve of constant volume, is more
useful,

In the real physical case v, I,
and § are not constants, yet the ex-
pressions obtained this way are tan-
gents to the real curves at points
where the exponents have the chosen
values.

Thermodynamics books usualiy use
angther standard set of derivatives,
obtaineag from the Gibbs potential, G =
6(T,p), defined as

CD - -TG.,..r (4-15)
A = GTDIV “—16)
€ = - Gpplv . (4-17)

The reason for this choice is, of
course, that many experiments are done
with either T or p held constant, and
6{T,p) 1is the natural potential, This
usual standard set can be expressed in
terms of the hydrodynamic standard set
as follows:
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¢, = (pv/aT)v/ty - r2/9) (4-18)
s - (rrgThiiy - o) (4-19)
< = plly - r219) . (4-20)

The denominator in each expression can
be shown to be - (v/p)(ap/av)y. and

it must be positive to ensure mechani-
cal stability {4). For an ideal gas
the denominator is one.

The choice of symbols 1s hopelessly
confusing. Various authors use various
symbols; worse still, they use the same
symbols with gifferent meanings. Until
some standardization takes place,
readers will just have to resign thea-
selves to being very careful to check
the definitions Perhaps the most
bothersome is our definitionr of the
adiabatic gamma. The symbol y has
been widely used for many years to
denote the ratio cf specific heatis;
sur definition, coamon 'n hydrodynam-—
ics, is given by Eq. (4-5). The adia-
batic gemma and the ratio of specific
heats are identical for an ideal gas,
but not for real gases, as can be seer
by combining Eqs. (4-7) and (4-18).

One higher derivative is important
in the context of empirical equations
of state. It is called the “fundamen-
tal derivative of gas dynamics™ oy
Thompson (5, and 1s defined as

6«3 [v =1 - (vinnGrnvg] - (a2

For ordinary materials, 6 is positive.
Its importance is that when G 1S posi-
tive, compression shock waves form,

If G is neqative, rarefaction shocks
form. For the purposes of this papar,
one must be careful not to choose forms
for gamma that lead to G less than zero
unlcss ra-efaction shocks are desired.
G can §1s0 be written, using the nota-
tion of Fqs. (4-5) through (4-7) as

12E
¥ v

6 = - vE
v

v (4-22)

\

It is often glidly safd that the con-
dition for compression shocks to form
is that the sound speed must inCrease
with prassura. Really tne condition
is that higher pressure waves from
behind must overtike the front, and
they trave! at velocity u * c rather
then ¢, and u also increases with
pressire. The aiffarence can be made
espacially clear by relating G to these
derivazives. It can be zhown thgt

(13

T = (6 - 1)/oc , (4-23)

so the sound velocity increases with
pressure only if G is greater than 1.
However,

Ei!a%_ﬁl - GloC (4-24)

on the characteristics behing the
shock, 50 compression shocks will form
as lang as G is greater than zero.

v_ JNCOMPLETE EQUATION OF STATE

E w E(S,v) is a complete equation
of state. A1)l thermodynamic deriva-
tives can be obtained from it. E =
Eip,v) is not a complete equation .f
state, but is very usefu! for hydrody-
namics.

The relationship between E(S,v)
and E(p,v) is easy to see. If one nas
E(S,v), then - E, = p(S,v). In
principle, at least, this expression
for p can be inverted to give Syp,v),
and then S can be eliminated in E(S,v)
to give E(p,v). However, there is nc
way to go backward; that is, one cannot
get back from E(p,v) to E(S,v).
fherefore, Eip,-} is incomplete.

Most of the experiments in hydro-
dynamics are mechan:ical experiments.
Their variables are p and v. Tempera-
ture anc entropy are not measured
quantities, and they cannot pe iuferred
from E(p,v). On the other hand, the
variables that cannot be =easured myst
not Le really neaded, or they could be
measured, F,r many purposes the in-
complete equation of state E = E(p,v)
is adequate.

The differential of this incom-
plete equation of state fis

dE = Epdn *E v . (5-1)

If we use Eq. (5-1) to find the deriv-~
ativa with raspect *o v a% constant S
wa get

(iEIuv)s - Ep(oplav)s - Ev ; (5-2)
but we knOow that
(oEIw)s --p (5-3)

and using this we can rearrange Fq.
(5-~2) to qive

- (w!n)s - (E, p)IED . {5-4)
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Comparing this result with Eq. (4-5)
we find

v = v(E, * p)/pE, . (5-5)

Similarly, taking the derivative
with respect to S at constant v one
can show that

(ap/as), = TIEp . (5-6)

Using this result with Eq. (4-6) one
finds that

= lep . (5-7)

The incomplete equation of state
E{p,v) thus gives the adiabatic gamma
and the Gruneisen gamma. As shown in
Sec. II, it is adequate for simple
hydrodynamics.

From the incomplete equation of
state, g cannot be determined; however,
a differential equation for g can be
obtained, and g is thus determined,
except for a constant, along an isen-
trope where y and I are known. The
differential equation is obtained by
requiring that the partial derivatives
of E(S,v? do not depend on the order
of differentiation, so that Egyg =
Essy- Ecy and Egg are given by
Eqs. (4-2‘ and (i-?). Some manipula-
tion gives the differential equation

(vig)(aglav)g
= I'+1 -y - (rp/g)ariap), . (5-8)

A differential equation for the tem-
perature is also available, so temper-
ature can be determined, within a con-
stant multiplier, along an {sentrope.
One form of Eq. (4-6) fs

(viT)(aT/av)g = -T . (5-9)

If T is knowr, this can be integrated
{fmmediately, except for the constant.

Expressions for T and g are especially
useful for detecting flaws in the
choice of a form for an empirical
equation of state. One may not know
exactly what to expect for T or g, but
one can expact them to be smooth, pos-
ftive, and monotone on the {sentrope.

VI. PHYSICAL PRINCIPLES

It was shown in Section Il that the
adiabatic 2omma and the Gruneisen
gamma are the tmportant features of

the equation of state for hydrodynam-
ics. In Section I1]1 it was shown that
the adfabatic gamma is the square of
the dimensionless sound speed, or

Y- czlpv . (6.1)

Here we ask what we know about the
behavior of the adiabatic gamma and
the Gruneisen gamma as functions of
specific volume along an {sentrope.

Molecules interact with each otker
when the distance between their centers
is a few tenths of a nanometer. In 2
gas at room temperature and pressure
the average distance between molecules
is about rm, so most of the time a
molecule drifts at thermal velocity,
unaffected by any other wmolecule. A
disturbance, such as a sound wave, is
transmitted through the gas by mole-
cules traveling at thermal velocities,
and the velocity of a sound wave is
about two-thirds of the average thermal
velocity. Collisions are rare events.
The details of the molecular interac-
tion have a trivial effect on the vel-
ocity of sound.

If the gas, originally at room
temperature and pressure, s compressed
a thousandfold, sv the number of mole-
cules in a crgic centinctsi increases
from 27 x 10 to 27 x 10¢%, the
average intermolecular spacing de-
creases from 3.3 nm to 0.33 nm. The
effect of a disturbance, a sound wave,
is transmitted by molecules that drift
a short distance and then collide with
another molecule. The motion is then
transmitted through the milecule by
the electrical forces at nearly the
velocity of Yight., Then there {is
another thermal drift, but only for a
short distance. Thus when the fnter-
molecular spacing ts of the same order
as the molecular size, the speed of
sound increases above the low density
value. The change takes place, for
ordinary explosive products, at a den-
sity near one ?ran per cubic centi-
meter. The adiabatic gamma, the
square of the dimensionless sound
velocity, changes markadly with
specific volume 1n this region,

As compression is continued up the
isentrope, the sound velocity con-
tinues to increazse. Its value depends
in detail on the exact form of the
molecular interaction. The adiabettic
gamma, however, levels off at nearly a
constant value. This happens because
we have defined gamma by normalizing
with respect to pv, as shown in Eq.
(6-1). Because of the energy in the
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-molecular interactions, pv/RT increases
to large values. For most reasonable
forms for the molecular repulsion, the
adiabatic gamma seems tc be neariy con-
stant at small specific volume. It is
easy to show that if the repulsive po-
tential for the interaction energy of
two molecules varies inversely as the
nth power of the separation, there {s
an upper Ltound for the adiabatic gamma,

vy<l+n/3 . (6-2)

A schematic plot of the variation of
gamma with specific volume is shown in
Fig. 1. It always has this general
shape, but details of the potential,
and effectsfrom phase changes and phase
separation can cause small perturba-
tions in local regions.

It should be mentioned that this
discussion is to be applied to the tem-
peratures and volumes of interest for
explosives. That is, regions where the
thermal energy of the molecule is much
less than its fonization energy. When
there is appreciable ionization and
dissociation, new effects are impor-
tant.

The Gruneisen gamma has behavior
very similar to that of the adiabatic
gamma., At very large specific volume,

(6-3)

so it has a value near 0.3. It in-
creases as the volume decreases, and
levels off at 0.6 or 0,7 "at small vol-
ume. Figure 1 shows a schematic dia-
gram of the usual behavicr of the
Gruneisen gamma.

VI1. ENGINEERING APPLICATIONS

l‘-v-l.

The preceding sections have been
devoted to the properties of the ther-
modynamic equation of state of detona-
tion product gases. The words “equa-
tion of state"” are often used to denote
something very different.

Explosive systems are usually de-
signed with the help of computer pro-
grams that soive the hydrodynamic equa-
tions. Often the computed systam dif-
fers markedly from the actual physic:!
system. For example, the shape may be
idealized by neglecting glue joints,
small voids, or plastic potting com-
pounds. The inftiatifon 1s usually {de-
alized in important ways and not com-
puted in detail, The chemical reaction
ztone s not modeled properly. The pro-
pasrties of the material bein? driven,
perhaps metal or rock, are simplified.
And in the interest of getting things
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Fig. 1. The dependence of the adia-
batic and Gruneisen gammas on

specific volume.

done, sometimes the mesh size is made
large and the computer does not give
an accurate solutiun of the equations.
A1l these defects are accommodated by
adjusting the "equation of state."

A system designer, then, cannot use
a real, thermodynamic equation of
state. What he needs is an approximate
form that will allow him to design a
first approximation to the requivred
system using his computer, with all its
defects. Then he must test his first
design,. and use the results to change
the "equation of state.™ Then he must
try again. If the requirements have
tight tolerances, this fteration can be
very expensiva and time consuming.

One of the problems with the fit-
ting forms in common use is that they
have so many adjustable constants.
There are too many ways to adjust the
“equation of state" for a good fit to
the experiment. An "equation of state®
with just one adjustable parameter pro-
vides all the necessary adjustment, but
sti11 allows the user to make system-
atic changes: so much positive for
this defect, so much the other sign for
another, etc.

The one adjuscable parameter for a
fitting form will probably not be one
of the constants in the form but some
real physical parameter of importance
for the system being designed. For
example, for reproducing the results
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of a cylinder test, the important par-
ameter is the cylinder wall energy at
large expansion, and this is the one
that must be adjusted. The constants
in the fitting form must be varied so
that the other calibration paraseters
are held fixed, and only this energy
is changed. For a shock wave in air,
the low pressure expansion ts impor-
tant, and for an overdriven or conver-
gent detonation the high pressure
region is the one to adjust. The vital
thing is to adjust only that important
region, and to use only one parameter.
In this way, a systematic understand-
ing of the adjustments that correct
for various defects can be obtained.

VIII. DESIGHING A FITTING FORM

The usual approach, and the one
discussed here, is to find a fitting
form for the incomplete equation of
state discussed in Section V,

E = E(p,v) . (8-1)

It is convenient and customary to
choose a particular isentrope, usually
the principal isentrope that passes
through the Chapman-Jouquet point, and
find » fit for it. Because it is a
particular isentrope, any function on
the isentrope can be expressed as a
function of volume only. Thus on the
isentrope the specific internal energy
is

ES - Es(V) ’ (8-2)

where the subscript S is used to indi-
cate that the subscripted variable is
to be taken on the particular isen-
trope. The definition of the Gruneisen
gamma, given in Eq. (2-8), is

| g VIED » (8'3)

s0 in the immediate neighborhood of
the isentrope the energy may be ex-
panded as

E(p,v) = Eg(v)*(v/T){p-pg(v)] . (8-4)

To make a useful equation of state, it
is assumed that Eq. (8-4) applies
throughout the region of interest, and
that the Gruneiscn gamma is a function
of volume only,

r -l‘(v) . (8-5)

These two assumptions are not as bad

as trey might seem, because the entropy
produced in shock processes in
explostve-driven systems is never

large, and the region of interest is a
narrow strip always close to the
principal isentrope.

Perhaps physicel intuftior 1s best
for the frrm of the adiabatic gamma on
the principal isentrope, as was dis-
cussed in Section VI. If its form is
chosen, one has

"s - Ys(v) . (8'6)

The definition of the adtiabatic gamma,
£q. (3-44), can then be written as

dpgipg = - vgdviv , (8-7)

and then integration gives
Pg = pglv) . (8-8)

The internal energy on the isentrope
can be obtained from the first law of
thermodynamics with the entropy held
constant,

dES - -psdv . (8'9)

Each integration introduces a constant
of integration; the one from the pres-
sure eqiation, Eg. (8-7), allows one
to choose che particular isentrope,
making it pass through a chosen p,v
point, and the one from the energy
equation, Eq. (8-9), sets the zero of
energy, usually taken so the enpergy fis
2ernd at infinite volume.

The orogram outlined here seems
very simple, but when one attempts to
carry it through, it quickly becomes
apparent that the integrals cannot be
expressed in closed form if yg(v) is
chosen with enough complexity to give
a reasonable representation of {ts
real form. One response to this dif-
ficulty is to let the integrals be
expressed as intarpolations in tables
obtained from numerical integration,
or as series expansions. Another pos-
sible response is to divide the volume
into small intervals with simple fits
in each interval. Anrd a third response
is to start with the energy represented
by & sum of functions, so that

Es(v) - 2‘1‘1(V) . (8- 10)
Then by differentiation one fiunds
pg(v) = - zab(v) (8-11)

and
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vg(v) = v T abi(v)/Zaé(v) . (8-12)

This form for Y5 can then be fit to
the chosen form for vg(v). The
widely used JWL equation of state is
of this type.

A form for the Gruneisen gamma
must also be chosen. FKany workers
have chosen it to be constant. It
seems that a better choice is to give
it the same form as the adiabatic
gamma, hut with values near those
discussed at the end of Section VI.

An expression for the adiabat'c
gamma off the principal isentrope is
obtained by using the definition of
gamma, E3. (2-9), and substituting in
the partial derivatives obtained from
Eq. (8-4). After simplifying the
result by substituting from Eqs. (8-7)
and (8-9), the result is

v{p,v) = (Ps/P)TS
+ (l-pslp)(r+1-d In I'/d 1n v). (8-13)

This expression makes it clear that a
discontinuity in the slope of the
Gruneisen gamma will lead to a discon-
tinuity in the adiabatic gamma itself,
Similarly, £q. (4-21) shows that a
discontinuity in the slope of the adi-
abatic gamma will lead to a discontin-
uity in G, Such discontinuities are
nonphysical, but it isn't clear what
spurious effects might appear in a
calculation where an equation of state
with discontinuities in the slopes of
efther of the gammas on the isentrope
was used.

Expressions for new isentropes,
above or below the principal isentrope,
are obtained by integrating Eq. (8-13),.
Huganiot curves are obtained by using
the equation of state, Eq. (8-4), and
the Huconiot relation

E-E, - lvg= V) (8-14)

and eliminating E. Particle velocities
on the isentrope are obtained by inte-
grating )

dp/du = » c/v = * (yp/v)/2 . (8-15)

Even for simple choices of functions
for the adtabatic gamma, the integra-
tion almost always has to be done
numerfically.

IX. CALIBRATION

The calibration of a fitting form
for an cquation of state opens oppor-
turity for prejudice and personal pre-
ference, There are no absolute rules.
The importance of various measurements
to the calibration depends on the
application.

Calibration of an equation of state
begins with the Chapman-Jouguet state.
A subscript j denotes that state in
what follows., First there is the re-
quirement that the principal isentrope
pass through the point ps, v4. Then
there is the additional requlrement
that the Rayleigh 1ine and the Hugon-
int curve be tangent at that point
(the Chapman-Jouguet condition); this
requirement is met by requiring

2
pJ - DODJ/(YJ + 1) (9‘1)
and
VJ/VO = *j/('j + 1) . (9-2)

One might proceed, for 2xample, by
measuring the detonation velocit: and
the CJ pressure. Then vj can be
obtained from Eq. (9-1),  and vj from
Eq. (9-2).

The problem with this approach is
that apparently no one knows how to
measure CJ pressure. One need only
thumb through the seven Detonztion
Symposium volumes to see that there
was no more agreement in 1981 than
there was in 1951, and that the
discussions get more and more complex
with time, For czlibrating an equation
of state, one need only realize that
if it made a 1ot of difference, it
would have been measured by now. For
many purposes the exact value is not
very important. This fact has led to
the development of “"rules for gamma™,
that give the value for the adiabatic
gamma at the CJ pofnt simply in terms
of the initfal density of the explo-
sive. A simple rule that works
satisfactorily fis

yJ = 1.6 + 0.8 o (9-3)

The initial density and the mcasured
detonation velocity can then be used
with Eqs. (9-1) and (9-2) to find Py
and vy,

The second thing to get right in
the calibration of an equation of state
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is tne armcunt of energy available for
the sy<tem under consideration. For
almost any system there is a "cut-off
pressure”, where once the explosive
products have expanded to the volume
where the pressure reaches this value,
little adaitional work is done on the P
system. Either the metal or rock
breaks, allowing the jases to escape,
or the time is too long and the addi-
tional acceleration too late, or some
other external condition makes the
energy remaining in the products use-
less. For metal tystems driven by
explosive, the cut-off pressure is
about 0.1 GPa in many cases. It has

become customary to fix the energy v
delivered for an expansion dowr to i - T T
that pressSure witn a calibration ex-
periment. Pernaps the best known ex- Fig. 2. The Fickett-Jacobs cycle.
pariment is the cylinder test (6). For The initial state, urreacted
nigh-density, nigh-energy explosives explosive is at point 0. The
the cut-off pressure comes at an ex- CJ state is at point 1. The
pansign of six or seven times the {i-i- product gases expand against
tial volume, and the cylinder test 1s a piston from point 1 to
cesignea to measure an appropriate point 2, doing useful work.
value. For other explosives and other The gases are cooled so they
uses, alternative tests have been used. contract from 2 to 3, and
this energy is lost to the
Tne Jacobs engine and tne fickett- system. The gases are
Jacobs cvcle described by Fickett and reacted from tc 0, back
Davis (7) make it easy to understand into the coriginal explosive.
tnis calibration. Figure 2 is a dia- To get all the gas uniformly
gram of the cycle; it is cescribed fin into the CJ state, work must
tne caption. Tne area between tne be done on it, anj this work
base line, the Rayleign line, ani the ifs rapre-ented by the arza
principal isentrope 1S equal to the 0-1-4. The maximum useful
maximum useful work tnat could be ob- Jutput wnrk is the area 0-1-2.
tained from tne explosive. Some of
tnat energy is not useful, Decause tne
pressure is too low for tne applica- ‘
tion. Tnerefore, the dfagram must be
truncated, as shown in Fig. 3, at the \ |

Timiting useful pressure. For tne

useful energy calipration, the area to

the Teft of tne truncation line must

re made proportional ts the energy :

obtained from the test. Several rules

for an approximate calibration have

been used. The total area is Eq, P \\\

and the area to the right of the trun-

cation line is Eg, so the rule is \\\
0

Erost ~Ea - E5 - (9-4) 3 6 2
Tne equatton of state paramet -5 are \'
aajusted to satisfy *tnis rela onship.

A thirg calibraticsn point 1s to
set the total energy, E,, equal to Fig. 3. 1In most application, of ex-
the calcuiated chemical energy of the plosives, the product gasas
explosive. AH:nOugn 1t is .,Stnﬁticllly do useful work Oﬂ]y when their
satisfying to have the work available pressure s above some cut-
equal tn the chemical energy, it is off pressure, shown here at
not ar impg. cant calipration point. point 5. The useful work is
In the first place, there is no appli- then represented by the nrrea

catton of explosives where tne energy 0-1-5-6-0.

1
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at low pressure is important; if low
pressure could do the work, one
wouldn't use explosive. And i{n the
second place, heat energy of the ex-
plosive is not used (sce the segment
2-3 in Fig. 2), and is rejected to the
surroundings. Therefore, E, is not
equal to the chemical eanergy. It is
really more important to get the sound
velocity about right at low pressure
than to worry about adjusting for *ue
total energy.

These calibrations determine the
principal isentrope. The remaining
calibration is for the Gruneisen gamma,

at influences the values for states
oiv the principal isentrope. Over-
driven, coliiding, and convergeat
detosrations provide the data for de-
termining Gruneisen gamma. So far,
there have been no definitive calibre-~
tions. If overdriven detonations are
important in the application of the
equation of state, Grunmison gamma
should be adjusted to fit the data.
Otherxise, the chofce is not important,
and a simple form or evuen a constant
value cai. be uced with 1ittle effect
on the calculatinns.
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