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OPEN PROBLEMS IN MONTE CARLO RENORMALIZATION GROUP

APPLICATION TO CRITICAL PHENOMENON

Rajan Gupta~

hfS-B285, Los Alamos National Laboratory

Los Alamos, N..M. 87545

ABSTRACT

The Nlonw Carlo Renormalization Group (A4CRG) methods and the theory behind
thcm arc reviewed, The Cllpta-Cordcry improved A4CRG method is described and cum-
parcd with the standard one. The emphasis is on the progress made in understanding the
truncation errols in the Linearized Transformation Ma+,rix and on open problems. Lastly,
some of t!lc existing methods for calculating the renormalized Hamiltonian arc reviewed and
(! ViLIUiltC(l.
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The development of Monte Carlo Renormalization group method (.WCRG) was essen-
tially complete in 1979 with the work of Wilson 1, Swendsen2 and Shenker and Tobochnik3.
Prim to this Ma4 and Kadano~ had provided key ingredients. There already exists ex-
tensive literature on MCRC and I direct the reader to it 1,3,67,8 for details and for a

wider exposure. Similarly, the reviews “ 10 are a good starting point for background on spin
systems. The topics I shall cover are

1) Introduction to J[CRC and its methodology.
2) Improved }fonte Carlo Renormalization Group.
3) Comparison oi the standard MCRG method and I.MCRG with emphasis on the trun-

cation errors.
4) Renormalized Harniltonians and Ylethods to calculate them.
5) Open prol.dcms.

1) INTRODUCTION TO M(7RC

Renormalization Group l’]t11)121*3 (RC) is a general framework for studying systems
near the critical surface (defined by a divergent correlation length) where singularities in
thermodynamic functions arise from coherence at all length scales. The A4CRC method
was Avclopmi to handle this problcm of infinitely many coupled degrees of fl eedom so that
scnsi?~le results can be obtained from finite computers. There are two central ideas behind
,1[(.”12G: The first is to average over the infinitely many degrees of freedom in discreet steps.

The block dcgrcm of frcmlom cm the coarse lattice are the ones relevant to the description
of the physical qu;mtitics of interest. The interaction between thc:e averaged (block) fields
is dcscritmd by an infinite sot of couplings that get rcnormalizcd at each blocking step. The
SWOII(lpoint is that there arc no singularities in the coupling constant space even though

~hI! rorrclation length and thermodynamic quantities diverge on the critical surface.
‘1’hc X[CRG methods discuswxi here have a fundamental assumption: the fixed point

is short rilllg(!(l. ThIIs even though an infinite number of couplings arc gcncratml under
rt!llorrlliLlizati(Jn, wc shid! msurnc thnt only a fcw short range ones arc sufficient to simulate
tho systrm mt ;L given scale and prcscrvc the long distnnce physics.

1.1) Standard Monte Carlo:

Consider a nmgnctic systcm consisting of spins {s} on the sites of n d ~. dimtimqimwl Iiit”
ticc /. dcscrihcd by a ll:lmiltonian H. From the outset, 11 will include all possihlc couplings
{ /(,,}, ‘1’hu bohilv!or of all thcrmcxlynarnic quarltitic9 can br dotmrnincf! from n dotailm]
kll{uvlwlgo of the piirtit.irm function

Z -x e“ “ .-~ e“”s” (1,1)

w!lvrv S’,, arv 1,111*illtor:wtions. 111Xlontr (;arlo, con flgumtions of Hpinx m t.ho origillill liltti(. (’

‘ ‘“ hmt t]itLh’5, moh!culitr dynarllirs :lli:ls \!i(”ro(’illl(lllit”;ll l’;;Irv Iylmr;[l.v(l lJy ltw .\lof, rf)pf)lls ,
f)r I,III! l,;lfl~:v~itl II K,,S,,I:’ IA :kl~orithfll with il lloltZIllilIlll distribution e c , All lllmm(~-
(Ivll;ll]lir flll;lfll. il,ifv+:lrr givftll ;1s siflll)lo :lvrr:~grs 0!’ c.orrel;~tir)ll fllflrt.iolls owr tlIvs(9 ‘ift)l)or-

I.; LIII.11S;LIIIIII(III’(.olllil:llr;ll,iolls.” ‘1’111’;L(’rllr’ilcy of th(! CillC.llliltiollS(lr]),lll(i 0111,110sin’ of till’
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statistical sample and the lattice size L used. Both these quantities depend on the largest
correlation length ~ in the system. Near the critical temperature, TC, associated with second
order phase transitions, the correlation length and consequently thermodynamic quantities
like the specific heat etc diverge as functions of (T – T.) with universal critics: exponents,
These have been calculated for many systems analytically or by Monte-Carlo using finite
size scaling or by the MCl?G method. Because ~ diverges at TC, long runs are needed to
counter the critical slowing down. Also, to control finite size effects the lattice size has to be

maintained at a few times ~. The problem of critical slowing down is addressed by analyzing
update algorithms (Metropolis vs. heat bath vs. Nlicrocanonical vs. Langevin with accel-
eration techniques like multi-gridl~, fourier acceleration 18’20 etc). The optimum method is,
of course, model dependent and has to take care of metastability (local versus global min-
ima) and global excitations like vortices, instantons etc that are not efficiently handled by
local changes. This last feature has not received adequate attention. To control the second
problem in standard Monte Carlo, effects of a finite lattice especially as c + co, finite size
scalingl” has been used with success. In this review I shall concentrate on MCRG. First I
shall describe how universality and scaling are explained by the renormalization group.

The renormalization group transformation (RGT) is an operator R defined on the space
of coupling constants, {h”U}. In practice the RGT is a prescription to average spins over a
region of size b, the scale factor of the I?GT, to produce the block spin which interacts with
an effective theory H1 = R(H). The two theories H and JY1 describe the same long distance
physics but the correlation Icngth in lattice units ~ + $. If this RGT has a fixed point
1/- such that H ● = l?(H* ), then clearly the theory is scale invariant at that point and ~ is
either o or 00. An cxarnplc of a fixed point with { = O is T = cm and these are trivial. The
interesting case is ( -= cm about which the theory is governed by a single scale ~, I will discuss
t}lis assumption of hyperscaling, i.e. a single scale controlling all physics, later, If this fixed
[)oi[lt is unstabic in 1 direction only (this direction is called the Renormalized Trajectory

( f27’) ), then non-critical 11 will flow away from H“ along trajectories that asymptotically
conwrge to the I/T. Thus the long distance physics of all tkc trajectories that converge
is identical and is controlled by thu l? Z’, Similarly, points F away from H* on the m – 1
dimension hypcrsurface at which < = m (the critical surface) will converge to H*. Tile fact
that the fixed point with its associated RZ’ control the behavior of all H in the neighborhood
of f[” is universality.

Next, consider a non-cl itical H that approaches H* along the RT, Thermodynamic
qumntitics dcpcml on a single varirble i.e. distance along the R’T. This is scaling. Corrections
to scfiling occur when 11 dots not Iic on the RT, These are governed by the irrelevant
cigonvaiucs of the HG’T which give the rate of flow along ti~c critical surface towards fl ●

i\I~(l for }[ not OH the /t’l’, tllc r“~te of convcrgcncc towards it. The rclcwant cigcnvaluc gives
tllu rilt(! of flow ~WiLy from the flxcd point along t}lc unstable direction RT and is r(?li~t(!d to

tlld CritiCill CXl)Ollcllt U. This terse cxposfi CII(ISwith a word of ~i~lltion; all tll~s(! stiLt(!rI](!Ilts

tliLVC Villi(lity (’IOS(! t(, /1 ●.

Ill ttlu A/(; /r!(I’ 111(*1,110(1,corlfi~llrilt.iolls arc gcnuratml with tllc IloltZIIliLllll fiLCtor e’(’’’’””

;lS i[) %t(b[lf];lr(! h’fo[]t(i (~ilrlo. ‘[’11(! I/f J’/’, I)(S’ , S), is a prwwri,)tiorl for iLV(!rflgif)g Vilriill)l(%

()~wr it (“1111of (Iillmrlsiorl h. ‘1’IIc I)lo(:k(’(1 vilriill)l{~s {q’ } ilr[! drlirlwl orl tl](! sites of it slll)lilt[,if~(’



L1 with lattice spacing b times that of L. They interact with apriori undetermined couplings
{K:}, and the configurations are distributed according to the Boltzmann factor e-H’ i.e.

(1.2)

~fll expectation values, with respect to the Hamiltonian H1, can be calculated as simple
averages on the blocked configurations. The blocking is done n times to produce a sequence
of configurations distributed according to the harniltonians Hn. They all describe the same
tong distance ~hysi~s but on increasingly coarse lattices. The fixed point H-, the l?T and

the sequence of theories, H“ , generated from a given starting H depend on the RGT.
The RGT should satisfy the Kadanoff constraint

(1.3)

independent of the state {s}. This guarantees that the two theories H and H’ have the same
partition function. The RGT should also incorporate the model’s symrnctry properties; a
notable example is the choice of the block ccl] in the anti-ferromagnetic Ising model. L1sually,
there exists considerable freedom in the choice of the RGT. In fact many different l?GT can
be used to analyze a given model. In such cases a comparison of the universal properties
should be made and the RGT dependent quantities isolated, I defer discussion on how to
evaluate the efficiency of a J!CT to section 1.5.

1.3) Methods to calculate the critical exponent:

There arc two methods to ca]culatc the critical exponents from expectation va!ucs cal-
~[lli~t(!(l as simple averages over configurations. In both there is an implicit assumption that
th(’ scqucrlcc 11” stays close to ll=. The more popular method is due to Swcndscn2’7 in which
the crif,ical exponents are ca]culatcd from the eigenwdues of the linearized transformation
inatrix 7~~iJwhich IS defined as

l~;il(~l] of the two tcrrns on the right is a conncctcd z-point correlation matrix

p;,, ;-: ~(’y, ..:(,$:s;-”’) - (s:)(s}. “).
i) h-,;

(1A)

(1.5)

111’r(’ (,$’,!) ;lrc tilt! (!xprctation v.allm on tho nt~ rcnorlrli~lizc(l lilttiC(! fird f{,; ;\r(’ tll(! cor-
rrs[)onili:)l~ ct)lll)lil)~s, ‘1’11(?rclf!vnnt (’XpollOrlt V is follll(t frorll th(! 1(’il(iillg (’igPllVillll(! At of

(Imi)
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where b is the scale factor of the 12GT. I have restricted the discussion to the spucial case of
one relevant eigenvalue. In general, systems can have multi-critical points with more than
one relevant interaction. The eigennlues which are sma!ler than one (called irrelevant)
yield exponents that control corrections to scaling. An eigendue of exactly one is called

marginal. There is an additional class of eigenvalucs, the redundant eigenvalucs, that are
not physical. Their value depends on the RGT, so one way to isolate them is to repeat the
calculation with a different RGT. I shall return to these in section 1,.5

The accuracy of the calculated exponents improves when they are evaluated close to the
fixed point. This can be achieved by star+.ing from a critical point and blocking the lattice
a sufTlcient number of times i.e. I]n for large n. In this case the convcrgmce is limited
by the starting lattice size and how CIOSCthe starting H’ is to H-, This method can be
inlproved if the rcnorrnalizcd couplings {Kn} arc dctcrmincd starting from a known critical
l[ilmiltonian. \l’e i~ssume that the couplings fall off exponentially with the range, so that H“
can be approximated by a small number of short range couplings. An approximate critical
point in this subspacc should then be used in the update. hlodels for which the critical
coupling is not known exactly, this improvwmcnt has no disadvantage. Otherwise one has to
optirnizc between moving clcscr to H= and flowing away from it under blocking, This flow
away from the critical surface can be corrcctcd for by Wilson’s 2-lattice method described in
section 1.1. Later, I will also describe a fcw methods to calculate the renormalized couplings.

A second possible improvement is to tune the l?GT so that the convergence to H- from
a starting I?c takes fewer blocking steps, This is discussed in section 1.5

TIIc practical limitation in Nfonte Carlo simulations is that the two matrices U and D
c;~II only hu dctvrmincd in a truncated suhspacc. Further, in ord~r to set up ‘T, the matrix

II has to I.)c irlvf!rt.(!(l. Thus the dctrrmination of exponents has two types of truncation
IIrrors: ‘1’hc (!lcmrrlts of the truncatm] T differ from the true T due to the inversion of a
f.rllllc;~t~!~!D i~ll(i th(! s(!cond come from diagomdizing a truncatml T, These errors will bc
;lll;dysv(l ill d(!t;lil in srction 3.

‘1’IIc scmnd rmthml to ~;llcllliLt~ the icading relevant exponent is duc to Wilson’]. Con-
si[l(’r or]cc agfiin t}]c 2-;xJi[]t conncctcd corrcliltion function (the di ‘vativc of an exp(!ctfitiorl

~illll(!) (,$,\*5’j)C with j > i. Ii;xparld S: in term of the eigenoperators 0~ of the IIG7’. Clmc

to 11● th[! Icvt!l dopcndcncc in O: (cquivahmtly in the expansiorl Cocfficionts c~,p) cm bc
ncglcctedm ‘1’hcrl to the Icading order

(1.!lj

wll~’r[’ Jt is th(! l(wflirl~ r{!lov;lnt cigcrlvalllc illl(l r,orrmtions arc sllpprcsficd hy ( ,+)j ‘, ‘1’hus



data. Also, the interpretationofv as the correlation length exponent becomes unreliable
away from the fixed point. To the best of my knowledge, there does not exist a calculation
in a model with known hyperscaling violations, so we cannot really judge how it would effect
MCRG results. This is an open problem.

On the critical surface the 2-point correlation functions (like in Eq. (1.5) and (1.6))
diverge in the thermodynamic limit. However, their ratio is the rate of change of couplings

and these are well beha~’ed provided one considers only short ranged correlation functions
as will be shown later. The reason that ,WCRG is assumed to have better control over finite
size effects is that if H“ is short ranged then a truncated T~p is sufficient to determine the
leading eigenwdue. Also, the finite size contributions to the elements T~p fall off like the

couplings i.e. exponentially. Thus reliable estimates may be obtained from small lattices.

1.4) Wilson’s 2-lattice method to find a critical point:

Consider JfCRG simulations L and S with the same starting couplings K: but on
lattice sizes L = b“ and S = bn- 1. If K: is critical and after a few blockings the 2 theories
arc close to H“, then ail correlation functions attain their fixed point values. For non-critical
starting H, expand about H’ in the linear appro’.imation

(1.9)

to (Ictl’rrrlinc Ah~, TO rcducc {initc size effects the compared expectation values arc calcu-
I:lI,c[{ on the same size Iatticcs. ‘I’he critical coupling is given by

(1.10)

and this estimate should be irnprovcd iteratively.

1.5) Optimization of the RGT

The frccdoln to choose the RGT Icads to the question. What are ~hc criteria by which
to (Iccidc Wl]ilt is the iwst RC7’. I will first adcircs:~ the qumtion --- what is the ctfcct of
(.l]ilrl~il]g tll(! l?f;’1’ on the fixed point all(l on the RI’. The jwcr is a Conjccturc: Chilnging
111)(1//(; ’1’movvs thr lixcd point on the critici~l surfa,;c but only alonti rcdllndant directions.
A siftll)tc argument is as follows 2*: Consider two diflcrcnt RGT, )?l and Itz, and their
,wt)ci;lt.vfl Iiswl points f/~ and fl~. There arc ncl non-analytic corrections to scnlirlg at
cithvr lixwl points ;lII(I the ilSS(X:iiLtf’(1 L!7’. If thmc two points arc distinct, then under fil
II: ilf~l~S tO 11;, (.~olls{!(lll[!lltly ttlcr(s ilr(! n(} scnlir,g violations alonl; the [low. This is hy
11(’[il~itioll ,a r(’(lllll(liLIll dirw:t ion. This implivs ttml, ?hc amoci~~tcd W difrur by rc(!un(lilllt
()~)(!rilt()rs.

‘[’11(’ ])rvsvllrr of rwl Illl(l;illt ol)Criltors” (10(’s not (! ff(*ct the physics, howov(!r it c;lll ol)scllr[’
ttlc r(’slllfs2x, ‘1’tlr IV’(lllll(lilllt oiguuvalurs mrc not physical, (lt!lwlltl oll ttll! l?(~’1’, il[l(l Cilll



be relevant or irrelevant. If a relevant redundant operator is present then the flows will not
converge to the H* or to the RT. Thus the first criterion in picking a RGT is that the
redundant eigenvalues be sm~li.

We desire the ccmvergence to H“ be fast. This gives the second criterion: the coeffi-
cients of the leading irrelevant operators in (If” – lYC) shoulrl be small. The basis vectors
corresponding to irrelevant eigenvalues are a function of the position of H’ on the critical
surface. Consequently, even though changing the RGZ’ only moves H“ along redundant
directions, it is possible to reduce the coefficient of the irrelevarit operators.

Swenclsen23 has conjectured that the fixed point can be moved anywhere on the critical
surface by tuning the RGT. In particular, if the simldation point is made H“, thsn that
ltGT is optimal. There is some support for this in spin systems, where by adding terms
to the RGT, one can successively ki!l terms in the renormalized harniltonian. Swendsen23
found that the eigcllvalues for the d = 3 Ising model are significantly improved with a tuned
10 term RGT. He also found that on using a 10 term truncated renormalized hamiltonian
close? to H- for a simple RG’T, the improvement was not as good. Since his determination
of renormalized couplings have large truncation errors, the comparison is not, complete.
Tests with the d = 2 Ising model confirm that H* can indeed be brought close to the
nearest neighbour critical point24. However, the improvement in the thermal exponent is
not systematic. In all cases we have tried, the value of v increases and in most cases it
overshoots the known exact result. This might explain the improvement seen by Swendsen
in d = 3 where the simple majority rule RGT gives too low a value.

The central problem in this approach is that in all cases tuning the RGT causes the
results for the magnetic exponent to deteriorate. The magnetic eigenvalue at first blocking

“ 243 683(2) which agrees with the earlier result of Swendsen7. Gaus-with the majority rule E .

tcrer and Langzs find 3.692(3) with a 3 parameter l?GT of slightly larger iange. Umrigar
and I:q find 3.713(2) with a 21 parameter RGT. Since the exact result IS J.668, we conclude

that the eigcnvaluc incre~es as the range of the RGT increases. This is surprising because
the fixed point is at zero odd couplings and these remain unchanged in tuning the RGT.

Thare arc two additional things to check in this approach: first whether the coefficients
of the J!GT terms fall off like the couplings with the range, i.e. exponentially, and second
whether the lorlg range untuned couplings continue to fall off at least as fast as before.
Finally, the quantity to optimize is the update complexity (embodied in the RGT or the
hamiltcnian) versus the dccrcase in the coefficient of the leading irrelevant operator.

To summarize, the criterion for an op imum li!GT is to make the H“ and the h!T as
short ranged as possible and to have small redundant cigenvalues. In critical phenomena,
the improvement can be quantified by mc?,suring the convergence of the exponents as a

function of the blocking level. I feel that the present status of understanding is amhiguious.
For the moment lot me conclurlc this section by: The the question of how best to optimim

AIC’ ft~; has not Iwcn adequately allswcrcd and should be investigated Pdrthcr.

2: IMI’l?fJVnD MONTE (; ARL(I R,ENC)RMAI.IZATION CmROIJI’x{;

!VIClt.G Incthod ( fAfC1?C) ill solllc d~tlilil. 11)
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this method too the Renormalized Harniitonian and the Linearized Transformation Matrix,
LTM, are determined in same truncated space of interactions. However, in this sub-space
they have no additional truncation errors i.e. the determined quantities have their infinite
component values. Next, there are no long time correlations even on the critical surface
and the block n-point correlation functions like (S~S~) — (S~) (S;) are calculable numbers.
B~cause of these properties, the method al!ows a careful error analysis in the determination
of the exponents from a truncated LTM.

In the l,lfCRG method the configurations {s} are generated with the weight

P(sl, s)e -H(s) +H~(a’) (2.1)

where H9 is a guess for H 1. Note that both the site and block spins are used in the update
of the site spins. In analogue to Eq. (1.2), the distribution of the block spins is given by

e-~ ’( fl’)+~g (d’)
= ~P(s1,5)e-H(s)+H”(”’) (2.2)

If Hg = H1, then the block spins are completely uncorrclated and the calculation of the
n-point functions on the ~lock lattice is trivial.

(s:) = o (Slsj) = n=bap . . . (2.3)

where for the Ising model (and most other models) the integer nm is simply a product of
the number of sites times the multiplicity of the interaction type Sa. When Hg # H1, then
to first order

(s:) = (s:s;)H#=H1 (K1 - Kg)p . (2.4)

Using Eqs. (2.3,2.4), the renormalized couplings {K:} are determined with no truncation
errors

(s:)K~=K~+_. (2,5)
na

This procedure can be iterated –– use Ifn-l as the spin H in Eq. (2.1) to find Hn. If
the irrelevant eigenvalues are small, then after two or three repetitions of the RGT, the

sequence Hn converges to the fixud point Hamiltonian H“ which is assumed to be short
ranged. For t}~c d = 2 Ising model, the method has been shown to be extremely stable27.
“rhc Iincarity approximation, Eq. (2.4), is under control. An iteration process using a
fcw thousand sweeps suffices to determine successively improved H9 upto an accuracy of
0( 10-4), Beyond ttat the errors fall as fi and the number of interactions that have to
be included grow rapidly,

‘l’ho OIICrctnwning approximation is in the usc of a trul~catcd If ‘“-1 for the spin Hamil-
toninn in the update to find H“. This is solved formally in a straightforward manner: In
V;q. (2. 1) use lK~ as the guess for 11”. The update now involves the original spins a~d all
block spins Up to the rL‘h Icvel in tile Iloltzmann weight

f)(sn,sn “1) ...... f’(.91,s)e-’f(d) ’+”[f”(sn’. (2.6)

8



The four Eqs. (2.2-2.5) are unchanged except that the level superscript is replaced by n, i.e.
the nth level block-block correlation matrix .s diagonal and given by Eq. (2.3). With this

modification, the Hn is calculated directly. The limitation on n is the size of the starting
lattice. The other practical limitation is the complexity of the computer program. I have
made the following comparison in the d = 2 Ising model 2s: H2 was calculated using (2.2)
and by iterating i.e. H= + H1 + Hz in which case all interactions of strength > 5 x 10-4 are
retained in ill. The statistical accuracy in both casss is 0(10-5). I find that the iterated
answer is good to only 10-4. Thus the truncation errors do conspire and get magnified.
The lesson learnt from the simple case of d = 2 Ising model is that in order to get couplings
correct to one part in 10–5 at n = 2, it is necessary to include all couplings of strength
> 10-5 in li~.

The calculation of the LTM proceeds exactly as in the standard MCRG i.e. Eqs. (1.4)
to (1.6). However, in the limit Hg = H 1, the block-block correlation matrix D is diagonal
and given by Eq. (2.3). Thus it has no truncation errors, can be inverted with impunity and
the final LTM elements are free of all truncation el rors. This is the key feature of IMCRG.
The only error comes from finding the eigenvalues from a truncated T matrix. These errors
can be estimated and the results improved perturbatlvely as explairied in section 3.

In addition to the advantages mentioned above, simulating with l&fCRG, the sys-
tem does not have critical slowing down. Second, the correlation length ~ can always be
made of 0(1), so finite size effects are dominated by the range of interactions, which by
assumption of a short range H’ fall off exponentially. Thus, critical phenomenon can be
stud!ed on small lattices and with no hidden sweep to sweep correlations that inwdidate the
statistical accuracy of the results. Using Ho as the known nearest-neighbor critical point
K;n = 0.4406868, we24 find that the lMCRG results 27 far H1 are independent (within the
statistical accuracy x 10-5) of finite size effects for lattice sizes 16, 32, 64 and 128. A gain
only couplings that fit into a 3 x 3 square were included.

IMCRG is in practice very similar to MCRG though a little more complicated because
it requires a simultaneous calculation of a many term H(s) and Hg at update. However,
conceptually it is very different am-l powerful. I believe that IMCRG provides a complete
framework to analyze the critical behavior of spin systems. With the increased availability
of supercomputer time we shall have very accurate and reliable results.

3: IIYuncation Errors In The LTM

Consider the matrix equation for T in block form

(3.1)

where D11 and U1 1 arc the 2 derivative matrices calculated in some truncated space of
opcmtors that arc considered dominant. The elements of the sub-matrix T11 will have no
truncation errors provided we can calculate

7’1, :: DI1l {Ull – D12~21} “ (3.2)

9



In the lMCRG method the matrix D is diagonal and known, so Dla is O. Th~ls elements
of T11 determined from U11 have no truncation errors. The errors in the eigenvalues and
eigenvectors arise solely from diagonalizing T11 rather than the full matrix 2’. Calculations
in the d = 2 Ising model have shown that these errcrs are large, i.e. of order 10%, if all
operators of a given range are not included. An open problem right now is a robust criterion
for classifying operators into sets such that including successive sets decreases the truncation
error geometrically by a large factor.

The errors arising from using a sub-matrix 2’1~ can be reduced significantly by diag-
nalizing

Tll -i- T1;1T12T’21= q: Ull + {– D;11D12+ 2’1;12-12}T21 (3.3)

as shown by Shankar, Gupta and Murthyag. The correction term Tl~lT12Tz1 is the 2n~
order perturbation result valid for all eigcn~alues that are large compared to thmc C! T’::.
The matrix Z’12T21 a (Tz) ~1- (Tll) 2 can be calculated approximately in 1.MCRG. There
are errors (which I hak-e Ignored) due to the RG flow, because of which T2 is evaluated at a
different point than 1’. The errors depend on how close to H“ the calculation is done. For
the d = 2 Ising model we zs)zg find that the perturbative correction significantly decreases

truncation errors in the relevant eigenvalues. However, straight MCRG works just as well
with far less work as explained below. The other thing we have learnt from this study is that
tile difference between the calculated eigenvalue at n = 1 (1.97 + .01) and the exact result,

2, is not due to truncation errors or statistics. It is due to irrelevant operators causing
corrections to scaling,

Iil standard MCRG, the calculations with TI 1 = D~~U11 have shown good con-
vergence once few operators, 0(5 – 10), are included in T11. The reason for this is an

approximate cancellation between the two types of truncation errors. If in Eq. (3.1) we
ignore terms with T2Z and approximate T11 = D~~U1l then

Further, usually these derivative matrices are roughly proportional, i.e. U ~ Atll and the
corrections fall off as the ratio of non-leading eigenvalues to the leading one Jt. The deriva-
tion follows from the arguments of section 1.1 and can be checked by expanding operators
in term of eigenoperators. Thus Swendsen7 by calculating just D~~U11 and ignoring all

truncation problems was effectively canceling a large part of the truncation error (2n~ term

in Eq. (3.3)) against the error arising from diagonalizing a truncated matrix (perturbativc
correction, 3’J term in “Eq, (3,3)), This explains his success, Shankar30 has found a correc-
tion tcrrtl to further decrease the truncation effects in AJfCRG. Given the assumptions, the

flow under a RG and the success of the procedure as it exists, an improvement will bc hard
to evaluate. However, the check needs to be made.

Thus, at present the best way t~ get accurate results is to use IMCRG to calculate
the Renormalized couplings and Swendsen’s MCRC method to calculate the eigcnvalucs.

4: DETERMINATION OF THE RENOR,MALIZED HAhlILTONIAN.
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The advantage of using a harniltonian close to H* in MC simulations is to reduce the
effect of operators that lead to scaling violations. There are, to the best of my knowledge,
11 methods in existence to calculate the renormalized couplings. These have been reviewed

‘ in ref.s. I shall here briefly describe only those methods most relevant to spin systems.

The generic problem of systematic errors in the estimate of the couplings due to a
truncation in the number of couplings kept in the analysis will be referred to as ‘truncation
errors-. This is a serious drawback because the errm-s can be very large and there is no way
of estimating them without a second long simulation. Unlike lMCRG, all the following

methods have uncontrolled truncation errors.

4.1) Swendsen’s method31 using the Callen representation: The block expec-
tations values of interactions are calculated in two ways, First as simple a~”eragesover block
configurations, and second using the Callen representation32 with a guess for the block
couplings. From these two estimates, the block couplings at n levels are determined simul-
taneously. The estimate is improved iteratively. The method is fast and easy to implement

but it does have undetermined truncation errors.

4.2) Callaway-Petronzio-Wil son33)34 method of fixed block spins: This method
is useful for discrete spin systems like the Isi~g model and models in the same universality
class. A MCRG calculation is modified by fixing all the block spins except one such that
only a controllable few block interactions are non-zero. The system is simulated with the
RGT used as an additional weight in the Metropolis algorithm. The ratio of probability of
this unfixed spin being up to it being down is equal to a determined function of a certain
number (depending on how many block interactions are non-zero) of block couplings. By
using different configurations of fixed block spins a system of linear equations is set up from
which the block couplings are determined. The drawback of this method, even for the Ising
rriodel, is that it is hard to set up the block spins so that only a few (x 10) block interactions
are ncmzero. Wilson showed that this can be done if one uses the lattice gas representation
i.e. O or 1 for spin values. The couplings in the :k1 representation are then given by an

expansion in the lattice gas couplings. The second improvement due to Wilson is that
instead of a MC determination of the ratio of probabilities, the exact result can be obtained
in the transfer matrix formalism. In the d = 2 Ising model, the convergence of the +1

couplings in terms of the lattice gas couplings is slo@ 4. About a 1000 lattice gas couplings
were necessary for an accuracy of x 10– 4. However, the calculation is non-statistical and

very fast.

4.3) Microcanonical (Crcutz’s Demon) Method35: Tilis method is very efficient
if from a previous MCRG calculation expectation valuea of m block interactions at each
of the n block levels are determined. To determine the corresponding couplings at the nth
level, a microcanonical simulation is then done (on a same size lattice as on which the block
expectation values were calculated) with the corresponding m energies fixed and with one
dcrnon pcr interaction. The desired m couplings are then determined from the distribution
of dcmnn encrgios. Tht! accuracy has a fundamental limitation for discrete spin systems
because the demon energy and the total energy is discrete. The truncation errors arc the

sarnc as in Swcndsen’s method with which it also shams an advantage; A single original
calculation is necessary to determine the block interactions cm many levels. Thus if the
simulatc[l 11 is critical, then at each blocki~g Ievcl I{n is also on the criti~id surfil~c.
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The renormalized couplings and H’ are nL. universal but depend on the specific RGT.
Therefore this improvement program is tied heav;’ ‘th MCRG.

Umrigar and IZ4 have performed the following test in the d = 2 Ising model: We
used IlkfCRG to determine H 1 in the subspace of all 2-spin and 4-spin interactions that
exist in a 3 x 3 square. This was then used to perform a standard MCR.G calculation for
the eigenvalues. The result was remarkable; the thermal eigenvalue is 2.001 + 0.001 and
the magnetic 3.669 + 0.001 at the first level. The exact answers ale 2 and 3.668. We are
extending the calculation to include more blocking levels and use Hz before proceeding to
the d = 3 Ising model. If these stability tests work then we shall feel confident that a
good way to calculate the exponents is to first calculate the renorrnalized couplings using
lMCRG and then c lculate the exponents by MCRG.

5: OPEN PROBLEMS

I shall just list the problems that have already been discussed before and elaborate on
the rest.
[I] The accuracy of MCRG in models with known violations of hyperscaling.
[2]

[3]

Optimization of the RGT to improve convergence to H“. The key here is to understand
why the value of the magnetic exponent becomes worse as the kernel becomes longer
ranged.
A result obtained from the study of the d = 2 Ising model is that the LTM has
elements that grow along rows and fall along Colum.nszg. The leading left eigenvector
is normal to the critical surface, Its elsments give an estimate of the growth in the
elements along t!lc rows of the LTM. For two spin interactions these grow like z ~.
Therefore apriori the matrix T is badly behaved. The reason one gets sensible results
is hec?.uso the elements along the columns are observed to fall of? faster (presumababiy
exponentially). .4n open problem is to develop a theory for how ~lements along the

columns fall-off. In problems examined so far we ca~ arrange T to look like

()AB
CD

(5.1)

[4]

with A the minimal truncated n x n block matrix that should be calculated, The case
E = O is simple; there arc no truncation errors in either method and diagonalizing 4
gives the n largest eigcnvalucs, Otherwise for lMCfi!C the truncation error depends
on the dot product of terms in c and D, The rcquircmcnt of absollite convcrgcnm in
the dot product only guarantees ~hat this product is finite but it may bc arbitrarily
Iargc i.e. 0(1). Thcrcfmc for each model, a careful study of the signs and mtignitmlv
of the element:{ in c as a function of the RCT bccorncs ncccssary,
So fur I h(avc orlly t,alkcd abo[:t the hmding thcrrnal cig(!ll Vil]llI!, The irruluvimt cigcnval-
ucs arc known to bc &. TIICSC nrc not WC]] rcproduccd, For cxamplu wc consist. cntly

find a value CIOW to ().4 rathur than 0.5 for the Imding irrulvvant cigonvaluu. I’ho sm-
ol]tl ullkllowll in this CMC is th~ ~tiLtisti~id accur;~cy. Wl)ilc for t]lu r(!](!~illlt (!i~(~i)viLl[l~!

dutcrmillwl by Swondmn’s rllctllml tllr!r(’ s(!(!lns to ho an nrnwillg (:illl~(’lliltioll01”Swf(!(’1)

tt) swcrp corr(!lil~,ions l!(!tw~!(~n tl~c [lli~tri~(?s fJ nlld /j, this is lmt tr[l(! for tll(! rest.
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[51 A classification scheme for operators according to the range of the interactions. The

criterion of success to use here is that on including a complete set, there should be a
geometric decrease in truncation errors.

I:1



REFERENCES

[1] K. G, Wilson, in Recent Developments in Gauge Theories, Cargese (1979), eds. G. t’
Hooft, et al. (Plenum, New York, 1980).

[2] R, H. Swendsen, Phys. Rev. Lett. 42, (1979) 859,
[3] S. H. Shenker and J. Tobochnik, Phys. Rev. B22 (1980) 4462.

[4] S. K. Ma, Phys. Rev. Lett. 37, (1976) 461.
[5] L. P. Kadanoff, Rev. Mod. Phys. 49, (1977) 267.
[6] K, G, Wilson, in Progress in Gauge Fiefd Theories, edited by G, ‘t Hooft et af,, (Plenum,

New York 1984).

[7] R, H. Swendsen, in Real Space Renormalization, Topics in Current Physics, Vol 30,
edited by Th. W. Burkhardt and J. M. J. van Leeuwen (Springer, Berlin, 1982) pg. 57.

[8] R. Gupta, in Proceedings of the Wuppertal Conference on Lattice Gauge Theories: A
challange in large scale computing, Plenum Press 1986.

[9! K. Binder, in Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer,
Berlin,1979) Vol 7, and in Applications o/ Monte Carlo Methods in Statistical Physics,
(Springer Verlag, Heidelberg, 1983).

[10] M. Fischer in ‘Aduanced Course in Critical Phenomenon’; Lecture Notes in Physics,
Vol 186, Springer Verla~ 1983.

[11] K, G, Wilson and J. Kogut, Phys. Rep, 12C, (1974) 76.
[12] P. Pfeuty and G. Toulouse, Introduction to the Renormalization Group and Critical

Phenomenon, (John Wiley & Sons, New York 1978).
[13] l), Amit, Field Theory, the Renornldization Group and Critical Phenomenon, (World

Scientific, 1984),
[ Ill] N. Metropolis, A, W, Roscnbluth, M. N. Roscnbluth, A, H. Teller and E, Teller, J,

Chem, Phys. 21 (1953) 1087.
[15] M, Cre’.ltz, Phys. Rev, D 21 (lMO) 2308.
[16] D. Cal!away and A. Rchman, Phys. Rev, Lctt. 49 (1982) 613,

M, Crcutz, Phy, Rev, Lett. 50 (198;1) 1411.
J, I)olonyi and 11, W. Wyld, Phys. Rvv, Lctt, 61 (1983) 2257,

[17] G, Parisi and Wu Yongshi, Sci. Sin. 24 (1081) 483,

[18] G, C, EIatrouni, C. R, Katz, A, S, Kronfcld, G, P. I,cpagc, Il. Svctitsky, and K. G,
Wilson, Cornell Preprint CI, NS-85(65), May 1965,

[ 1!3] A, 13randt, ill Multigrid Methods, Lccturc Notes in Mmth 96(1, (Springer V~rlilg 1982)
r,nd rcfcrcnccs thcruin,

[20] The idea was first di~cusscd by G, Pmrisi in Progress in Cauge Field Theories, cxlitcd
by G. ‘t IIm)ft, et af., (Plenum, Now York, 1984),

[21] A more careful stitt~~n~nt k mad,! by M, l~;, Fischer an(! M. Rtindcria, Corrwll Not(!
(19$5),

[22] It. SlllLllkiLr Ullii [1.. {;lllltn, l’}1~~. R[!V. 11:12 {19H95)NM-1.

[N] 1{,, Il. Sw(!,,dw!n, 1’I,JW. 1{.(!V, l,,!tt. 62 (1!)84) 2:121,

pl] Itm (:uptit am! (:, (Jlllrifiar, In progr(!s~

[2fi] 1[, (“;;lustrr(!r ILII(I(,:,1), I,mIK, (:rn~: IJrol)rinl l} Nl(;RAZ-lJTt’ 4/H(J,
[26] ]~, ( ;U],tiL :LII(I }?,, (:ord,!t’~, ])h~~, ]d!l,t, AIofi (l!)~~) II!fi.

I4



[27] R. Gupta in Proceedings oj the Tallahassee Conference on Advances in Lattice Gauge
Theory, World Scientific (1985).

[28] R. Gupta, in progress
[29] R. Shanka.r, R. Gupta and G. Murthy, Phys. Rev. Lett. 55 (1985) 1812.
[20] R. Shankar, Phys. Rev. B33 (1986) 6515.
[31] R. H. Swendsen, Phys. Rev. Lett. 52(1984) 1165.
[32] 11. B. Callen, Phys, Lett. 4B (1961) 161.
[33] D. Cailaway and R, Petronzio, Phys, Lett. 139B (1984) 189.
[34] K. G, Wilson and C. Umrigar, unpublished.
[35] M. Creutz, A. Gocksch, M, Ogilvie a~id M. Okawa, Phys. Rev. Lett, 53(1984)875,


