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ABSTRACT

The Monte Carlo Renormalization Group (MCRG) methods and the theory behind
them are reviewed. The Gupta-Cordery improved MCRG method is described and cum-
pared with the standard one. The emphasis is on the progress made in understanding the
truncation errois in the Linearized Transformation Matrix and on open problems. Lastly,
some of the existing methods for calculating the renormalized Hamiltonian are reviewed and
evaluated.
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The development of Monte Carlo Renormalization group method (.MC RG) was essen-
tially complete in 1979 with the work of Wilson!, Swendsen? and Shenker and Tobochnik3.
Prior to this Ma* and Kadanoff® had provided key ingredients. There already exists ex-
tensive literaiure on MCRG and I direct the reader to it 3678 for details and for a
wider exposure. Similarly, the reviews 2''° are a good starting point for background on spin
systems. The topics I shall cover are

1) Introduction to MCRG and its methodology.

2) Improved Monte Carlo Renormalization Group.

3) Comparison of the stardard MCRG method and IMCRG with emphasis on the trun-
cation errors.

4) Renormalized Hamiltonians and Methods to calculate them.

5) Open problems.

1) INTRODUCTION TO MCRG

Renormalization Group!?'!!'1%13 (RG) is a general framework for studying systems

near the critical surface (defined by a divergent correlation length) where singularities in
thermodynamic functions arise from coherence at all length scales. The MCkG method
was developed to handle this problem of infinitely many coupled degrees of fieedom so that
sensible results can be obtained from finite computers. There are two central ideas behind
MC RG: The first is to average over the infinitely many degrees of freedom in discreet steps.
The block degrees of freedom on the coarse lattice are the ones relevant to the description
of the physical quantities of interest. The interaction between these averaged (block) fields
is described by an infinite set of couplings that get renormalized at cach blocking step. The
second point is that there are no singularities in the coupling constant space even though
the correlation length and thermodynamic quantities diverge on the critical surface.

The MCRG methods discussed here have a fundamental assumnption: the fixed point
is short ranged. Thus even though an infinite number of couplings are gencrated under
renormalization, we shall assume that only a few short range ones are sulficient to sirnulate
the system at a given scale and preserve the long distance physics.

1.1) Standard Monte Carlo:

Consider a magnetic system consistirg of spins {s} on the sites of a d- - dimensional lat-
tice . described by a Hamiltonian H. From the outset, II will include all possible couplings
{K,}. The behavior of all thermodynamic quantities can be determined from a detailed
knowledge of the partition function

Z .Y el - eKaSs (1.1)

where S, are the interactions. In Monte Carlo, configurations of spins on the original lattice
are generated by the Metropolis!™, heat bath'3, molecular dynamies alias Microeanonical'
or the Langevin'™ ' alporithm with a Boltzmann distribution e # - ¢Xa% All thermo-
dynamie quantities are given as simple averages of correlation functions over these ‘impor-
tanee sampled’ configurations. T'he accuracy of the calculations depend on the size of the
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statistical sample and the lattice size L used. Both these quantities depend on the largest
correlation length € in the system. Near the critical temperature, T,, associated with second
order phase transitions, the correlation length and consequently thermodynamic quantities
like the specific heat etc diverge as functions of (T — T,) with universal critica: exponents.
These have been calculated for many systems analytically or by Monte-Carlo using finite
size scaling or by the MCRG method. Because { diverges at T, long runs are needed to
counter the critical slowing down. Also, to control finite size effects the lattice size has to be
maintained at a few times £&. The problem of critical slowing down is addressed by analyzing
update algorithms (Metropolis vs. heat bath vs. Microcanonical vs. Langevin with accel-
cration techniques like multi-grid'®, fourier acceleration!®2° etc). The optimum method is,
of course, model dependent and has to take care of metastability (local versus global min-
ima) and global excitations like vortices, instantons etc that are not efficiently handled by
local changes. This last feature has not received adequate attention. To control the second
problem in standard Monte Carlo, effects of a finite lattice especially as £ — oo, finite size
scaling!® has been used with success. In this review I shall concentrate on MCRG. First I
shall describe how universality and scaling are explained by the renormalization group.

The renormalization group transformation (RGT) is an operator R defined on the space
of coupling constants, { K,}. In practice the RGT is a prescription to average spins over a
region of size b, the scale factor of the RGT, to produce the block spin which interacts with
an effective theory H! = R(H). The two theories H and H! describe the same long distance
physics but the correlation length in lattice units § — § If this RGT has a fixed point
H*" such that H* = R(H"), then clearly the theory is scale invariant, at that point and £ is
either 0 or co. An example of a fixed point with £ =0is T = oo and these are trivial. The
interesting case is £ = oo about which the theory is governed by a single scale £. I will discuss
this assumption of hyperscaling, i.e. a single scale controlling all physics, later. If this fixed
point is unstable in 1 direction only (this direction is called the Renormalized Trajectory
(RT)), then non-critical I will flow away from H* along trajectories that asymptotically
converge to the RT. Thus the long distance physics of all ¢tk trajectories that converge
is identical and is controlled by the RT. Similarly, points £ away from H* on the co — 1
dimension hypersurface at which £ = oo (the critical surface) will converge to H*. The fact
that the fixed point with its associated RT control the behavior of all H in the neighborhood
of H* is universality.

Next, consider a non-ciitical H that approaches H* along the RT. Thermodynamic
quantities depend on a single varicble i.e. disiance along the RT. This is scaling. Corrections
to scaling occur when I does not lic on the RT. These ate governed by the irrelevant
cigenvaiues of the RGT which give the rate of flow along tihe critical surface towards I *
and for If not on the RT', the rite of convergence towards it. T'he relevant eigenvalue gives
the rate of flow away from the fixed point along the unstable direction RT and is related to
the critical exponent v. This terse exposé ends with a word of caution; all these statements
have validity close to H*.

1.2) Standard MCRG method

In the M RG method, configurations are generated with the Boltzmann factor e/fe 5

as in standard Monte Carlo. The RGT, P(s!,8), is a prescription for averaging variables
over acell of dimenzion b, The blocked variables {s'} are defined on the sites of a sublattice
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L! with lattice spacing b times that of L. They interact with apriori undetermined couplings
. - 1 .
{Kl}, and the configurations are distributed according to the Boltzmann factor e=H' i.e.

e~ H (") - Z P(st,s) e~ H() | (L.2)

All expectation values, with respect to the Hamiltonian H!, can be calculated as simple
averages on the blocked configurations. The blocking is done n times to produce a sequence
of configurations distributed according to the hamiltonians H™. They all describe the same
long distance Lhysics but on increasingly coarse lattices. The fixed point H", the RT and
the sequence of theories, H™, generated from a given starting H depend on the RGT.

The RGT should satisfy the Kadanoff constraint

Y P(s's) =1 (1.3)

independent of the state {s}. This guarantees that the two theories H and H! have the same
partition function. The RGT should also incorporate the model's symmetry properties; a
notable example is the choice of the block cell in the anti-ferromagnretic Ising model. Usually,
there exists considerable freedom in the choice of the RGT. In fact many different RGT can
be used to analyze a given model. In such cases a comparison of the universal properties
should be made and the RGT dependent quantities isolated. I defer discussion on how to
evaluate the efficiency of a RGT to section 1.5.

1.3) Methods to calculate the critical exponent:

There are two methods to calculate the critical exponents from expectation values cal-
culated as simple averages over configurations. In both there is an implicit assumpticn that
the sequence II™ stays close to I1*. The more popular method is due to Swendsen®7 in which
the critical exponents are calculated from the eigenvalues of the linearized transformation
matrix T3 which is defined as

o . KR 0Kz ()

Ung = 61\’;,‘"' T 01\’5“ . (1.4)
cach of the two terms on the right is a connected 2-point correlation matrix
o :1(\_‘;:_)_, L (SRSTY) - (SPNSD ). (1.5)
and (s
Die g (STSH) < (STHSE). (1)

Here (S™) are the expectation values on the n*? renormalized lattice and K2 are the cor-
responding couplings. The relevant exponent v is found from the leading eigenvalue Ay of
i AL LI
Iy as
Inb
v (1.7)
In X,



where b is the scale factor of the RGT. I have restricted the discussion to the spccial case of
one relevant eigenvalue. In general, systems can have multi-critical points with more than
one relevant interaction. The eigenvalues which are smaller than one (called irrelevant)
vield exponents that control corrections to scaling. An eigenvalue of exactly one is called
marginal. There is an additional class of eigenvalues, the redundant eigenvalues, that are
not physical. Their value depends on the RGT, so one way to isolate them is to repeat the
calculation with a different RGT. I shall return to these in section 1.5

The accuracy of the calculated exponents improves when they are evaluated close to the
fixed point. This can be achieved by starting from a critical point and blocking the lattice
a sufficient number of times i.e. H"™ for large n. In this case the convergence is limited
by the starting lattice size and how close the starting H¢ is to H~. This method can be
improved if the renormalized couplings { A"} are determined starting from a known critical
Hamiltonian. We assume that the couplings fall off exponentially with the range, so that H*
can be approximated by a small number of short range couplings. An approximate critical
point in this subspace should then be used in the update. Models for which the critical
coupling is not known exactly, this improvement has no disadvantage. Otherwise one has to
optimize between moving cleser to /* and flowing away from it under blocking. This flow
away from the critical surface can be corrected for by Wilson's 2-lattice method described in
section 1.4, Later, [ will also describe a few methods to calculate the renormalized couplings.

A second possible improvement is to tune the RGT so that the convergence to H" from
a starting I{¢ takes fewer blocking steps. This is discussed in section 1.5

The practical limitation in Monte Carlo simulations is that the two matrices U and D
can only be determined in a truncated subspace. Further, in order to set up T, the matrix
I has to be inverted. Thus the determination of exponents has two types of truncation
errors: The elements of the truncated T differ from the true T due to the inversion of a
truncated [ and the second come from diagonalizing a truncated T. These errors will be
analysed in detail in section 3.

T'he second method to calculate the icading relevant exponent is due to Wilson®. Con-
sider once again the 2-point connected correlation function (the du ‘vative of an expectation
vilue) (SI‘,',.S'[,)L. with j > 1. Expand S% in term of the eigenoperators O}, of the RGT". Close
to H* the level dependence in Of (equivalently in the expansion roeflicients ¢!, ;) can be
neglected. Then to the leading order

(SE55) ~ M €a,{0:S)) (1.8)

where Ay is the leading relevant eigenvalue and corrections are suppressed by (‘\—)’ ', Thus
AY]
oy
at'n

Tove T ooy
) (l"u h,:) . .. . .
accenracy of the method improves if 3 1 is large since non-leading terins are suppressed
geometrically, So far this method has not been used extensively so its practical aceuracy
cannot be evaluated,

for each v and /4, the ratio gives an cstimate for the leading eigenvalue Ay, The

The calculation of v from the leading eigenvidue does not assume hypersealing. The
relation between v and the specifie heat index e tie. a2 vd does. I hypersealing is
violated, then MCRG has no predictions for o, but it can be determined from a finite size
sealing analysis (with an enbanced definition of the sealing functions) of the specific heat
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data. Also, the interpretation of v as the correlation length exponent becomes unreliable
away from the fixed point. To the best of my knowledge, there does not exist a calculation
in a2 model with known hyperscaling violations, so we cannot really judge how it would effect
MCRG results. This is an open problem.

On the critical surface the 2-point correlation functions (like in Eq. (1.3) and (1.6))
diverge in the thermodynamic limit. However, their ratio is the rate of change of couplings
and these are well behaved provided one considers only short ranged correlation functions
as will be shown later. The reason that AMC RG is assumed to have better control over finite
size effects is that if /' is short ranged then a truncated T:ﬂ is sufficient to determine the
leading eigenvalue. Also, the finite size contributions to the elements T35 fall off like the
couplings t.e. exponentially. Thus reliable estimates may be obtained from small lattices.

1.4) Wilson’s 2-lattice method to find a critical point:

Consider MCRG simulations L and S with the same starting couplings K% but on
lattice sizes L = b and § = b"~'. If K9 is critical and after a few blockings the 2 theories
are close to H", then ail corre:ation functions attain their fixed point values. For non-critical
starting H, expand about H* in the linear appro.imation

() ~{ST7) = g ((E2) = (ST 74} K

= {(LTLY). - (ST"'Sp).} AKJ (1.9)

to detertnine AR, To reduce finite size effects the compared expectation values are calcu-
lated on the same size lattices. The critical coupling is given by

K¢ = K2 - AK? (1.10)
and this estimate should be improved iteratively.
1.5) Optimization of the RGT

The freedoin to choose the RGT leads to the question. What are vhe criteria by which
to decide what is the best RGT. [ will first address the question —-- what is the effect of
changing the RG/T on the fixed point and on the RT. The iweris a Conjecture; Changing
the RGT moves the fixed point on the critical surfaze but only along redundant directions.
A simple argument is as follows?!: Consider two diffecrent RGT, R, and R, and their
associated fixed points I] and H;. There are no non-analytic corrections to scaling at
cither lixed points and the associated RT. If these two points are distinct, then under 12,
I, flows to H{. Consequently there are ne scaling violations alongy the flow. This is by
definition a redundant direction. This implies that, the associated RT differ by redundant
operators.

The presence of redundant operators does not effect the physics, however it can obscure
the results??, The redundant eigenvalues are not physical, depend on the RGT, and can
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be relevant or irrelevant. If a relevant redundant operator is present then the flows will not
converge to the H* or to the RT. Thus the first criterion in picking a RGT is that the
redundant eigenvalues be staa'i.

We desire the convergence to H* be fast. This gives the second criterion: the coeffi-
cients of the leading irrelevant operators in (H* — H.) should be small. The basis vectors
corresponding to irrelevant eigenvalues are a function of the position of H* on the critical
surface. Consequently, even though changing the RGT only moves H* along redundant
directions, it is possible to reduce the coeflicient of the irrelevant operators.

Swendsen?® has conjectured that the fixed point can be moved anywhere on the critical
surface by tuning the RGT. In particular, if the simulation point is made H*, then that
RGT is optimal. There is some support for this in spin systems, where by adding terms
to the RGT, one can successively kill terms in the renormalized hamiltonian. Swendsen?®
found that the eigenvalues for the d = 3 Ising model are significantly improved with a tuned
10 term RGT. He also found that on using a 10 term truncated renormalized hamiltonian
closer to H" for a simple RGT, the improvement was not as good. Since his determination
of renormalized couplings have large truncation errors, the comparison is no* complete.
Tests with the d = 2 Ising model confirm that H* can indeed be brought close to the
nearest neighbour critical point24. However, the improvement in the thermal exponent is
not systematic. In all cases we have tried, the value of v increases and in most cases it
overshoots the known exact result. This might explain the improvement seen by Swendsen
in d = 3 where the simple majority rule RGT gives too low a value.

The central problem in this approach is that in all cases tuning the RGT causes the
results for the magnetic exponent to deteriorate. The magnetic eigenvalue at first blocking
with the majority rule is?? 3.683(2) which agrees with the earlier result of Sweadsen’. Gaus-
terer and Lang®® find 3.692(3) with 2 3 parameter RGT of slightly larger range. Umrigar
and I** find 3.713(2) with a 21 parameter RGT. Since the exact result i1s 5.668, we conclude
that the eigenvalue increases as the range of the RGT increases. This is surprising because
the fixed point is at zero odd couplings and these remain unchanged in tuning the RGT.

There are two additional things to check in this approach: first whether the coefficients
of the RGT terms fall off like the couplings with the ranyge, i.e. exponentially, and second
whether the long range untuned couplings continue to fall off at least as fast as before.
Finally, the quantity to optimize is the update complexity (embodied in the RGT or the
hamiltcnian) versus the decrease in the coefficient of the leading irrelevant operator.

To summarize, the criterion for an op imum RGT is to make the H* and the RT as
short ranged as possible and to have small redundant eigenvalues. In critical phenomena,
the improvement can be quantified by measuring the convergence of the exponents as a
function of the blocking level. I feel that the present status of understanding is ambiguious.
For the momnent let me conclude this section by: The the question of how best to optimize
MC RG has not been adequately answered and should be investigated further.

2: IMPROVED MONTE CARLO RENORMALIZATION GROUP?¢

I shall describe the Gupta-Cordery MCRG method (IMCRG) in some detail.  In
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this method too the Renormalized Hamiitonian and the Linearized Transformation Matrix,
LT M, are determinad in some truncated space of interactions. However, in this sub-space
they have no additional truncation errors z.e. the determined quantities have their infinite
component values. Next, there are no long time correlations even on the critical surface
and the block n-point correlation functions like (S3S53) — (S2)(S;) are calculable numbers.
Because of these properties, the method allows a careful error analysis in the determination
of the exponents from a truncated LT M.
In the IMCRG method the configurations {s} are generated with the weight

P(s!,s)e”FO)+H (s") (2.1)

where HY is a guess for H!. Note that both the site and block spins are used in the update
of the site spins. In analogue to Eq. (1.2), the distribution of the block spins is given by

e MR = B T P(st, 5)em TOIHNED (2.2)

If H9 = H!, then the block spins are completely uncorrelated and the calculation of the
n-point functions on the “lock lattice is trivial.

(shy=o0 (S285) = nabap (2.3)

where for the Ising model (and most other models) the integer n, is simply a product of
the number of sites times the multiplicity of the interaction type S,. When HY # H}, then
to first order

(SY = (S: 5P memrn (K'—K%)5 . (2.4)

Using Eqs. (2.3,2.4), the renormalized couplings { K}} are determined with no truncation
errors

1
K, = K% + {Sa) (2.5)

Na
This procedure can be iterated —— use H™~! as the spin H in Eq. (2.1) to find H™. If
the irrelevant eigenvalues are small, then after two or three repetitions of the RGT, the
sequence H™ converges to the fixed point Hamiltonian H* which is assumed to be short
ranged. For the d = 2 Ising model, the method has been shown to be extremely stable®’.
The linearity approximation, Eq. (2.4), is under control. An iteration process using a
few thousand sweeps suffices to determine successively improved HY upto an accuracy of
O(107%). Beyond that the errors fall as VN and the number of interactions that have to

be included grow rapidly.

The one remaining approximation is in the use of a truncated /{""! for the spin Hamil-
tonian in the update to find H"™. This is solved formally in a straightforward manner: In
Kq. (2.1) use HY as the guess for H™. The update now involves the original spins ard all
block spins up to the nt* level in the Boltzmann weight

P(s", 8™ 1) ... P(st, g)e" T HIOG™ (2.6)



The four Eqs. (2.2-2.5) are unchanged except that the level superscipt is replaced by n, i.e.
the nt* [evel block-block correlation matrix .s diagonal and given by Eq. (2.3). With this
modification, the H" is calculated directly. The limitation on n is the size of the starting
lattice. The other practical limitation is the complexity of the computer program. I have
made the following comparison in the d = 2 Ising model?®: H? was calculated using (2.2)
and by iterating i.e. H. — H! — H? in which case all interactions of strength > 5x 1074 are
retained in H'. The statistical accuracy in both cas2s is O(107%). I find that the iterated
answer is good to only 10~4. Thus the truncation errors do conspire and get magnified.
The lesson learnt from the simple case of d = 2 Ising model is that in order to get couplings
correct to one part in 105 at n = 2, it is necessary to include all eouplings of strength
> 1075 in H!.

The calcuiation of the LT M proceeds exactly as in the standard MCRG i.e. Eqs. (1.4)

o (1.6). However, in the limit H9 = H!, the block-block correlation matrix D is diagoral
and given by Eq. (2.3). Thus it has no iruncation errors, can be inverted with impunity and
the final LT M elements are free of all truncation eirrors. This is the key feature of IMCRG.
The only error comes from finding the eigenvalues from a truncated T matrix. These errors
can be estimated and the results improved perturbatively as explained in section 3.

In addition to the advantages mentioned above, simulating with IMCRG, the sys-
tem does not have critical slowing down. Second, the correlation length £ can always be
made of O(1), so finite size effects are dominated by the range of interactions, which by
assumption of a short range H* fall off exponentially. Thus, critical phenomenon can be
stud’ed on small lattices and with no hidden sweep to sweep correlations that invalidate the
statistical accuracy of the results. Using H® as the known nearest-neighbor critical point
K¢, = 0.4406868, we?4 find that the IM CRG results?? for H! are independent (within the
statistical accuracy & 107°) of finite size effects for lattice sizes 16, 32, 64 and 128. Again
only couplings that fit into a 3 x 3 square were included.

IMCRG is in practice very similar to MC RG though a little more complicated because
it requires a simultaneous calculation of a many term H(s) and H? at update. However,
conceptually it is very different and powerful. I believe that IMC RG provides a complete
framework to analyze the critical behavior of spin systems. With the increased availability
of supercomputer time we shall have very accurate and reliable results.

3: Truncation Errors In The LTM

Consider the matrix equation for T in block form

(Dn sz) (Tu le) (Uu Ul'l) (3.1)
D3y D2 T2y Taz Uz Ui
where D;, and U;, are the 2 derivative matrices calculated in some truncated space of

opcrators that are considered dominant. The elements of the sub-matrix Ty, will have no
truncation errors provided we can calculate

Tu = D' {Un — Di12Ta1} . (3.2)
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In the IMC RG method the matrix D is diagonal and known, so D,z is 0. Ths elements
of T\ determined from U;; have no truncation errors. The errors in the eigenvalues and
eigenvectors arise solely from diagonalizing 7}, rather than the full matrix T. Calculations
in the d = 2 Ising model have shown that these errcrs are large, i.e. of order 10%, if all
operators of a given range are not included. An open problem right now is a robust criterion
for classifying operators into sets such that including successive sets decreases the truncation
error geometrically by a large factor.

The errors arising from using a sub-matrix T}; can be reduced significantly by diago-
nalizing

Ty + T 'TieToy = D} Uy + {=D!Dia + T;;'Ti2} Ty (3.3)

as shown by Shankar, Gupta and Murthy*®. The correction term T1—11T12T21 is the 2n¢
order perturbation result valid for all eigenvalues that are large compared to thosc cf Taa.
The matrix T12T2; = (T%)11— (T11)? can be calculated approximately in IMC RG. There
are errors (which [ have ignored) due to the RG flow, because of which T'? is evaluated at a
different point than T. The errors depend on how close to A" the calculation is done. For
the d = 2 Ising model we?®:2° find that the perturbative correction significantly decreases
truncation errors in the relevant eigenvalues. However, straight MC RG works just as well
with far less work as explained below. The other thing we have learnt from this study is that
the difference between the calculated eigenvalue at n = 1 (1.97 & .01) and the exact result,
2, is not due to truncation errors or statistics. It is due to irrelevant operators causing
corrections to scaling.

[n standard M CRG, the calculations with T;; = Dl_llUu have shown good con-
vergence once few operators, O(5 — 10), are included in Ty;. The reason for this is an
approximate cancellation between the two types of truncation errors. If in Eq. (3.1) we
ignore terms with 722 and approximate Ty, = Dﬁl U1 then

~D!Dy2 + T'Th2 ~ =D !D12 + U['Usa

Further, usually these derivative matrices are roughly proportional, 1.e. U ~ A, D and the
corrections fall off as the ratio of non-leading eigenvalues to the leading one A;. The deriva-
tion follows from the arguments of section 1.1 and can be checked by expanding operators
in term of eigenoperators. Thus Swendsen’ by calculating just DfxlUu and ignoring all
truncation problems was effectively cancelling a large part of the truncation error (Z"d term
in Eq. (3.3)) against the error arising from diagonalizing a truncated matrix (perturbative
correction, 3™ term in Eq. (3.3)). This explains his suczess. Shankar® has found a correc-
tion term to further decrease the truncation effects in MCRG. Given the assumptions, the
flow under a RG and the success of the procedure as it exists, an improvement will be hard
to evaluate. However, the check needs to be made.

Thus, at present the best way to get accurate results is to use JMCRG to calculate
the Renormalized couplings and Swendsen’s MC RG method to calculate the eigenvalues.

4: DETERMINATION OF THE RENORMALIZED HAMILTONIAN.
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The advantage of using a hamiltonian close to H* in MC simulations is to reduce the
effect of operators that lead to scaling violations. There are, to the best of my knowledge,
11 methods in existence to calculate the renormalized couplings. These have been reviewed
in ref.8. I shall here briefly describe only those methods most relevant to spin systems.

The generic problem of systematic errors in the estimate of the couplings due to a
truncation in the number of couplings kept in the analysis will be referred to as “truncation
errors”. This is a serious drawback because the errurs can be very large and there is no way
of estimating them without a second long simulation. Unlike IMCRG, all the following
methods have uncontrolled truncation errors.

4.1) Swendsen’s method?®! using the Callen representation: The block expec-
tations values of interactions are calculated in two ways. First as simple averages over block
configurations, and second using the Callen representation3? with a guess for the block
couplings. From these two estimates, the block couplings at n levels are determined simul-
taneously. The estimate is improved iteratively. The method is fast and easy to implement
but it does have undetermined truncation errors.

4.2) Callaway-Petronzio-Wilson®*34 method of fixed block spins: This method
is useful for discrete spin systems like the Ising model and models in the same universality
class. A MCRG calculation is modified by fixing all the block spins except one such that
only a controllable few block interactions are non-zero. The system is simulated with the
RGT used as an additional weight in the Metropolis algorithm. The ratio of probability of
this unfixed spin being up to it being down is equal to a determined function of a certain
number (depending on how many block interactions are non-zero) of block couplings. By
using different configurations of fixed block spins a system of linear equations is set up from
which the block couplings are determined. The drawback of this method, even for the Ising
model, is that it is hard to set up the block spins so that only a few (= 10) block interactions
are nonzero. Wilson showed that this can be done if one uses the lattice gas representation
1.e. 0 or 1 for spin values. The couplings in the k1 representation are then given by an
expansion in the lattice gas couplings. The second improvement due to Wilson is that
instead of a MC determination of the ratio of probabilities, the exact result can be obtained
in the transfer matrix formalism. In the 4 = 2 Ising model, the convergence of the +1
couplings iu terms of the lattice gas couplings is slow34. About a 1000 lattice gas couplings
were necessary for an accuracy of =~ 10~4. However, the calculation is non-statistical and
very fast.

4.3) Microcanonical (Creutz’s Demon) Method?3: This method is very efficient
if from a previous MCRG calculation expectation values of m block interactions at each
of the n block levels are determined. To determine the corresponding couplings at the nt”
level, a microcanonical simulation is then done (on a same size lattice as on which the block
expectation values were calculated) with the corresponding m energies fixed and with one
demon per interaction. The desired m couplings are then determined from the distribution
of demon energies. The accuracy has a fundamental limitation for discrete spin systems
because the demon energy and the total energy is discrete. The truncation errors arc the
sare as in Swendsen’s method with which it also shares an advantage; A single original
calculation is necessary to determine the block interactions on many levels. Thus if the
simulated [T is critical, then at each blocking level I/™ is also on the critical surface.
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The renormalized couplings and H* are nc. universal but depend on the specific RGT.
Therefore this improvement program is tied heavi' ‘th MCRG.

Umrigar and I*4 have performed the following test in the d = 2 Ising model: We
used IMCRG to determine H! in the subspace of all 2-spin and 4-spin interactions that
exist in a 3 x 3 square. This was then used to perform a standard MCRG calculation for
the eigenvalues. The result was remarkable; the thermal eigenvalue is 2.001 + 0.001 and
the magnetic 3.669 + 0.001 at the first level. The exact answers aie 2 and 3.668. We are
extending the calculation to include more blocking levels and use H? before proceeding to
the d = 3 Ising model. If these stability tests work then we shall fcel confident that a
good way to calculate the exponents is to first calculate the renormalized couplings using
IMCRG and then ¢ 'culate the exponents by MCRG. -

5: OPEN PROBLEMS

I shall just list the problems that have already been discussed before and elaborate on
the rest.

(1] The accuracy of MCRG in models with known violations of hyperscaling.

[2] Optimization of the RGT to improve convergence to H*. The key here is to understand
why the value of the magnetic exponent becomes worse as the kernel becomes longer
ranged.

[3] A result obtained from the study of the 4 = 2 Ising model is that the LTM has
elements that grow along rows and fall along columns®?. The leading left eigenvector
is normal to the critical surface. Its el:ments give an estimate of the growth in the
elements along the rows of the LT M. For two spin interactions these grow like z¢.
Therefore apriori the matrix T is badly behaved. The reason one gets sensible results
is hbecr.usn the elements along the columns are observed to {all off faster (presumababiy
exponentially). An open problem is to develop a theory for how clements along the
columns fall-off. In problems examined so far we can arrange T to look likc

(': g) (5.1)

with A the minimal truncated n x n block matrix that should be calculated. The case
€ = 0 is simple; there are no truncation errors in either method and diagonalizing 4
gives the n largest eigenvalues. Otherwise for IMCRG the truncation error depends
on the dot product of terms in € and B. The requirement of absolute convergence in
the dot product only guarantees ihat this product is finite but it may be arbitrarily
large i.e. O(1). Therefore for each model, a careful study of the signs and magnitude
of the elements in € as a function of the RGT becomes necessary.

[1] So far I have only talked about the leading thermal eigenvalue. The irrelevant eigenval-
ues are known to be 5. These are not well reproduced. For example we consistently
find a value close to 0.4 rather than 0.5 for the leading irrelevant eigenvalue. The sec-
ond unknown in this case is the statistical accuracy. While for the relevant eigenvalue
determined by Swendsen’s method there seems to be an amazing cancellation ol sweep
to sweep correlations between the matrices I and 1), this is not true for the rest,
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(5] A classification scheme for operators according to the range of the interactions. The
criterion of success to use here is that on including a complete set, there should be 2
geometric decrease in truncation errors.
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